


Vector Formulas

a-(bxc)=b-(cxa)=c-(axbh)
ax(xc)=(a-ch— (a-b)c
(axb)-(cxd)=(a-c)b-d)—(a-d)b-c)
VxVy=0
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Vx(axb)y=aV-b)—b(V-a)+(b-V)a—(a-V)b
If x is the coordinate of a point with respect to some origin, with magnitude

r = |x|, m = x/r is a unit radial vector, and f(r) is a well-behaved function of r,
then

V.x=3 Vxx=0
V- Inf)] =2 f +

@-wynf(r) = 12

V(x-a) =a+ x(V-a) +i(L X a)

Z_{ V x [nf(r)] =0

[a—n(a-n)]+n(a-n)g—{

1 .
where L = 7 (x x V) is the angular-momentum operator.



Theorems from Vector Calculus

In the following ¢, i, and A are well-behaved scalar or vector functions, V is a
three-dimensional volume with volume element d°x, S is a closed two-
dimensional surface bounding V, with area element da and unit outward normal
n at da.

fv V-Adx = f A-nda (Divergence theorem)
S
f Vi d’x =J ym da
|4 S
foAd3x=fnxAda
|4 S
f (pV*¢ + Vo - Vi) d°x = L én - Vipda (Green’s first identity)
|4

fv (¢VPY — V) d’x = L (¢Vy — V) -n da (Green’s theorem)

Ini the following S is an open surface and C is the contour bounding it, with line
element dl. The normal n to S is defined by the right-hand-screw rule in relation
to the sense of the line integral around C.

L (VxA)-nda= i A -dl (Stokes’s theorem)

Ln X Vi da =§C¢zdl
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Preface

It has been 36 years since the appearance of the first edition of this book, and 23
years since the second. Such intervals may be appropriate for a subject whose
fundamental basis was completely established theoretically 134 years ago by
Maxwell and experimentally 110 years ago by Hertz. Still, there are changes in
emphasis and applications. This third edition attempts to address both without
any significant increase in size. Inevitably, some topics present in the second
edition had to be eliminated to make room for new material. One major omission
is the chapter on plasma physics, although some pieces appear elsewhere. Read-
ers who miss particular topics may, I hope, be able to avail themselves of the
second edition.

The most visible change is the use of SI units in the first 10 chapters. Gaussian
units are retained in the later chapters, since such units seem more suited to
relativity and relativistic electrodynamics than SI. As a reminder of the sys-
tem of units being employed, the running head on each left-hand page carries
“—SI” or “—G” depending on the chapter.

My tardy adoption of the universally accepted SI system is a recognition that
almost all undergraduate physics texts, as well as engineering books at all levels,
employ SI units throughout. For many years Ed Purcell and I had a pact to
support each other in the use of Gaussian units. Now I have betrayed him! Al-
though this book is formally dedicated to the memory of my father, I dedicate
this third edition informally to the memory of Edward Mills Purcell (1912-1997),
a marvelous physicist with deep understanding, a great teacher, and a wonderful
man.

Because of the increasing use of personal computers to supplement analytical
work or to attack problems not amenable to analytic solution, I have included
some new sections on the principles of some numerical techniques for electro-
statics and magnetostatics, as well as some elementary problems. Instructors may
use their ingenuity to create more challenging ones. The aim is to provide an
understanding of such methods before blindly using canned software or even
Mathematica or Maple.

There has been some rearrangement of topics—Faraday’s law and quasi-
static fields are now in Chapter 5 with magnetostatics, permitting a more logical
discussion of energy and inductances. Another major change is the consolidation
of the discussion of radiation by charge-current sources, in both elementary and
exact multipole forms, in Chapter 9. All the applications to scattering and dif-
fraction are in Chapter 10.

The principles of optical fibers and dielectric waveguides are discussed in two
new sections in Chapter 8. In Chapter 13 the treatment of energy loss has been
shortened and strengthened. Because of the increasing importance of synchro-
tron radiation as a research tool, the discussion in Chapter 14 has been aug-
mented by a detailed section on the physics of wigglers and undulators for syn-
chroton light sources. There is new material in Chapter 16 on radiation reaction
and models of classical charged particles, as well as changed emphasis.

There is much tweaking by small amounts throughout. I hope the reader will
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not notice, or will notice only greater clarity. To mention but a few minor addi-
tions: estimating self-inductances, Poynting’s theorem in lossy materials, polar-
ization potentials (Hertz vectors), Goos—Hénchen effect, attenuation in optical
fibers, London penetration depth in superconductors. And more problems, of
course! Over 110 new problems, a 40% increase, all aimed at educating, not
discouraging.

In preparing this new edition and making corrections, I have benefited from
questions, suggestions, criticism, and advice from many students, colleagues, and
newfound friends. I am in debt to all. Particular thanks for help in various ways
go to Myron Bander, David F. Bartlett, Robert N. Cahn, John Cooper, John L.
Gammel, David J. Griffiths, Leroy T. Kerth, Kwang J. Kim, Norman M. Kroll,
Michael A. Lee, Harry J. Lipkin, William Mendoza, Gerald A. Miller, William
A. Newcomb, Ivan Otero, Alan M. Portis, Fritz Rohrlich, Wayne M. Saslow,
Chris Schmid, Kevin E. Schmidt, and George H. Trilling,

J. David Jackson
Berkeley, California, 1998, 2001



Preface to the Second Edition

In the thirteen years since the appearance of the first edition, my interest in
classical electromagnetism has waxed and waned, but never fallen to zero. The
subject is ever fresh. There are always important new applications and examples.
The present edition reflects two efforts on my part: the refinement and improve-
ment of material already in the first edition; the addition of new topics (and the
omission of a few).

The major purposes and emphasis are still the same, but there are extensive
changes and additions. A major augmentation is the “Introduction and Survey”
at the beginning. Topics such as the present experimental limits on the mass of
the photon and the status of linear superposition are treated there. The aim is to
provide a survey of those basics that are often assumed to be well known when
one writes down the Maxwell equations and begins to solve specific examples.
Other major changes in the first half of the book include a new treatment of the
derivation of the equations of macroscopic electromagnetism from the micro-
scopic description; a discussion of symmetry properties of mechanical and elec-
tromagnetic quantities; sections on magnetic monopoles and the quantization
condition of Dirac; Stokes’s polarization parameters; a unified discussion of the
frequency dispersion characteristics of dielectrics, conductors, and plasmas; a dis-
cussion of causality and the Kramers-Kronig dispersion relations; a simplified,
but still extensive, version of the classic Sommerfeld—Brillouin problem of the
arrival of a signal in a dispersive medium (recently verified experimentally); an
unusual example of a resonant cavity; the normal-mode expansion of an arbitrary
field in a wave guide; and related discussions of sources in a guide or cavity and
the transmission and reflection coefficients of flat obstacles in wave guides.

Chapter 9, on simple radiating systems and diffraction, has been enlarged to
include scattering at long wavelengths (the blue sky, for example) and the optical
theorem. The sections on scalar and vectorial diffraction have been improved.

Chapters 11 and 12, on special relativity, have been rewritten almost com-
pletely. The old pseudo-Euclidean metric with x, = ict has been replaced by
g" (vith g% = +1, g" = —1,i = 1, 2, 3). The change of metric necessitated a
complete revision and thus permitted substitution of modern experiments and
concerns about the experimental basis of the special theory for the time-honored
aberration of starlight and the Michelson-Morley experiment. Other aspects
have been modernized, too. The extensive treatment of relativistic kinematics of
the first edition has been relegated to the problems. In its stead is a discussion
of the Lagrangian for the electromagnetic fields, the canonical and symmetric
stress-energy tensor, and the Proca Lagrangian for massive photons.

Significant alterations in the remaining chapters include a new section on
transition radiation, a completely revised (and much more satisfactory) semi-
classical treatment of radiation emitted in collisions that stresses momentum
transfer instead of impact parameter, and a better derivation of the coupling of
multipole fields to their sources. The collection of formulas and page references
to special functions on the front and back flyleaves is a much requested addition.
Of the 278 problems, 117 (more than 40 per cent) are new.
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The one area that remains almost completely unchanged is the chapter on
magnetohydrodynamics and plasma physics. I regret this. But the book obviously
has grown tremendously, and there are available many books devoted exclusively
to the subject of plasmas or magnetohydrodynamics.

Of minor note is the change from Maxwell’s equations and a Green’s func-
tion to the Maxwell equations and a Green function. The latter boggles some
minds, but is in conformity with other usage (Bessel function, for example). It is
still Green’s theorem, however, because that’s whose theorem it is.

Work on this edition began in earnest during the first half of 1970 on the
occasion of a sabbatical leave spent at Clare Hall and the Cavendish Laboratory
in Cambridge. I am grateful to the University of California for the leave and
indebted to N. F. Mott for welcoming me as a visitor to the Cavendish Laboratory
and to R. J. Eden and A. B. Pippard for my appointment as a Visiting Fellow of
Clare Hall. Tangible and intangible evidence at the Cavendish of Maxwell, Ray-
leigh and Thomson provided inspiration for my task; the stimulation of everyday
activities there provided necessary diversion.

This new edition has benefited from questions, suggestions, comments and
criticism from many students, colleagues, and strangers. Among those to whom
I owe some specific debt of gratitude are A. M. Bincer, L. S. Brown, R. W. Brown,
E. U. Condon, H. H. Denman, S. Deser, A. J. Dragt, V. L. Fitch, M. B. Halpern,
A. Hobson, J. P. Hurley, D. L. Judd, L. T. Kerth, E. Marx, M. Nauenberg, A. B.
Pippard, A. M. Portis, R. K. Sachs, W. M. Saslow, R. Schleif, V. L. Telegdi, T.
Tredon, E. P. Tryon, V. F. Weisskopf, and Dudley Williams. Especially helpful
were D. G. Boulware, R. N. Cahn, Leverett Davis, Jr., K. Gottfried, C. K. Gra-
ham, E. M. Purcell, and E. H. Wichmann. I send my thanks and fraternal greet-
ings to all of these people, to the other readers who have written to me, and the
countless students who have struggled with the problems (and sometimes written
asking for solutions to be dispatched before some deadline!). To my mind, the
book is better than ever. May each reader benefit and enjoy!

J. D. Jackson
Berkeley, California, 1974



Preface to the First Edition

Classical electromagnetic theory, together with classical and quantum mechanics,
forms the core of present-day theoretical training for undergraduate and grad-
uate physicists. A thorough grounding in these subjects is a requirement for more
advanced or specialized training.

Typically the undergraduate program in electricity and magnetism involves
two or perhaps three semesters beyond elementary physics, with the emphasis
on the fundamental laws, laboratory verification and elaboration of their con-
sequences, circuit analysis, simple wave phenomena, and radiation. The mathe-
matical tools utilized include vector calculus, ordinary differential equations with
constant coefficients, Fourier series, and perhaps Fourier or Laplace transforms,
partial differential equations, Legendre polynomials, and Bessel functions.

As a general rule, a two-semester course in electromagnetic theory is given
to beginning graduate students. It is for such a course that my book is designed.
My aim in teaching a graduate course in electromagnetism is at least threefold.
The first aim is to present the basic subject matter as a coherent whole, with
empbhasis on the unity of electric and magnetic phenomena, both in their physical
basis and in the mode of mathematical description. The second, concurrent aim
is to develop and utilize a number of topics in mathematical physics which are
useful in both electromagnetic theory and wave mechanics. These include
Green’s theorems and Green’s functions, orthonormal expansions, spherical har-
monics, cylindrical and spherical Bessel functions. A third and perhaps most
important purpose is the presentation of new material, especially on the inter-
action of relativistic charged particles with electromagnetic fields. In this last area
personal preferences and prejudices enter strongly. My choice of topics is gov-
erned by what I feel is important and useful for students interested in theoretical
physics, experimental nuclear and high-energy physics, and that as yet ill-defined
field of plasma physics.

The book begins in the traditional manner with electrostatics. The first six
chapters are devoted to the development of Maxwell’s theory of electromagne-
tism. Much of the necessary mathematical apparatus is constructed along the way,
especially in Chapter 2 and 3, where boundary-value problems are discussed
thoroughly. The treatment is initially in terms of the electric field £ and the
magnetic induction B, with the derived macroscopic quantities, D and H, intro-
duced by suitable averaging over ensembles of atoms or molecules. In the dis-
cussion of dielectrics, simple classical models for atomic polarizability are de-
scribed, but for magnetic materials no such attempt to made. Partly this omission
was a question of space, but truly classical models of magnetic susceptibility are
not possible. Furthermore, elucidation of the interesting phenomenon of ferro-
magnetism needs almost a book in itself.

The next three chapters (7-9) illustrate various electromagnetic phenomena,
mostly of a macroscopic sort. Plane waves in different media, including plasmas
as well as dispersion and the propagation of pulses, are treated in Chapter 7. The
discussion of wave guides and cavities in Chapter 8 is developed for systems of
arbitrary cross section, and the problems of attenuation in guides and the Q of
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a cavity are handled in a very general way which emphasizes the physical pro-
cesses involved. The elementary theory of multipole radiation from a localized
source and diffraction occupy Chapter 9. Since the simple scalar theory of dif-
fraction is covered in many optics textbooks, as well as undergraduate books on
electricity and magnetism, I have presented an improved, although still approx-
imate, theory of diffraction based on vector rather than scalar Green’s theorems.

The subject of magnetohydrodynamics and plasmas receives increasingly
more attention from physicists and astrophysicists. Chapter 10 represents a sur-
vey of this complex field with an introduction to the main physical ideas involved.

The first nine or ten chapters constitute the basic material of classical elec-
tricity and magnetism. A graduate student in physics may be expected to have
been exposed to much of this material, perhaps at a somewhat lower level, as an
undergraduate. But he obtains a more mature view of it, understands it more
deeply, and gains a considerable technical ability in analytic methods of solution
when he studies the subject at the level of this book. He is then prepared to go
on to more advanced topics. The advanced topics presented here are predomi-
nantly those involving the interaction of charged particles with each other and
with electromagnetic fields, especially when moving relativistically.

The special theory of relativity had its origins in classical electrodynamics.
And even after almost 60 years, classical electrodynamics still impresses and de-
lights as a beautiful example of the covariance of physical laws under Lorentz
transformations. The special theory of relativity is discussed in Chapter 11, where
all the necessary formal apparatus is developed, various kinematic consequences
are explored, and the covariance of electrodynamics is established. The next
chapter is devoted to relativistic particle kinematics and dynamics. Although the
dynamics of charged particles in electromagnetic fields can properly be consid-
ered electrodynamics, the reader may wonder whether such things as kinematic
transformations of collision problems can. My reply is that these examples occur
naturally once one has established the four-vector character of a particle’s mo-
mentum and energy, that they serve as useful practice in manipulating Lorentz
transformations, and that the end results are valuable and often hard to find
elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy loss
and scattering and develops concepts of use in later chapters. Here for the first
time in the book I use semiclassical arguments based on the uncertainty principle
to obtain approximate quantum-mechanical expressions for energy loss, etc.,
from the classical results. This approach, so fruitful in the hands of Niels Bohr
and E. J. Williams, allows one to see clearly how and when quantum-mechanical
effects enter to modify classical considerations.

The important subject of emission of radiation by accelerated point charges
is discussed in detail in Chapters 14 and 15. Relativistic effects are stressed, and
expressions for the frequency and angular dependence of the emitted radiation
are developed in sufficient generality for all applications. The examples treated
range from synchrotron radiation to bremsstrahlung and radiative beta processes.
Cherenkov radiation and the Weizsicker—Williams method of virtual quanta are
also discussed. In the atomic and nuclear collision processes semiclassical argu-
ments are again employed to obtain approximate quantum-mechanical results. I
lay considerable stress on this point because I feel that it is important for the
student to see that radiative effects such as bremsstrahlung are almost entirely
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classical in nature, even though involving small-scale collisions. A student who
meets bremsstrahlung for the first time as an example of a calculation in quantum
field theory will not understand its physical basis.

Multipole fields form the subject matter of Chapter 16. The expansion of
scalar and vector fields in spherical waves is developed from first principles with
no restrictions as to the relative dimensions of source and wavelength. Then the
properties of electric and magnetic multipole radiation fields are considered.
Once the connection to the multiple moments of the source has been made,
examples of atomic and nuclear multipole radiation are discussed, as well as a
macroscopic source whose dimensions are comparable to a wavelength. The scat-
tering of a plane electromagnetic wave by a spherical object is treated in some
detail in order to illustrate a boundary-value problem with vector spherical
waves.

In the last chapter the difficult problem of radiative reaction is discussed.
The treatment is physical, rather than mathematical, with the emphasis on delim-
iting the areas where approximate radiative corrections are adequate and on
finding where and why existing theories fail. The original Abraham—Lorentz the-
ory of the self-force is presented, as well as more recent classical considerations.

The book ends with an appendix on units and dimensions and a bibliography.
In the appendix I have attempted to show the logical steps involved in setting up
a system of units, without haranguing the reader as to the obvious virtues of my
choice of units. I have provided two tables which I hope will be useful, one for
converting equations and symbols and the other for converting a given quantity
of something from so many Gaussian units to so many mks units, and vice versa.
The bibliography lists books which I think the reader may find pertinent and
useful for reference or additional study. These books are referred to by author’s
name in the reading lists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electrodynamics
which I have taught off and on over the past eleven years, at both the University
of Illinois and McGill University. I wish to thank my colleagues and students at
both institutions for countless helpful remarks and discussions. Special mention
must be made of Professor P. R. Wallace of McGill, who gave me the opportunity
and encouragement to teach what was then a rather unorthodox course in elec-
tromagnetism, and Professors H. W. Wyld and G. Ascoli of Illinois, who have
been particularly free with many helpful suggestions on the treatment of various
topics. My thanks are also extended to Dr. A. N. Kaufman for reading and com-
menting on a preliminary version of the manuscript, and to Mr. G. L. Kane for
his zealous help in preparing the index.

J. D. Jackson
Urbana, Illinois, January, 1962
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Introduction and Survey

Although amber and lodestone were known to the ancient Greeks, electro-
dynamics developed as a quantitative subject in less than a hundred years.
Cavendish’s remarkable experiments in electrostatics were done from 1771 to
1773. Coulomb’s monumental researches began to be published in 1785. This
marked the beginning of quantitative research in electricity and magnetism on a
worldwide scale. Fifty years later Faraday was studying the effects of time-varying
currents and magnetic fields. By 1864 Maxwell had published his famous paper
on a dynamical theory of the electromagnetic field. Twenty-four years later
(1888) Hertz published his discovery of transverse electromagnetic waves, which
propagated at the same speed as light, and placed Maxwell’s theory on a firm
experimental footing.

The story of the development of our understanding of electricity and mag-
netism and of light is, of course, much longer and richer than the mention of a
few names from one century would indicate. For a detailed account of the fas-
cinating history, the reader should consult the authoritative volumes by
Whittaker.* A briefer account, with emphasis on optical phenomena, appears at
the beginning of Born and Wolf.

Since the 1960s there has been a true revolution in our understanding of the
basic forces and constituents of matter. Now (1990s) classical electrodynamics
rests in a sector of the unified description of particles and interactions known as
the standard model. The standard model gives a coherent quantum-mechanical
description of electromagnetic, weak, and strong interactions based on funda-
mental constituents—quarks and leptons—interacting via force carriers—pho-
tons, W and Z bosons, and gluons. The unified theoretical framework is gener-
ated through principles of continuous gauge (really phase) invariance of the
forces and discrete symmetries of particle properties.

From the point of view of the standard model, classical electrodynamics is a
limit of quantum electrodynamics (for small momentum and energy transfers,
and large average numbers of virtual or real photons). Quantum electrodynamics,
in turn, is a consequence of a spontaneously broken symmetry in a theory in
which initially the weak and electromagnetic interactions are unified and the
force carriers of both are massless. The symmetry breaking leaves the electro-
magnetic force carrier (photon) massless with a Coulomb’s law of infinite range,
while the weak force carriers acquire masses of the order of 80-90 GeV/¢* with
a weak interaction at low energies of extremely short range (2 X 107'® meter).
Because of the origins in a unified theory, the range and strength of the weak
interaction are related to the electromagnetic coupling (the fine structure con-
stant « =~ 1/137).

*Italicized surnames denote books that are cited fully in the Bibliography.
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Despite the presence of a rather large number of quantities that must be
taken from experiment, the standard model (together with general relativity at
large scales) provides a highly accurate description of nature in all its aspects,
from far inside the nucleus, to microelectronics, to tables and chairs, to the most
remote galaxy. Many of the phenomena are classical or explicable with nonrel-
ativistic quantum mechanics, of course, but the precision of the agreement of the
standard model with experiment in atomic and particle physics where relativistic
quantum mechanics rules is truly astounding. Classical mechanics and classical
electrodynamics served as progenitors of our current understanding, and still play
important roles in practical life and at the research frontier.

This book is self-contained in that, though some mathematical background
(vector calculus, differential equations) is assumed, the subject of electrodynam-
ics is developed from its beginnings in electrostatics. Most readers are not coming
to the subject for the first time, however. The purpose of this introduction is
therefore not to set the stage for a discussion of Coulomb’s law and other basics,
but rather to present a review and a survey of classical electromagnetism. Ques-
tions such as the current accuracy of the inverse square law of force (mass of the
photon), the limits of validity of the principle of linear superposition, and the
effects of discreteness of charge and of energy differences are discussed. “Bread
and butter” topics such as the boundary conditions for macroscopic fields at
surfaces between different media and at conductors are also treated. The aim is
to set classical electromagnetism in context, to indicate its domain of validity,
and to elucidate some of the idealizations that it contains. Some results from later
in the book and some nonclassical ideas are used in the course of the discussion.
Certainly a reader beginning electromagnetism for the first time will not follow
all the arguments or see their significance. For others, however, this introduction
will serve as a springboard into the later parts of the book, beyond Chapter 5,
and will remind them of how the subject stands as an experimental science.

L1 Maxwell Equations in Vacuum, Fields, and Sources

The equations governing electromagnetic phenomena are the Maxwell

equations,
V-D=p
VxH—@=J
ot (I.1a)
VxE+@=0
ot
V-B=0

where for external sources in vacuum, D = ¢FE and B = u,H. The first two
equations then become

V.-E = ple,

3E (L1b)

VxB-2 =
e
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Implicit in the Maxwell equations is the continuity equation for charge density
and current density,

0

Piv.y=0 (12)

ot
This follows from combining the time derivative of the first equation in (I.1a)
with the divergence of the second equation. Also essential for consideration of
charged particle motion is the Lorentz force equation,

F=gE+vxB) (13)

which gives the force acting on a point charge g in the presence of electromag-
netic fields.

These equations have been written in SI units, the system of electromagnetic
units used in the first 10 chapters of this book. (Units and dimensions are dis-
cussed in the Appendix.) The Maxwell equations are displayed in the commoner
systems of units in Table 2 of the Appendix. Essential to electrodynamics is the
speed of light in vacuum, given in SI units by ¢ = (ue€,) /> As discussed in the
Appendix, the meter is now defined in terms of the second (based on a hyperfine
transition in cesium-133) and the speed of light (c = 299 792 458 m/s, exactly).
These definitions assume that the speed of light is a universal constant, consistent
with evidence (see Section 11.2.C) indicating that to a high accuracy the speed
of light in vacuum is independent of frequency from very low frequencies to at
least v = 10°* Hz (4 GeV photons). For most practical purposes we can approx-
imate ¢ = 3 X 10® m/s or to be considerably more accurate, ¢ = 2.998 X 10® m/s.

The electric and magnetic fields E and B in (I.1) were originally introduced
by means of the force equation (I.3). In Coulomb’s experiments forces acting
between localized distributions of charge were observed. There it is found useful
(see Section 1.2) to introduce the electric field E as the force per unit charge.
Similarly, in Ampere’s experiments the mutual forces of current-carrying loops
were studied (see Section 5.2). With the identification of NAgv as a current in a
conductor of cross-sectional area A with N charge carriers per unit volume mov-
ing at velocity v, we see that B in (1.3) is defined in magnitude as a force per unit
current. Although E and B thus first appear just as convenient replacements for
forces produced by distributions of charge and current, they have other important
aspects. First, their introduction decouples conceptually the sources from the test
bodies experiencing electromagnetic forces. If the fields E and B from two source
distributions are the same at a given point in space, the force acting on a test
charge or current at that point will be the same, regardless of how different the
source distributions are. This gives E and B in (I.3) meaning in their own right,
independent of the sources. Second, electromagnetic fields can exist in regions
of space where there are no sources. They can carry energy, momentum, and
angular momentum and so have an existence totally independent of charges and
currents. In fact, though there are recurring attempts to eliminate explicit ref-
erence to the fields in favor of action-at-a-distance descriptions of the interaction
of charged particles, the concept of the electromagnetic field is one of the most
fruitful ideas of physics, both classically and quantum mechanically.

The concept of E and B as ordinary fields is a classical notion. It can be
thought of as the classical limit (limit of large quantum numbers) of a quantum-
mechanical description in terms of real or virtual photons. In the domain of
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macroscopic phenomena and even some atomic phenomena, the discrete photon
aspect of the electromagnetic field can usually be ignored or at least glossed over.
For example, 1 meter from a 100-watt light bulb, the root mean square electric
field is of the order of 50 V/m and there are of the order of 10" visible photons/
cm?-s. Similarly, an isotropic FM antenna with a power of 100 watts at 10® Hz
produces an rms electric field of only 0.5 mV/m at a distance of 100 kilometers,
but this still corresponds to a flux of 10'? photons/cm?-s, or about 10° photons in
a volume of 1 wavelength cubed (27 m?) at that distance. Ordinarily an apparatus
will not be sensible to the individual photons; the cumulative effect of many
photons emitted or absorbed will appear as a continuous, macroscopically ob-
servable response. Then a completely classical description in terms of the
Maxwell equations is permitted and is appropriate.

How is one to decide a priori when a classical description of the electromag-
netic fields is adequate? Some sophistication is occasionally needed, but the fol-
lowing is usually a sufficient criterion: When the number of photons involved can
be taken as large but the momentum carried by an individual photon is small
compared to the momentum of the material system, then the response of the
material system can be determined adequately from a classical description of the
electromagnetic fields. For example, each 10°* Hz photon emitted by our FM
antenna gives it an impulse of only 2.2 X 107** Ns. A classical treatment is surely
adequate. Again, the scattering of light by a free electron is governed by the
classical Thomson formula (Section 14.8) at low frequencies, but by the laws of
the Compton effect as the momentum Aw/c of the incident photon becomes sig-
nificant compared to mc. The photoelectric effect is nonclassical for the matter
system, since the quasi-free electrons in the metal change their individual ener-
gies by amounts equal to those of the absorbed photons, but the photoelectric
current can be calculated quantum mechanically for the electrons using a classical
description of the electromagnetic fields.

The quantum nature of the electromagnetic fields must, on the other hand,
be taken into account in spontaneous emission of radiation by atoms, or by any
other system that initially lacks photons and has only a small number of photons
present finally. The average behavior may still be describable in essentially clas-
sical terms, basically because of conservation of energy and momentum. An ex-
ample is the classical treatment (Section 16.2) of the cascading of a charged
particle down through the orbits of an attractive potential. At high particle quan-
tum numbers, a classical description of particle motion is adequate, and the sec-
ular changes in energy and angular momentum can be calculated classically from
the radiation reaction because the energies of the successive photons emitted are
small compared to the kinetic or potential energy of the orbiting particle.

The sources in (I.1) are p(x, 1), the electric charge density, and J(x, 7), the
electric current density. In classical electromagnetism they are assumed to be
continuous distributions in x, although we consider from time to time localized
distributions that can be approximated by points. The magnitudes of these point
charges are assumed to be completely arbitrary, but are known to be restricted
in reality to discrete values. The basic unit of charge is the magnitude of the
charge on the electron,

lg.] = 4.803 206 8(15) X 107" esu
1.602 177 33(49) X 107*° C
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where the errors in the last two decimal places are shown in parentheses. The
charges on the proton and on all presently known particles or systems of particles
are integral multiples of this basic unit.* The experimental accuracy with which
it is known that the multiples are exactly integers is phenomenal (better than 1
part in 10%°). The experiments are discussed in Section 11.9, where the question
of the Lorentz invariance of charge is also treated.

The discreteness of electric charge does not need to be considered in most
macroscopic applications. A 1-microfarad capacitor at a potential of 150 volts,
for example, has a total of 10" elementary charges on each electrode. A few
thousand electrons more or less would not be noticed. A current of 1 microam-
pere corresponds to 6.2 X 10'* elementary charges per second. There are, of
course, some delicate macroscopic or almost macroscopic experiments in which
the discreteness of charge enters. Millikan’s famous oil drop experiment is one.
His droplets were typically 10™* ¢m in radius and had a few or few tens of ele-
mentary charges on them.

There is a lack of symmetry in the appearance of the source terms in the
Maxwell equations (I.1a). The first two equations have sources; the second two
do not. This reflects the experimental absence of magnetic charges and currents.
Actually, as is shown in Section 6.11, particles could have magnetic as well as
electric charge. If all particles in nature had the same ratio of magnetic to electric
charge, the fields and sources could be redefined in such a way that the usual
Maxwell equations (I.1a) emerge. In this sense it is somewhat a matter of con-
vention to say that no magnetic charges or currents exist. Throughout most of
this book it is assumed that only electric charges and currents act in the Maxwell
equations, but some consequences of the existence of a particle with a different
magnetic to electric charge ratio, for example, a magnetic monopole, are de-
scribed in Chapter 6.

L2 Inverse Square Law or the Mass of the Photon

The distance dependence of the electrostatic law of force was shown quantita-
tively by Cavendish and Coulomb to be an inverse square law. Through Gauss’s
law and the divergence theorem (see Sections 1.3 and 1.4) this leads to the first
of the Maxwell equations (I.1b). The original experiments had an accuracy of
only a few percent and, furthermore, were at a laboratory length scale. Experi-
ments at higher precision and involving different regimes of size have been per-
formed over the years. It is now customary to quote the tests of the inverse square
law in one of two ways:

2+e

(a) Assume that the force varies as 1/r**< and quote a value or limit for e.

(b) Assume that the electrostatic potential has the ‘““Yukawa” form (see Section
12.8), r'e™*" and quote a value or limit for u or u~". Since u = m,c/f,
where m., is the assumed mass of the photon, the test of the inverse square
law is sometimes phrased in terms of an upper limit on m.,. Laboratory
experiments usually give € and perhaps u or m.,; geomagnetic experiments
give u or m,.

*Quarks have charges % and —% in these units, but are never (so far) seen individually.



6 Introduction and Survey

Figure 1.1  Cavendish’s apparatus for establishing the inverse square law of
electrostatics. Top, facsimile of Cavendish’s own sketch; bottom, line drawing by a
draughtsman. The inner globe is 12.1 inches in diameter, the hollow pasteboard
hemispheres slightly larger. Both globe and hemispheres were covered with tinfoil “to
make them the more perfect conductors of electricity.” (Figures reproduced by
permission of the Cambridge University Press.)
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The original experiment with concentric spheres by Cavendish* in 1772 gave
an upper limit on € of |e| = 0.02. His apparatus is shown in Fig. I.1.: About 100
years later Maxwell performed a very similar experiment at Cambridge’ and set
an upper limit of || = 5 X 107°. Two other noteworthy laboratory experiments
based on Gauss’s law are those of Plimpton and Lawton,* which gave |e| < 2 X
107, and the recent one of Williams, Faller, and Hill.® A schematic drawing of
the apparatus of the latter experiment is shown in Fig. 1.2. Though not a static
experiment (v = 4 X 10° Hz), the basic idea is almost the same as Cavendish’s.
He looked for a charge on the inner sphere after it had been brought into elec-
trical contact with the charged outer sphere and then disconnected; he found
none. Williams, Faller, and Hill looked for a voltage difference between two
concentric shells when the outer one was subjected to an alternating voltage of
+10 kV with respect to ground. Their sensitivity was such that a voltage differ-
ence of less than 1072 V could have been detected. Their null result, when
interpreted by means of the Proca equations (Section 12.8), gives a limit of
€= (27 +3.1) x 107"

Measurements of the earth’s magnetic field, both on the surface and out from
the surface by satellite observation, permit the best direct limits to be set on € or
equivalently the photon mass m.,,. The geophysical and also the laboratory ob-
servations are discussed in the reviews by Kobzarev and Okun’ and by Goldhaber
and Nieto, listed at the end of this introduction. The surface measurements of
the earth’s magnetic field give slightly the best value (see Problem 12.15), namely,

m, <4 x 107" kg
or
/,L_l > 10® m

For comparison, the electron mass is m, = 9.1 X 107*" kg. The laboratory
experiment of Williams, Faller, and Hill can be interpreted as setting a limit
m, < 1.6 X 107°° kg, only a factor of 4 poorer than the geomagnetic limit.

A rough limit on the photon mass can be set quite easily by noting the ex-
istence of very low frequency modes in the earth-ionosphere resonant cavity
(Schumann resonances, discussed in Section 8.9). The double Einstein relation,
hv = m.,c*, suggests that the photon mass must satisfy an inequality, m, <
hvy/c?, where v, is any electromagnetic resonant frequency. The lowest Schumann
resonance has v, = 8 Hz. From this we calculate m., < 6 X 107> kg, a very small
value only one order of magnitude above the best limit. While this argument has
crude validity, more careful consideration (see Section 12.8 and the references
given there) shows that the limit is roughly (R/H)"? = 10 times larger, R == 6400
km being the radius of the earth, and H = 60 km being the height of the iono-

*H. Cavendish, Electrical Researches, ed. J. C. Maxwell, Cambridge University Press, Cambridge
(1879), pp. 104-113.

TIbid., see note 19.
*S. J. Plimpton and W. E. Lawton, Phys. Rev. 50, 1066 (1936).
E. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Lett. 26, 721 (1971).



8

Introduction and Survey

Transmitter

Phase shifter reference
shifts linearly 360°

per % hour High Q coil

water cooled

Crystal
and
buffer amp
\
/D
/

Oscilloscope

Photo

i source

All electronics 1
inside are battery
powered

Amp Crystal
filter

4 MHz

Voltage to
frequenc:
v Photo
source
Fibe .
e Calibration
optics .
Copper capacitor Aluminum
1cosahedrons 1cosahedrons

\/

Calibration _/

signal
Scaler 50 Fourier analyze
sec. counting for signal with
cycle ¥%-hour period

Photo
= diode
Figure 1.2 Schematic diagram of the “Cavendish” experiment of Williams, Faller, and
Hill. The concentric icosahedrons are conducting shells. A 4 MHz voltage of 10 kV
peak is applied between shells 5 and 4. Shell 4 and its contiguous shells 2 and 3 are
roughly 1.5 meters in diameter and contain shell 1 inside. The voltage difference
between shells 1 and 2 (if any) appears across the inductor indicated at about 8 o’clock
in shell 1. The amplifier and optics system are necessary to extract the voltage
information to the outside world. They are equivalent to Cavendish’s system of strings
that automatically opened the hinged hemispheres and brought up the pith balls to test
for charge on the inner sphere. (Figure reproduced with permission of the authors.)
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sphere.* In spite of this dilution factor, the limit of 10~* kg set by the mere
existence of Schumann resonances is quite respectable.

The laboratory and geophysical tests show that on length scales of order 1072
to 107 m, the inverse square law holds with extreme precision. At smaller dis-
tances we must turn to less direct evidence often involving additional assump-
tions. For example, Rutherford’s historical analysis of the scattering of alpha
particles by thin foils substantiates the Coulomb law of force down to distances
of the order of 10™"* m, provided the alpha particle and the nucleus can be treated
as classical point charges interacting statically and the charge cloud of the elec-
trons can be ignored. All these assumptions can be, and have been, tested, of
course, but only within the framework of the validity of quantum mechanics,
linear superposition (see below), and other (very reasonable) assumptions. At
still smaller distances, relativistic quantum mechanics is necessary, and strong
interaction effects enter to obscure the questions as well as the answers. Never-
theless, elastic scattering experiments with positive and negative electrons at cen-
ter of mass energies of up to 100 GeV have shown that quantum electrodynamics
(the relativistic theory of point electrons interacting with massless photons) holds
to distances of the order of 10™'®* m. We conclude that the photon mass can be
taken to be zero (the inverse square force law holds) over the whole classical
range of distances and deep into the quantum domain as well. The inverse square
law is known to hold over at least 25 orders of magnitude in the length scale!

1.3 Linear Superposition

The Maxwell equations in vacuum are /inear in the fields E and B. This linearity
is exploited so often, for example, with hundreds of different telephone conver-
sations on a single microwave link, that it is taken for granted. There are, of
course, circumstances where nonlinear effects occur—in magnetic materials, in
crystals responding to intense laser beams, even in the devices used to put those
telephone conversations on and off the microwave beam. But here we are con-
cerned with fields in vacuum or the microscopic fields inside atoms and nuclei.

What evidence do we have to support the idea of linear superposition? At
the macroscopic level, all sorts of experiments test linear superposition at the
level of 0.1% accuracy—groups of charges and currents produce electric and
magnetic forces calculable by linear superposition, transformers perform as ex-
pected, standing waves are observed on transmission lines—the reader can make
a list. In optics, slit systems show diffraction patterns; x-ray diffraction tells us
about crystal structure; white light is refracted by a prism into the colors of the
rainbow and recombined into white light again. At the macroscopic and even at
the atomic level, linear superposition is remarkably valid.

It is in the subatomic domain that departures from linear superposition can
be legitimately sought. As charged particles approach each other very closely,
electric field strengths become enormous. If we think of a charged particle as a

*The basic point is that, to the extent that H/R is negligible, the extremely low frequency (ELF)
propagation is the same as in a parallel plate transmission line in the fundamental TEM mode. This
propagation is unaffected by a finite photon mass, except through changes in the static capacitance
and inductance per unit length. Explicit photon mass effects occur in order (H/R) p°.
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localized distribution of charge, we see that its electromagnetic energy grows
larger and larger as the charge is localized more and more. In attempting to avoid
infinite self-energies of point particles, it is natural to speculate that some sort of
saturation occurs, that field strengths have some upper bound. Such classical
nonlinear theories have been studied in the past. One well-known example is
the theory of Born and Infeld.* The vacuum is given electric and magnetic
permeabilities,

—12
€ _ Mo | PP 2
—=—=1+= - E 1.4
foto st -] (14)

where b is a maximum field strength. Equation (1.4) is actually a simplification
proposed earlier by Born alone. It suffices to illustrate the general idea. Fields
are obviously modified at short distances; all electromagnetic energies are finite.
But such theories suffer from arbitrariness in the manner of how the nonlinearity
occurs and also from grave problems with a transition to a quantum theory.
Furthermore, there is no evidence of this kind of classical nonlinearity. The quan-
tum mechanics of many-electron atoms is described to high precision by normal
quantum theory with the interactions between nucleus and electrons and between
electrons and electrons given by a linear superposition of pairwise potentials (or
retarded relativistic interactions for fine effects). Field strengths of the order of
10"'-10" V/m exist at the orbits of electrons in atoms, while the electric field at
the edge of a heavy nucleus is of the order of 10** V/m. Energy level differences
in light atoms like helium, calculated on the basis of linear superposition of elec-
tromagnetic interactions, are in agreement with experiment to accuracies that
approach 1 part in 10°. And Coulomb energies of heavy nuclei are consistent
with linear superposition of electromagnetic effects. It is possible, of course, that
for field strengths greater than 10! V/m nonlinear effects could occur. One place
to look for such effects is in superheavy nuclei (Z > 110), both in the atomic
energy levels and in the nuclear Coulomb energy.” At the present time there
is no evidence for any classical nonlinear behavior of vacuum fields at short
distances.

There is a quantum-mechanical nonlinearity of electromagnetic fields that
arises because the uncertainty principle permits the momentary creation of an
electron-positron pair by two photons and the subsequent disappearance of the
pair with the emission of two different photons, as indicated schematically in Fig.
L.3. This process is called the scattering of light by light.*S The two incident plane
waves e*1"* 71 and e™>*~*2' do not merely add coherently, as expected with
linear superposition, but interact and (with small probability) transform into two
different plane waves with wave vectors k; and k,. This nonlinear feature of

*M. Born and L. Infeld, Proc. R. Soc. London A144, 425 (1934). See M. Born, Atomic Physics,
Blackie, London (1949), Appendix VI, for an elementary discussion.

An investigation of the effect of a Born-Infeld type of nonlinearity on the atomic energy levels in
superheavy elements has been made by J. Rafelski, W. Greiner, and L. P. Fulcher, Nuovo Cimento
13B, 135 (1973).

#When two of the photons in Fig. L3 are virtual photons representing interaction to second order
with a static nuclear Coulomb field, the process is known as Delbriick scattering. See Section 15.8 of
J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Addison-Wesley, Reading, MA
(1955).



Sect. L3 Linear Superposition 11

Figure 1.3 The scattering of light by light.
Schematic diagram of the process by which
k photon-photon scattering occurs.

quantum electrodynamics can be expressed, at least for slowly varying fields, in
terms of electric and magnetic permeability tensors of the vacuum:

D; = ¢ ; €xEy, B; = o ; WirH

where
eGh
45mm’c

Mix = Ou + 4SeGh 7 [2( ’B* — Ez)ﬁik + 7 EiEk] + o
™

€ix = aik + [2(E2 - Csz)S,k + 7 CZB Bk]

(15)

Here e and m are the charge (in Gaussian units) and mass of the electron. These
results were first obtained by Euler and Kockel in 1935.* We observe that in the
classical limit (% — 0), these nonlinear effects go to zero. Comparison with the
classical Born-Infeld expression (I.4) shows that for small nonlinearities, the
quantum-mechanical field strength

\/ 451 eG 29

= 051—
fic r3

plays a role analogous to the Born-Infeld parameter b. Here r, = e&/mc* =
2.8 X 107" m is the classical electron radius and eg/rg = 1.8 X 10?° V/m is the
electric field at the surface of such a classical electron. Two comments in passing:
(a) the €, and py in (1.5) are approximations that fail for field strengths ap-
proaching b, or when the fields vary too rapidly in space or time (%/mc setting
the critical scale of length and #/mc* of time); (b) the chance numerical coinci-
dence of b, and e /2rj is suggestive but probably not significant, since b, involves
Planck’s constant #.

In analogy with the polarization P = D — €yE, we speak of the field-
dependent terms in (I.5) as vacuum polarization effects. In addition to the scat-
tering of light by light or Delbriick scattering, vacuum polarization causes very
small shifts in atomic energy levels. The dominant contribution involves a virtual
electron-positron pair, just as in Fig. 1.3, but with only two photon lines instead

*H. Euler and B. Kockel, Naturwissenschaften 23, 246 (1935).
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of four. If the photons are real, the process contributes to the mass of the photon
and is decreed to vanish. If the photons are virtual, however, as in the electro-
magnetic interaction between a nucleus and an orbiting electron, or indeed for
any externally applied field, the creation and annihilation of a virtual electron-
positron pair from time to time causes observable effects.

Vacuum polarization is manifest by a modification of the electrostatic inter-
action between two charges at short distances, described as a screening of the
“bare” charges with distance, or in more modern terms as a “running” coupling
constant. Since the charge of a particle is defined as the strength of its electro-
magnetic coupling observed at large distances (equivalent to negligible momen-
tum transfers), the presence of a screening action by electron-positron pairs
closer to the charge implies that the “bare” charge observed at short distances
is larger than the charge defined at large distances. Quantitatively, the lowest
order quantum-electrodynamic result for the Coulomb potential energy between
two charges Z,e and Z,e, corrected for vacuum polarization, is
Z\Za 20 (© V& —4m* [ om?\

— —Je7 1.6)

1+ = dK—;Z——k1+ &
K

V(r) = fic
37 Jom K

where a is the fine structure constant (= 1/137), m is the inverse Compton wave-
length (electron mass, multiplied by ¢/#). The integral, a superposition of Yukawa
potentials (e~ ""/r) is the one-loop contribution of all the virtual pairs. It increases
the magnitude of the potential energy at distances of separation inside the elec-
tron Compton wavelength (f/mc = aay, =~ 3.86 X 1071 m).

Because of its short range, the added vacuum polarization energy is unim-
portant in light atoms, except for very precise measurements. It is, however,
important in high Z atoms and in muonic atoms, where the heavier mass of the
muon (m,, =~ 207 m,) means that, even in the lightest muonic atoms, the Bohr
radius is well inside the range of the modified potential. X-ray measurements in
medium-mass muonic atoms provide a highly accurate verification of the vacuum
polarization effect in (1.6).

The idea of a “running” coupling constant, that is, an effective strength of
interaction that changes with momentum transfer, is illustrated in electromag-
netism by exhibiting the spatial Fourier transform of the interaction energy (1.6):

472,72, a(Qz)
Q2
The 1/Q* dependence is characteristic of the Coulomb potential (familiar in

Rutherford scattering), but now the strength is governed by the so-called running
coupling constant a(Q?), the reciprocal of which is

(@) = A7)

SN S S G
@1 ~ 25 5 n(-) as)
Here a(0) = 1/137. 036 . . . is the fine structure constant, e is the base of natural
logarithms, and Q7 is the square of the wavenumber (momentum) transfer. The
expression (1.8) is an approximation for large Q*m?. The running coupling a(Q?)
increases slowly with increasing Q” (shorter distances); the particles are pene-
trating inside the cloud of screening electron-positron pairs and experiencing a
larger effective product of charges.
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Since the lowest order vacuum polarization energy is proportional to « times
the external charges, we describe it as a linear effect, even though it involves (in
a) the square of the internal charge of the electron and positron. Small higher
order effects, such as in Fig. 1.3 with three of the photons corresponding to the
third power of the external field or charge, are truly nonlinear interactions.

The final conclusion about linear superposition of fields in vacuum is that in
the classical domain of sizes and attainable field strengths there is abundant ev-
idence for the validity of linear superposition and no evidence against it. In the
atomic and subatomic domain there are small quantum-mechanical nonlinear
effects whose origins are in the coupling between charged particles and the elec-
tromagnetic field. They modify the interactions between charged particles and
cause interactions between electromagnetic fields even if physical particles are
absent.

L4 Maxwell Equations in Macroscopic Media

So far we have considered electromagnetic fields and sources in vacuum. The
Maxwell equations (I.1b) for the electric and magnetic fields E and B can be
thought of as equations giving the fields everywhere in space, provided all the
sources p and J are specified. For a small number of definite sources, determi-
nation of the fields is a tractable problem; but for macroscopic aggregates of
matter, the solution of the equations is almost impossible. There are two aspects
here. One is that the number of individual sources, the charged particles in every
atom and nucleus, is prohibitively large. The other aspect is that for macroscopic
observations the detailed behavior of the fields, with their drastic variations in
space over atomic distances, is not relevant. What is relevant is the average of a
field or a source over a volume large compared to the volume occupied by a
single atom or molecule. We call such averaged quantities the macroscopic fields
and macroscopic sources. It is shown in detail in Section 6.6 that the macroscopic
Maxwell equations are of the form (I.1a) with E and B the averaged E and B of
the microscopic or vacuum Maxwell equations, while D and H are no longer
simply multiples of E and B, respectively. The macroscopic field quantities D
and H, called the electric displacement and magnetic field (with B called the
magnetic induction), have components given by

D, =€ E,+ (Pa -y W, )
p Oxg (L9)
1
H,=—B,— (M, + -
Mo

The quantities P, M, Q,, and similar higher order objects represent the mac-
roscopically averaged electric dipole, magnetic dipole, and electric quadrupole,
and higher moment densities of the material medium in the presence of applied
fields. Similarly, the charge and current densities p and J are macroscopic aver-
ages of the “free” charge and current densities in the medium. The bound charges
and currents appear in the equations via P, M, and Q.

The macroscopic Maxwell equations (I.1a) are a set of eight equations in-
volving the components of the four fields E, B, D, and H. The four homogeneous
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equations can be solved formally by expressing E and B in terms of the scalar
potential ® and the vector potential A, but the inhomogeneous equations cannot
be solved until the derived fields D and H are known in terms of E and B. These
connections, which are implicit in (I1.9), are known as constitutive relations,

D = D[E, B]
H = H[E, B]

In addition, for conducting media there is the generalized Ohm’s law,
J = J[E, B]

The square brackets signify that the connections are not necessarily simple and
may depend on past history (hysteresis), may be nonlinear, etc.

In most materials the electric quadrupole and higher terms in (1.9) are com-
pletely negligible. Only the electric and magnetic polarizations P and M are sig-
nificant. This does not mean, however, that the constitutive relations are then
simple. There is tremendous diversity in the electric and magnetic properties of
matter, especially in crystalline solids, with ferroelectric and ferromagnetic ma-
terials having nonzero P or M in the absence of applied fields, as well as more
ordinary dielectric, diamagnetic, and paramagnetic substances. The study of these
properties is one of the provinces of solid-state physics. In this book we touch
only very briefly and superficially on some more elementary aspects. Solid-state
books such as Kittel should be consulted for a more systematic and extensive
treatment of the electromagnetic properties of bulk matter.

In substances other than ferroelectrics or ferromagnets, for weak enough
fields the presence of an applied electric or magnetic field induces an electric or
magnetic polarization proportional to the magnitude of the applied field. We
then say that the response of the medium is linear and write the Cartesian com-
ponents of D and H in the form,*

Da = 2 eaﬂEB
B
H, = ; wisBg

The tensors €,z and ., are called the electric permittivity or dielectric tensor
and the inverse magnetic permeability tensor. They summarize the linear re-
sponse of the medium and are dependent on the molecular and perhaps crystal-
line structure of the material, as well as bulk properties like density and temper-
ature. For simple materials the linear response is often isotropic in space. Then
€q.p and p,g are diagonal with all three elements equal, and D = ¢E, H = u'B
= B/u.

(1.10)

To be generally correct Eqs. (1.10) should be understood as holding for the Fourier
transforms in space and time of the field quantities. This is because the basic linear con-
nection between D and E (or H and B) can be nonlocal. Thus

Do(x, 1) = > f d*x’' f dt’ ep5(x', t)Eg(x — X', t — 1')
5

*Precedent would require writing B, = 34 u,gHj, but this reverses the natural roles of B as the basic
magnetic field and H as the derived quantity. In Chapter 5 we revert to the traditional usage.
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where €,5(x’, t') may be localized around x’ = 0, ¢’ = 0, but is nonvanishing for some
range away from the origin. If we introduce the Fourier transforms D, (k, w), Eg(k, ),
and €,4(k, w) through

f(k’ (U) = f d3x f d[ f(x, t)e‘ik-x+imt
Eq. (1.10) can be written in terms of the Fourier transforms as

Dok, 0) = ; €ap(k, ®)Eg(k, ) (L11)

A similar equation can be written H,(k, ) in terms of Bg(k, ). The permeability tensors
are therefore functions of frequency and wave vector in general. For visible light or elec-
tromagnetic radiation of longer wavelength it is often permissible to neglect the non-
locality in space. Then €,5 and u,.g are functions only of frequency. This is the situation
discussed in Chapter 7, which gives a simplified treatment of the high frequency properties
of matter and explores the consequences of causality. For conductors and superconductors
long-range effects can be important. For example, when the electronic collisional mean
free path in a conductor becomes large compared to the skin depth, a spatially local form
of Ohm’s law is no longer adequate. Then the dependence on wave vector also enters. In
the understanding of a number of properties of solids the concept of a dielectric constant
as a function of wave vector and frequency is fruitful. Some exemplary references are
given in the suggested reading at the end of this introduction.

For orientation we mention that at low frequencies (v < 10° Hz) where all
charges, regardless of their inertia, respond to applied fields, solids have dielectric
constants typically in the range of €,,/€, ~ 2-20 with larger values not uncom-
mon. Systems with permanent molecular dipole moments can have much larger
and temperature-sensitive dielectric constants. Distilled water, for example, has
a static dielectric constant of e/e, = 88 at 0°C and e/e, = 56 at 100°C. At optical
frequencies only the electrons can respond significantly. The dielectric constants
are in the range, €,.,/€, ~ 1.7-10, with €,,/€y = 2-3 for most solids. Water has
e/ey = 1.77-1.80 over the visible range, essentially independent of temperature
from 0 to 100°C.

The type of response of materials to an applied magnetic field depends on
the properties of the individual atoms or molecules and also on their interactions.
Diamagnetic substances consist of atoms or molecules with no net angular mo-
mentum. The response to an applied magnetic field is the creation of circulating
atomic currents that produce a very small bulk magnetization opposing the ap-
plied field. With the definition of u,z in (I.10) and the form of (1.9), this means
Molae = 1. Bismuth, the most diamagnetic substance known, has (uopthe — 1) =
1.8 X 107* Thus diamagnetism is a very small effect. If the basic atomic unit of
the material has a net angular momentum from unpaired electrons, the substance
is paramagnetic. The magnetic moment of the odd electron is aligned parallel to
the applied field. Hence uou,, < 1. Typical values are in the range (1 — pottia)
=~ 1072-10° at room temperature, but decreasing at higher temperatures be-
cause of the randomizing effect of thermal excitations.

Ferromagnetic materials are paramagnetic but, because of interactions be-
tween atoms, show drastically different behavior. Below the Curie temperature
(1040 K for Fe, 630 K for Ni), ferromagnetic substances show spontaneous mag-
netization; that is, all the magnetic moments in a microscopically large region
called a domain are aligned. The application of an external field tends to cause
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the domains to change and the moments in different domains to line up together,
leading to the saturation of the bulk magnetization. Removal of the field leaves
a considerable fraction of the moments still aligned, giving a permanent mag-
netization that can be as large as B, = u M, = 1 tesla.

For data on the dielectric and magnetic properties of materials, the reader
can consult some of the basic physics handbooks* from which he or she will be
led to more specific and detailed compilations.

Materials that show a linear response to weak fields eventually show nonlin-
ear behavior at high enough field strengths as the electronic or ionic oscillators
are driven to large amplitudes. The linear relations (1.10) are modified to, for
example,

D, = eREs + > €3 EgE, + -+ (1.12)
B By

For static fields the consequences are not particularly dramatic, but for time-
varying fields it is another matter. A large amplitude wave of two frequencies w,
and w, generates waves in the medium with frequencies 0, 2w;, 2w,, ®; + w,,
w; — w,, as well as the original w; and w,. From cubic and higher nonlinear terms
an even richer spectrum of frequencies can be generated. With the development
of lasers, nonlinear behavior of this sort has become a research area of its own,
called nonlinear optics, and also a laboratory tool. At present, lasers are capable
of generating light pulses with peak electric fields approaching 10'? or even 10'3
V/m. The static electric field experienced by the electron in its orbit in a hydrogen
atom is eg/ay = 5 X 10"" V/m. Such laser fields are thus seen to be capable of
driving atomic oscillators well into their nonlinear regime, capable indeed of
destroying the sample under study! References to some of the literature of this
specialized field are given in the suggested reading at the end of this introduction.
The reader of this book will have to be content with basically linear phenomena.

L5 Boundary Conditions at Interfaces Between Different Media

The Maxwell equations (I.1) are differential equations applying locally at each
point in space-time (x, t). By means of the divergence theorem and Stokes’s
theorem, they can be cast in integral form. Let V be a finite volume in space, S
the closed surface (or surfaces) bounding it, da an element of area on the surface,
and n a unit normal to the surface at da pointing outward from the enclosed
volume. Then the divergence theorem applied to the first and last equations of
(I.1a) yields the integral statements

é D -nda =f p d’x (1.13)
S v

355 B-nda=0 (1.14)

*CRC Handbook of Chemistry and Physics, ed. D. R. Lide, 78th ed., CRC Press, Boca Raton, FL
(1997-98).

American Institute of Physics Handbook, ed. D. E. Gray, McGraw Hilll, New York, 3rd edition
(1972), Sections 5.d and 5.f.
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The first relation is just Gauss’s law that the total flux of D out through the surface
is equal to the charge contained inside. The second is the magnetic analog, with
no net flux of B through a closed surface because of the nonexistence of magnetic
charges.

Similarly, let C be a closed contour in space, S’ an open surface spanning
the contour, dl a line element on the contour, da an element of area on S’, and
n’ a unit normal at da pointing in the direction given by the right-hand rule from
the sense of integration around the contour. Then applying Stokes’s theorem to
the middle two equations in (I.1a) gives the integral statements

SQH-d]:f [J+@]-n’da (1.15)
Cc s’ at

bE.a=-| 2B
c s ot

Equation (I.15) is the Ampére-Maxwell law of magnetic fields and (1.16) is
Faraday’s law of electromagnetic induction.

These familiar integral equivalents of the Maxwell equations can be used
directly to deduce the relationship of various normal and tangential components
of the fields on either side of a surface between different media, perhaps with a
surface charge or current density at the interface. An appropriate geometrical
arrangement is shown in Fig. L.4. An infinitesimal Gaussian pillbox straddles the
boundary surface between two media with different electromagnetic properties.
Similarly, the infinitesimal contour C has its long arms on either side of the
boundary and is oriented so that the normal to its spanning surface is tangent to
the interface. We first apply the integral statements (1.13) and (1.14) to the vol-
ume of the pillbox. In the limit of a very shallow pillbox, the side surface does

0

-n’ da (1.16)

Figure I.4 Schematic diagram of boundary surface (heavy line) between different
media. The boundary region is assumed to carry idealized surface charge and current
densities o and K. The volume V is a small pillbox, half in one medium and half in the
other, with the normal n to its top pointing from medium 1 into medium 2. The
rectangular contour C is partly in one medium and partly in the other and is oriented
with its plane perpendicular to the surface so that its normal t is tangent to the surface.
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not contribute to the integrals on the left in (I.13) and (1.14). Only the top and
bottom contribute. If the top and the bottom are parallel, tangent to the surface,
and of area Aa, then the left-hand integral in (1.13) is

§5D°nda=(D2_D])’nAa

and similarly for (I.14). If the charge density p is singular at the interface so as
to produce an idealized surface charge density o, then the integral on the right
in (I1.13) is

f pd’x = o Aa
Vv

Thus the normal components of D and B on either side of the boundary surface
are related according to

D,-D)n=0c (1.17)
(B, -B)-n=0 (118)

In words, we say that the normal component of B is continuous and the discon-
tinuity of the normal component of D at any point is equal to the surface charge
density at that point.

In an analogous manner the infinitesimal Stokesian loop can be used to de-
termine the discontinuities of the tangential components of E and H. If the short
arms of the contour C in Fig. 1.4 are of negligible length and each long arm is
parallel to the surface and has length A/, then the left-hand integral of (1.16) is

3€CE-dl=(tXn)-(E2-E1)Al

and similarly for the left-hand side of (I.15). The right-hand side of (I.16) vanishes
because dB/dt is finite at the surface and the area of the loop is zero as the length
of the short sides goes to zero. The right-hand side of (I1.15) does not vanish,
however, if there is an idealized surface current density K flowing exactly on the
boundary surface. In such circumstances the integral on the right of (I.15) is

f [J+@]-tda=K-tAl
s’ ot

The second term in the integral vanishes by the same argument that was just
given. The tangential components of E and H on either side of the boundary are
therefore related by

nx(E,—E)=0 (1.19)
nx(H,-H)=K (1.20)

In (1.20) it is understood that the surface current K has only components parallel
to the surface at every point. The tangential component of E across an interface
is continuous, while the tangential component of H is discontinuous by an amount
whose magnitude is equal to the magnitude of the surface current density and
whose direction is parallel to K X n.

The discontinuity equations (I1.17)—(1.20) are useful in solving the Maxwell
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equations in different regions and then connecting the solutions to obtain the
fields throughout all space.

1.6 Some Remarks on Idealizations in Electromagnetism

In the preceding section we made use of the idea of surface distributions of charge
and current. These are obviously mathematical idealizations that do not exist in
the physical world. There are other abstractions that occur throughout electro-
magnetism. In electrostatics, for example, we speak of holding objects at a fixed
potential with respect to some zero of potential usually called “ground.” The
relations of such idealizations to the real world is perhaps worthy of a little dis-
cussion, even though to the experienced hand most will seem obvious.

First we consider the question of maintaining some conducting object at a
fixed electrostatic potential with respect to some reference value. Implicit is the
idea that the means does not significantly disturb the desired configuration of
charges and fields. To maintain an object at fixed potential it is necessary, at least
from time to time, to have a conducting path or its equivalent from the object to
a source of charge far away (‘“‘at infinity’’) so that as other charged or uncharged
objects are brought in the vicinity, charge can flow to or from the object, always
maintaining its potential at the desired value. Although more sophisticated
means are possible, metallic wires are commonly used to make the conducting
path. Intuitively we expect small wires to be less perturbing than large ones. The
reason is as follows:

Since the quantity of electricity on any given portion of a wire at a given
potential diminishes indefinitely when the diameter of the wire is indefi-
nitely diminished, the distribution of electricity on bodies of considerable
dimensions will not be sensibly affected by the introduction of very
fine metallic wires into the field, such as are used to form electrical con-
nexions between these bodies and the earth, an electrical machine, or an
electrometer.*

The electric field in the immediate neighborhood of the thin wire is very large,
of course. However, at distances away of the order of the size of the “bodies of
considerable dimensions” the effects can be made small. An important historical
illustration of Maxwell’s words is given by the work of Henry Cavendish 200
years ago. By experiments done in a converted stable of his father’s house, using
Leyden jars as his sources of charge, thin wires as conductors, and suspending
the objects in the room, Cavendish measured the amounts of charge on cylinders,
discs, etc., held at fixed potential and compared them to the charge on a sphere
(the same sphere shown in Fig. 1.1) at the same potential. His values of capaci-
tance, so measured, are accurate to a few per cent. For example, he found the
ratio of the capacitance of a sphere to that of a thin circular disc of the same
radius was 1.57. The theoretical value is 7/2.

There is a practical limit to the use of finer and finer wires. The charge per
unit length decreases only logarithmically [as the reciprocal of In(d/a), where a

*J, C. Maxwell, A Treatise on Electricity and Magnetism, Dover, New York, 1954 reprint of the 3rd
edition (1891), Vol. 1, p. 96.
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is the mean radius of the wire and d is a typical distance of the wire from some
conducting surface]. To minimize the perturbation of the system below some
level, it is necessary to resort to other means to maintain potentials, comparison
methods using beams of charged particles intermittently, for example.

When a conducting object is said to be grounded, it is assumed to be con-
nected by a very fine conducting filament to a remote reservoir of charge that
serves as the common zero of potential. Objects held at fixed potentials are sim-
ilarly connected to one side of a voltage source, such as a battery, the other side
of which is connected to the common “ground.” Then, when initially electrified
objects are moved relative to one another in such a way that their distributions
of electricity are altered, but their potentials remain fixed, the appropriate
amounts of charge flow from or to the remote reservoir, assumed to have an
inexhaustible supply. The idea of grounding something is a well-defined concept
in electrostatics, where time is not a factor, but for oscillating fields the finite
speed of propagation blurs the concept. In other words, stray inductive and ca-
pacitive effects can enter significantly. Great care is then necessary to ensure a
“good ground.”

Another idealization in macroscopic electromagnetism is the idea of a surface
charge density or a surface current density. The physical reality is that the charge
or current is confined to the immediate neighborhood of the surface. If this region
has thickness small compared to the length scale of interest, we may approximate
the reality by the idealization of a region of infinitesimal thickness and speak of
a surface distribution. Two different limits need to be distinguished. One is the
limit in which the “surface” distribution is confined to a region near the surface
that is macroscopically small, but microscopically large. An example is the pen-
etration of time-varying fields into a very good, but not perfect, conductor, de-
scribed in Section 8.1. It is found that the fields are confined to a thickness §,
called the skin depth, and that for high enough frequencies and good enough
conductivities § can be macroscopically very small. It is then appropriate to in-
tegrate the current density J over the direction perpendicular to the surface to
obtain an effective surface current density K.

The other limit is truly microscopic and is set by quantum-mechanical effects
in the atomic structure of materials. Consider, for instance, the distribution of
excess charge of a conducting body in electrostatics. It is well known that this
charge lies entirely on the surface of a conductor. We then speak of a surface
charge density o. There is no electric field inside the conductor, but there is, in
accord with (I1.17), a normal component of electric field just outside the surface.
At the microscopic level the charge is not exactly at the surface and the field
does not change discontinuously. The most elementary considerations would in-
dicate that the transition region is a few atomic diameters in extent. The ions in
a metal can be thought of as relatively immobile and localized to 1 angstrom
or better; the lighter electrons are less constrained. The results of model cal-
culations* are shown in Fig. 1.5. They come from a solution of the quantum-
mechanical many-electron problem in which the ions of the conductor are
approximated by a continuous constant charge density for x < 0. The electron
density (r, = 5) is roughly appropriate to copper and the heavier alkali metals.

*N. D. Lang and W. Kohn, Phys. Rev. B1, 4555 (1970); B3, 1215 (1971); V. E. Kenner, R. E. Allen,
and W. M. Saslow, Phys. Lett. 38A, 255 (1972).
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Figure .5 Distribution of excess charge at the surface of a conductor and of the
normal component of the electric field. The ions of the solid are confined to x < 0 and
are approximated by a constant continuous charge distribution through which the
electrons move. The bulk of the excess charge is confined to within +2 A of the
“surface.”

The excess electronic charge is seen to be confined to a region within *2 A of
the “surface” of the ionic distribution. The electric field rises smoothly over this
region to its value of o ‘“outside” the conductor. For macroscopic situations
where 107° m is a negligible distance, we can idealize the charge density and
electric field behavior as p(x) = ¢6(x) and E, (x) = d6(x)/e,, corresponding to a
truly surface density and a step-function jump of the field.

We see that the theoretical treatment of classical electromagnetism involves
several idealizations, some of them technical and some physical. The subject of
electrostatics, discussed in the first chapters of the book, developed as an exper-
imental science of macroscopic electrical phenomena, as did virtually all other
aspects of electromagnetism. The extension of these macroscopic laws, even for
charges and currents in vacuum, to the microscopic domain was for the most part
an unjustified extrapolation. Earlier in this introduction we discussed some of
the limits to this extrapolation. The point to be made here is the following. With
hindsight we know that many aspects of the laws of classical electromagnetism
apply well into the atomic domain provided the sources are treated quantum
mechanically, that the averaging of electromagnetic quantities over volumes con-
taining large numbers of molecules so smooths the rapid fluctuations that static
applied fields induce static average responses in matter, and that excess charge
is on the surface of a conductor in a macroscopic sense. Thus Coulomb’s and
Ampere’s macroscopic observations and our mathematical abstractions from
them have a wider applicability than might be supposed by a supercautious phys-
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icist. The absence for air of significant electric or magnetic susceptibility certainly
simplifies matters!
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CHAPTER 1

Introduction to Electrostatics

We begin our discussion of electrodynamics with the subject of electrostatics—
phenomena involving time-independent distributions of charge and fields. For
most readers this material is in the nature of a review. In this chapter especially
we do not elaborate significantly. We introduce concepts and definitions that are
important for later discussion and present some essential mathematical appara-
tus. In subsequent chapters the mathematical techniques are developed and
applied.

One point of physics should be mentioned. Historically, electrostatics devel-
oped as a science of macroscopic phenomena. As indicated at the end of the
Introduction, such idealizations as point charges or electric fields at a point must
be viewed as mathematical constructs that permit a description of the phenomena
at the macroscopic level, but that may fail to have meaning microscopically.

1.1 Coulomb’s Law

All of electrostatics stems from the quantitative statement of Coulomb’s law
concerning the force acting between charged bodies at rest with respect to each
other. Coulomb;, in an impressive series of experiments, showed experimentally
that the force between two small charged bodies separated in air a distance large
compared to their dimensions

varies directly as the magnitude of each charge,
varies inversely as the square of the distance between them,
is directed along the line joining the charges, and

is attractive if the bodies are oppositely charged and repulsive if the bodies have
the same type of charge.

Furthermore it was shown experimentally that the total force produced on one
small charged body by a number of the other small charged bodies placed around
it is the vector sum of the individual two-body forces of Coulomb. Strictly speak-
ing, Coulomb’s conclusions apply to charges in vacuum or in media of negligible
susceptibility. We defer consideration of charges in dielectrics to Chapter 4.

1.2 Electric Field

Although the thing that eventually gets measured is a force, it is useful to intro-
duce a concept one step removed from the forces, the concept of an electric field
due to some array of charged bodies. At the moment, the electric field can be

24
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defined as the force per unit charge acting at a given point. It is a vector function
of position, denoted by E. One must be careful in its definition, however. It is
not necessarily the force that one would observe by placing one unit of charge
on a pith ball and placing it in position. The reason is that one unit of charge
may be so large that its presence alters appreciably the field configuration of the
array. Consequently one must use a limiting process whereby the ratio of the
force on the small test body to the charge on it is measured for smaller and smaller
amounts of charge.* Experimentally, this ratio and the direction of the force will
become constant as the amount of test charge is made smaller and smaller. These
limiting values of magnitude and direction define the magnitude and direction of
the electric field E at the point in question. In symbols we may write

F = gE (1.1)

where F is the force, E the electric field, and g the charge. In this equation it is
assumed that the charge ¢ is located at a point, and the force and the electric
field are evaluated at that point.

Coulomb’s law can be written down similarly. If F is the force on a point
charge ¢qi, located at x;, due to another point charge g,, located at x,, then
Coulomb’s law is

X1 X5
F =k = 1.2
q192 |X1 _ X2|3 ( )
Note that ¢, and g, are algebraic quantities, which can be positive or negative.
The constant of proportionality k depends on the system of units used.
The electric field at the point x due to a point charge g, at the point x; can
be obtained directly:

X — Xq

E(x) = kq, x—xP

1.3)
as indicated in Fig. 1.1. The constant k differs in different systems of units." In
electrostatic units (esu), k = 1 and unit charge is chosen as that charge that exerts
a force of one dyne on an equal point charge located one centimeter away. The
esu unit of charge is called the statcoulomb, and the electric field is measured in
statvolts per centimeter. In the SI system, which we employ here, k = (4mey) ™' =
1077¢*, where €, = 8.854 X 107'* farad per meter (F/m) is called the permittivity
of free space. The SI unit of charge is the coulomb (C), and the electric field is
measured in volts per meter (V/m). One coulomb (1 C) produces an electric field

Figure 1.1

*The discreteness of electric charge (see Section I.1) means that this mathematical limit is impossible
to realize physically. This is an example of a mathematical idealization in macroscopic electrostatics.

"The question of units is discussed in detail in the Appendix.
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of approximately 8.9874 X 10° V/m (8.9874 GV/m) at a distance of 1 meter. One
electron (g = 1.602 X 107" C) produces a field of approximately 1.44 X 107°
V/m (1.44 nV/m) at 1 meter.

The experimentally observed linear superposition of forces due to many
charges means that we may write the electric field at x due to a system of point
charges g;, located at x;,i = 1,2, ..., n, as the vector sum:

EW = o S 0 (14)
If the charges are so small and so numerous that they can be described by a
charge density p(x') [if Ag is the charge in a small volume Ax Ay Az at the point

x’, then Ag = p(x") Ax Ay Az], the sum is replaced by an integral:

E® = 7 | otx X) Em (15)

x'P

where d’x’ = dx' dy’ dz’ is a three-dimensional volume element at x'.

At this point it is worthwhile to introduce the Dirac delta function. In one dimension,
the delta function, written 8(x —a), is a mathematically improper function having the
properties:

1. 8(x — a) = 0 for x # g, and
2. [ 8(x — a) dx = 1if the region of integration includes x = a, and is zero otherwise.

The delta function can be given an intuitive, but nonrigorous, meaning as the limit of a
peaked curve such as a Gaussian that becomes narrower and narrower, but higher and
higher, in such a way that the area under the curve is always constant. L. Schwartz’s theory
of distributions is a comprehensive rigorous mathematical approach to delta functions and
their manipulations.*

From the definitions above it is evident that, for an arbitrary function f(x),

3. [ f(x) 8(x — a) dx = f(a).

The integral of f(x) times the derivative of a delta function is simply understood if the
delta function is thought of as a well-behaved, but sharply peaked, function. Thus the
definition is

4. [f(x) 8'(x — a)dx = —f'(a)

where a prime denotes differentiation with respect to the argument.
If the delta function has as argument a function f(x) of the independent variable x,
it can be transformed according to the rule,

5. 8(f(x)) = 2 71— 8(x — x;)

‘E ()

where f(x) is assumed to have only simple zeros, located at x = x,.
In more than one dimension, we merely take products of delta functions in each
dimension. In three dimensions, for example, with Cartesian coordinates,

6. 6(X - X) = 6(X1 - Xl) 6(XZ - Xz) S(X'; - X3)
*A useful, rigorous account of the Dirac delta function is given by Lighthill. See also Dennery and

Krzywicki (Section I11.13). (Full references for items cited in the text or footnotes by italicized author
only will be found in the Bibliography.)
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is a function that vanishes everywhere except at x = X, and is such that

1 if AV contains x = X
— 3y =
7. LV B(x = X) dx {O if AV does not contain x = X
Note that a delta function has the dimensions of an inverse volume in whatever number
of dimensions the space has.
A discrete set of point charges can be described with a charge density by means of
delta functions. For example,

p(x) = X g: (x — x,) (1.6)

represents a distribution of n point charges g;, located at the points x;. Substitution of this
charge density (1.6) into (1.5) and integration, using the properties of the delta function,
yields the discrete sum (1.4).

1.3 Gauss’s Law

The integral (1.5) is not always the most suitable form for the evaluation of
electric fields. There is another integral result, called Gauss’s law, which is some-
times more useful and furthermore leads to a differential equation for E(x). To
obtain Gauss’s law we first consider a point charge g and a closed surface S, as
shown in Fig. 1.2. Let r be the distance from the charge to a point on the surface,
n be the outwardly directed unit normal to the surface at that point, da be an

S

E n g outside S
q inside S

Figure 1.2 Gauss’s law. The normal component of electric field is integrated over the
closed surface S. If the charge is inside (outside) S, the total solid angle subtended at
the charge by the inner side of the surface is 47 (zero).
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element of surface area. If the electric field E at the point on the surface due to
the charge g makes an angle 6 with the unit normal, then the normal component
of E times the area element is:

q cosd

E-nda= 5— da 1.7)

4mey 1

Since E is directed along the line from the surface element to the charge g,
cos  da = r* dQ), where d(Q) is the element of solid angle subtended by da at
the position of the charge. Therefore

q
E-nda= dQ 1.8
n aa 47760 ( )
If we now integrate the normal component of E over the whole surface, it is easy
to see that
§ E.nda= qley %f q l%es insid'e S (19)
s 0 if g lies outside S

This result is Gauss’s law for a single point charge. For a discrete set of charges,
it is immediately apparent that

1
. == 4 1.1
fﬁ E -nda @ Z q (1.10)

where the sum is over only those charges inside the surface S. For a continuous
charge density p(x), Gauss’s law becomes:

i E-nda= eio fv p(x) d*x (1.11)

where V is the volume enclosed by S.
Equation (1.11) is one of the basic equations of electrostatics. Note that it
depends upon

the inverse square law for the force between charges,
the central nature of the force, and
the linear superposition of the effects of different charges.

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields, with
matter density replacing charge density.

It is interesting to note that, even before the experiments of Cavendish and
Coulomb, Priestley, taking up an observation of Franklin that charge seemed to
reside on the outside, but not the inside, of a metal cup, reasoned by analogy
with Newton’s law of universal gravitation that the electrostatic force must obey
an inverse square law with distance. The present status of the inverse square law
is discussed in Section I1.2.

1.4 Differential Form of Gauss’s Law

Gauss’s law can be thought of as being an integral formulation of the law of
electrostatics. We can obtain a differential form (i.e., a differential equation) by
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using the divergence theorem. The divergence theorem states that for any well-
behaved vector field A(x) defined within a volume V surrounded by the closed
surface S the relation

%A-nda=j V-Adx
N 1%

holds between the volume integral of the divergence of A and the surface integral
of the outwardly directed normal component of A. The equation in fact can be
used as the definition of the divergence (see Stratton, p. 4).

To apply the divergence theorem we consider the integral relation expressed
in Gauss’s theorem:

1
%E-nda=—j p(x) d’x
s € Jv

Now the divergence theorem allows us to write this as
f (V-E — pleg)) d’x = 0 (1.12)
14

for an arbitrary volume V. We can, in the usual way, put the integrand equal to
zero to obtain

V-E = ple (1.13)

which is the differential form of Gauss’s law of electrostatics. This equation can
itself be used to solve problems in electrostatics. However, it is often simpler to
deal with scalar rather then vector functions of position, and then to derive the
vector quantities at the end if necessary (see below).

1.5 Another Equation of Electrostatics and the Scalar Potential

The single equation (1.13) is not enough to specify completely the three com-
ponents of the electric field E(x). Perhaps some readers know that a vector field
can be specified almost* completely if its divergence and curl are given every-
where in space. Thus we look for an equation specifying curl E as a function of
position. Such an equation, namely,
VXE=0 (1.14)
follows directly from our generalized Coulomb’s law (1.5):
1 f x — x'
_ ’ d3 ’
E(x) 4rre, p(x’) Ix - x'] X

The vector factor in the integrand, viewed as a function of x, is the negative
gradient of the scalar 1/|x — x|

X — x' 1
x—xT V<|x—x'|>

*Up to the gradient of a scalar function that satisfies the Laplace equation. See Section 1.9 on
uniqueness.
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Since the gradient operation involves x, but not the integration variable x’, it can
be taken outside the integral sign. Then the field can be written

~1 ¢ [ 2&)

E(x) =
() 47re, [x — x’|

dx’ (1.15)

Since the curl of the gradient of any well-behaved scalar function of position
vanishes (V X V¢ = 0, for all ¢), (1.14) follows immediately from (1.15).

Note that V x E = 0 depends on the central nature of the force between
charges, and on the fact that the force is a function of relative distances only, but
does not depend on the inverse square nature.

In (1.15) the electric field (a vector) is derived from a scalar by the gradient
operation. Since one function of position is easier to deal with than three, it is
worthwhile concentrating on the scalar function and giving it a name. Conse-
quently we define the scalar potential ®(x) by the equation:

E =-V® (1.16)
Then (1.15) shows that the scalar potential is given in terms of the charge density

by

1 p(x’)
——— d3x’ 1.1
dmey ) |x — x'| x (1-17)

d(x) =

where the integration is over all charges in the universe, and @ is arbitrary only
to the extent that a constant can be added to the right-hand side of (1.17).

The scalar potential has a physical interpretation when we consider the work
done on a test charge g in transporting it from one point (A) to another point
(B) in the presence of an electric field E(x), as shown in Fig. 1.3. The force acting
on the charge at any point is

F = qE
so that the work done in moving the charge from A to B is
B B
W:—f F-dl=—qf E - dl (1.18)
A A

The minus sign appears because we are calculating the work done on the charge
against the action of the field. With definition (1.16) the work can be written

B B
W=gq L VO .dl =g L dd = g(®y — D) (1.19)

Figure 1.3
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which shows that g&® can be interpreted as the potential energy of the test charge
in the electrostatic field.

From (1.18) and (1.19) it can be seen that the line integral of the electric field
between two points is independent of the path and is the negative of the potential
difference between the points:

E E-dl = (5 — ®,) (1.20)

This follows directly, of course, from definition (1.16). If the path is closed, the
line integral is zero,

}Q E-dl=0 (1.21)

a result that can also be obtained directly from Coulomb’s law. Then application
of Stokes’s theorem [if A(x) is a well-behaved vector field, S is an arbitrary open
surface, and C is the closed curve bounding S,

§CA-dl=L(VxA)-nda

where dl is a line element of C, n is the normal to S, and the path C is traversed
in a right-hand screw sense relative to n] leads immediately back to V x E = 0.

1.6 Surface Distributions of Charges and Dipoles and
Discontinuities in the Electric Field and Potential

One of the common problems in electrostatics is the determination of electric
field or potential due to a given surface distribution of charges. Gauss’slaw (1.11)
allows us to write down a partial result directly. If a surface S, with a unit normal
n directed from side 1 to side 2 of the surface, has a surface-charge density of
o(x) (measured in coulombs per square meter) and electric fields E; and E, on
either side of the surface, as shown in Fig. 1.4, then Gauss’s law tells us imme-
diately that

(E2 - El) ‘n= 0'/60 (122)

This does not determine E; and E, unless there are no other sources of field and
the geometry and form of o are especially simple. All that (1.22) says is that there

Side 2

Figure 1.4 Discontinuity in the normal
component of electric field across a surface
layer of charge.
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is a discontinuity of o/¢, in the normal component of electric field in crossing a
surface with a surface-charge density o, the crossing being made in the direction
of n.

The tangential component of electric field can be shown to be continuous
across a boundary surface by using (1.21) for the line integral of E around a
closed path. It is only necessary to take a rectangular path with negligible ends
and one side on either side of the boundary.

An expression for the potential (hence the field, by differentiation) at any
point in space (not just at the surface) can be obtained from (1.17) by replacing
p d’x by o da:

o(x")

47760 |x — x'|

da’ (1.23)

For volume or surface distributions of charge, the potential is everywhere con-
tinuous, even within the charge distribution. This can be shown from (1.23) or
from the fact that E is bounded, even though discontinuous across a surface
distribution of charge. With point or line charges, or dipole layers, the potential
is no longer continuous, as will be seen immediately.

Another problem of interest is the potential due to a dipole-layer distribution
on a surface S. A dipole layer can be imagined as being formed by letting the
surface S have a surface-charge density o(x) on it, and another surface S’, lying
close to S, have an equal and opposite surface-charge density on it at neighboring
points, as shown in Fig. 1.5. The dipole-layer distribution of strength D(x) is
formed by letting S’ approach infinitesimally close to S while the surface-charge
density o(x) becomes infinite in such a manner that the product of o(x) and the
local separation d(x) of S and S’ approaches the limit D(x):

lim o(x) d(x) = D(x)
d(x)—0
The direction of the dipole moment of the layer is normal to the surface S and
in the direction going from negative to positive charge.

To find the potential due to a dipole layer we can consider a single dipole
and then superpose a surface density of them, or we can obtain the same result
by performing mathematically the limiting process described in words above on
the surface-density expression (1.23). The first way is perhaps simpler, but the
second gives useful practice in vector calculus. Consequently we proceed with

S
s
o(x)

d(x)

's Figure 1.5 Limiting process involved in
s’ creating a dipole layer.
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Figure 1.6 Dipole-layer geometry.

the limiting process. With n, the unit normal to the surface S, directed away from
S’, as shown in Fig. 1.6, the potential due to the two close surfaces is

_o(x") 1 o(x") Y
- da
4776 slx —x | 4mey Js' |x — x' + nd|

d(x) =

For small d we can expand |x — x’ + nd|™'. Consider the general expression
[x + a|™!, where |a] << |x|. We write a Taylor series expansion in three

dimensions:
! +a-VvV ! +
|x +a|] x x
In this way we find that as d — 0 the potential becomes
D(x) = LI Dx'm.V’ _ da' (1.24)
dmey Js Ix — x'| '

In passing we note that the integrand in (1.24) is the potential of a point dipole
with dipole moment p = n D da’. The potential at x caused by a dipole p at x' is

Dx) = B X X) (1.25)

dmey, |x — x'P
Equation (1.24) has a simple geometrical interpretation. We note that
1 !
n-V|—— da’=—%d,az=—dﬂ
Ix — x| Ix — x|

where dQ) is the element of solid angle subtended at the observation point by the
area element da’, as indicated in Fig. 1.7. Note that d(} has a positive sign if 8 is

Figure 1.7 The potential at P due to the
dipole layer D on the area element da’ is just
the negative product of D and the solid angle
element d() subtended by da’ at P.
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an acute angle (i.e., when the observation point views the “inner” side of the
dipole layer). The potential can be written:

P(x) = — 4;—60 L D(x) dQ (1.26)

For a constant surface-dipole-moment density D, the potential is just the product
of the moment divided by 47e, and the solid angle subtended at the observation
point by the surface, regardless of its shape.

There is a discontinuity in potential in crossing a double layer. This can be
seen by letting the observation point come infinitesimally close to the double
layer. The double layer is now imagined to consist of two parts, one being a small
disc directly under the observation point. The disc is sufficiently small that it is
sensibly flat and has constant surface-dipole-moment density D. Evidently the
total potential can be obtained by linear superposition of the potential of the disc
and that of the remainder. From (1.26) it is clear that the potential of the disc
alone has a discontinuity of D/e, in crossing from the inner to the outer side,
being —D/2¢, on the inner side and +D/2¢, on the outer. The potential of the
remainder alone, with its hole where the disc fits in, is continuous across
the plane of the hole. Consequently the total potential jump in crossing the sur-
face is:

(1)2 - (I)l = D/EQ (1.27)
This result is analogous to (1.22) for the discontinuity of electric field in crossing
a surface-charge density. Equation (1.27) can be interpreted ‘“‘physically” as a
potential drop occurring ““inside” the dipole layer; it can be calculated as the

product of the field between the two layers of surface charge times the separation
before the limit is taken.

1.7 Poisson and Laplace Equations
In Sections 1.4 and 1.5 it was shown that the behavior of an electrostatic field
can be described by the two differential equations:
V-E = pley (1.13)
and
VXE=0 (1.14)
the latter equation being equivalent to the statement that E is the gradient of a
scalar function, the scalar potential ®:
E=-Vo (1.16)
Equations (1.13) and (1.16) can be combined into one partial differential
equation for the single function ®(x):
VO = —ple, (1.28)
This equation is called the Poisson equation. In regions of space that lack a charge
density, the scalar potential satisfies the Laplace equation:

V2D =0 (1.29)
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We already have a solution for the scalar potential in expression (1.17):

p(x')
P d°x’ 1.1
() = 47TE |x — x| * (1.17)
To verify directly that this does indeed satisfy the Poisson equation (1.28), we
operate with the Laplacian on both sides. Because it turns out that the resulting
integrand is singular, we invoke a limiting procedure. Define the “a-potential”

@,(x) by
p(x') 3.1

1
R R CET U

The actual potential (1.17) is then the limit of the “‘a-potential” as a — 0. Taking
the Laplacian of the “a-potential” gives

v, (x) = 1 f p(x >V2(—ﬁ = az> dx )

1 , 342 3,
= 4rre, p(x )[(rz T az)s/z] d’x

where r = |x — x'|. The square-bracketed expression is the negative Laplacian
of 1/\V/7? + 2. It is well-behaved everywhere for nonvanishing a, but as a tends
to zero it becomes infinite at » = 0 and vanishes for r # 0. It has a volume integral
equal to 4 for arbitrary a. For the purposes of integration, divide space into two
regions by a sphere of fixed radius R centered on x. Choose F such that p(x')
changes little over the interior of the sphere, and imagine a much smaller than
R and tending toward zero. If p(x') is such that (1.17) exists, the contribution to
the integral (1.30) from the exterior of the sphere will vanish like a* as a — 0.
We thus need consider only the contribution from inside the sphere. With a
Taylor series expansion of the well-behaved p(x’) around x’ = x, one finds

) 1 o3 rr_, 5 )
Vo, (x) = (—rTz)s/z p(X)+€Vp+"' redr + O(a”)

Direct integration y1e1ds
1
V2d,(x) = - p(x) (1 + O(@*R?) + O(a? a’log a) V’p + -+ -
0
In the limit a — 0, we obtain the Poisson equation (1.28).
The singular nature of the Laplacian of 1/r can be exhibited formally in terms

of a Dirac delta function. Since V*(1/r) = 0 for r # 0 and its volume integral is
—4r, we can write the formal equation, V*(1/r) = —4m8(x) or, more generally,

V2<|;> —478(x — x') (1.31)

X — x'|

1.8 Green’s Theorem

If electrostatic problems always involved localized discrete or continuous distri-
butions of charge with no boundary surfaces, the general solution (1.17) would
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be the most convenient and straightforward solution to any problem. There
would be no need of the Poisson or Laplace equation. In actual fact, of course,
many, if not most, of the problems of electrostatics involve finite regions of space,
with or without charge inside, and with prescribed boundary conditions on the
bounding surfaces. These boundary conditions may be simulated by an appro-
priate distribution of charges outside the region of interest (perhaps at infinity),
but (1.17) becomes inconvenient as a means of calculating the potential, except
in simple cases (e.g., method of images).

To handle the boundary conditions it is necessary to develop some new math-
ematical tools, namely, the identities or theorems due to George Green (1824).
These follow as simple applications of the divergence theorem. The divergence
theorem:

f V-Ad3x=§A-nda
v s

applies to any well-behaved vector field A defined in the volume V bounded by
the closed surface S. Let A = ¢ Vi, where ¢ and  are arbitrary scalar fields.

Now
V. ($VY) = VY + V- Vy (1.32)
and
_ 4
dVy-n=¢ ™ (1.33)

where 8/0n is the normal derivative at the surface S (directed outward from inside
the volume V). When (1.32) and (1.33) are substituted into the divergence the-
orem, there results Green’s first identity:

d
fv (¢ V2 + Vb - Vi) d®x = ﬁ b 5‘—”; da (1.34)

If we write down (1.34) again with ¢ and ¢ interchanged, and then subtract it
from (1.34), the V¢ - Vi terms cancel, and we obtain Green’s second identity or
Green’s theorem:

[ @vu-uveyax=-§ [¢ o _ wa—"’] da (1.35)

on on

The Poisson differential equation for the potential can be converted into an
integral equation if we choose a particular ¢, namely 1/R = 1/|x — x’|, where x
is the observation point and x’ is the integration variable. Further, we put ¢ = @,
the scalar potential, and make use of V>*® = —p/e,. From (1.31) we know that
V2(1/R) = —4m8(x — x'), so that (1.35) becomes

[ omse -4 o (3 -42]

If the point x lies within the volume V, we obtain:

1 p(x") 1 § 1 9 a (1
Px)=— | =% +— —— =P — = ! )
() 4mey Jv R x 47 Js | R on’ ® on' \R da’  (1.36)
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If x lies outside the surface S, the left-hand side of (1.36) is zero.* [Note that this
is consistent with the interpretation of the surface integral as being the potential
due to a surface-charge density o = €, 9®/on’ and a dipole layer D = —¢,®. The
discontinuities in electric field and potential (1.22) and (1.27) across the surface
then lead to zero field and zero potential outside the volume V]

Two remarks are in order about result (1.36). First, if the surface S goes to
infinity and the electric field on S falls off faster than R, then the surface integral
vanishes and (1.36) reduces to the familiar result (1.17). Second, for a charge-
free volume, the potential anywhere inside the volume (a solution of the Laplace
equation) is expressed in (1.36) in terms of the potential and its normal derivative
only on the surface of the volume. This rather surprising result is not a solution
to a boundary-value problem, but only an integral statement, since the arbitrary
specification of both ® and d®/on (Cauchy boundary conditions) is an overspe-
cification of the problem. This is discussed in detail in the next sections, where
techniques yielding solutions for appropriate boundary conditions are developed
using Green’s theorem (1.35).

1.9 Uniqueness of the Solution with Dirichlet
or Neumann Boundary Conditions

What boundary conditions are appropriate for the Poisson (or Laplace) equation
to ensure that a unique and well-behaved (i.e., physically reasonable) solution
will exist inside the bounded region? Physical experience leads us to believe that
specification of the potential on a closed surface (e.g., a system of conductors
held at different potentials) defines a unique potential problem. This is called a
Dirichlet problem, or Dirichlet boundary conditions. Similarly it is plausible that
specification of the electric field (normal derivative of the potential) everywhere
on the surface (corresponding to a given surface-charge density) also defines a
unique problem. Specification of the normal derivative is known as the Neumann
boundary condition. We now proceed to prove these expectations by means of
Green’s first identity (1.34).

We want to show the uniqueness of the solution of the Poisson equation,
V2® = —ple,, inside a volume V subject to either Dirichlet or Neumann boundary
conditions on the closed bounding surface S. We suppose, to the contrary, that
there exist two solutions @, and ®, satisfying the same boundary conditions. Let

U= ¢2 - (Dl (1.37)

Then V?U = 0 inside V, and U = 0 or 9U/dn = 0 on S for Dirichlet and Neumann
boundary conditions, respectively. From Green’s first identity (1.34), with ¢ = ¢
= U, we find

f (U VAU + VU - VU) d°x = f U% da (1.38)
v S

*The reader may complain that (1.36) has been obtained in an illegal fashion since 1/|x — x’| is not
well-behaved inside the volume V. Rigor can be restored by using a limiting process, as in the pre-
ceding section, or by excluding a small sphere around the offending point, x = x'. The result is still
(1.36).
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With the specified properties of U, this reduces (for both types of boundary
condition) to:

VU2d3x—0
[ [

which implies VU = 0. Consequently, inside V, U is constant. For Dirichlet
boundary conditions, U = 0 on S so that, inside V, ®; = ®, and the solution is
unique. Similarly, for Neumann boundary conditions, the solution is unique,
apart from an unimportant arbitrary additive constant.

From the right-hand side of (1.38) it is evident that there is also a unique
solution to a problem with mixed boundary conditions (i.e., Dirichlet over part
of the surface S, and Neumann over the remaining part).

It should be clear that a solution to the Poisson equation with both ® and
d®/on specified arbitrarily on a closed boundary (Cauchy boundary conditions)
does not exist, since there are unique solutions for Dirichlet and Neumann con-
ditions separately and these will in general not be consistent. This can be verified
with (1.36). With arbitrary values of ® and d®/on inserted on the right-hand side,
it can be shown that the values of ®(x) and V®(x) as x approaches the surface
are in general inconsistent with the assumed boundary values. The question of
whether Cauchy boundary conditions on an open surface define a unique elec-
trostatic problem requires more discussion than is warranted here. The reader
may refer to Morse and Feshbach (Section 6.2, pp. 692-706) or to Sommerfeld
(Partial Differential Equations in Physics, Chapter II) for a detailed discussion
of these questions. The conclusion is that electrostatic problems are specified
only by Dirichlet or Neumann boundary conditions on a closed surface (part or
all of which may be at infinity, of course).

1.10 Formal Solution of Electrostatic Boundary-Value
Problem with Green Function

The solution of the Poisson or Laplace equation in a finite volume V with either
Dirichlet or Neumann boundary conditions on the bounding surface S can be
obtained by means of Green’s theorem (1.35) and so-called Green functions.

In obtaining result (1.36)—not a solution—we chose the function ¢ to be
1/|x — x'|, it being the potential of a unit point source, satisfying the equation:

V,2<|x—_1;"—|) = —47w8(x — x') (1.31)
The function 1/[x — x| is only one of a class of functions depending on the
variables x and x’, and called Green functions, which satisfy (1.31). In general,
V2G(x, x') = —4md(x — x') (1.39)
where
1

Gl x') = 5

+ F(x, x") (1.40)

with the function F satisfying the Laplace equation inside the volume V:
V?F(x,x') =0 (1.41)
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In facing the problem of satisfying the prescribed boundary conditions on ®
or 3®/on, we can find the key by considering result (1.36). As has been pointed
out already, this is not a solution satisfying the correct type of boundary condi-
tions because both ® and d®/on appear in the surface integral. It is at best an
integral relation for ®. With the generalized concept of a Green function and its
additional freedom [via the function F(x, x")], there arises the possibility that we
can use Green’s theorem with ¢ = G(x, x’) and choose F(x, x") to eliminate one
or the other of the two surface integrals, obtaining a result that involves only
Dirichlet or Neumann boundary conditions. Of course, if the necessary G(x, x")
depended in detail on the exact form of the boundary conditions, the method
would have little generality. As will be seen immediately, this is not required,
and G(x, x') satisfies rather simple boundary conditions on S.

With Green’s theorem (1.35), ¢ = ®, ¢ = G(x, x'), and the specified prop-
erties of G (1.39), it is simple to obtain the generalization of (1.36):

d(x) = ﬁeo fv p(x"G(x, x") d°x’

|

The freedom available in the definition of G (1.40) means that we can make the
surface integral depend only on the chosen type of boundary conditions. Thus,
for Dirichlet boundary conditions we demand:

Gp(x,x’) =0 forx’onS (1.43)

(1.42)

o) aG(x, x’):|

Then the first term in the surface integral in (1.42) vanishes and the solution is
3.1 ’ aGD ’
P(x) = — p(x )Gp(x, x') d°x' — — <I)( ) da (1.44)
For Neumann boundary conditions we must be more careful. The obvious

choice of boundary condition on G(x, x") seems to be

Gy

- (x,x')=0 for x’ on §
on

since that makes the second term in the surface integral in (1.42) vanish, as de-
sired. But an application of Gauss’s theorem to (1.39) shows that

Consequently the simplest allowable boundary condition on Gy is

aGn

o & x') = —4?77 forx’ on § (1.45)

where S is the total area of the boundary surface. Then the solution is
1 j 3 1 § P
— + — ' ! ! + — il ' 1
P(x) = (D) Trey Iy p(x")Gn(x, x") d’x ) ewy Gy da' (1.46)

where (®)s is the average value of the potential over the whole surface. The
customary Neumann problem is the so-called exterior problem in which the vol-
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ume V is bounded by two surfaces, one closed and finite, the other at infinity.
Then the surface area S is infinite; the boundary condition (1.45) becomes ho-
mogeneous; the average value (®)¢ vanishes.

We note that the Green functions satisfy simple boundary conditions (1.43)
or (1.45) which do not depend on the detailed form of the Dirichlet (or Neumann)
boundary values. Even so, it is often rather involved (if not impossible) to de-
termine G(x, x") because of its dependence on the shape of the surface S. We
will encounter such problems in Chapters 2 and 3.

The mathematical symmetry property G(x, x’) = G(x’, x) can be proved for
the Green functions satisfying the Dirichlet boundary condition (1.43) by means
of Green’s theorem with ¢ = G(x, y) and ¢y = G(x', y), where y is the integration
variable. Since the Green function, as a function of one of its variables, is a
potential due to a unit point source, the symmetry merely represents the physical
interchangeability of the source and the observation points. For Neumann
boundary conditions the symmetry is not automatic, but can be imposed as a
separate requirement.*

As a final, important remark we note the physical meaning of F(x, x')/41e,.
It is a solution of the Laplace equation inside V and so represents the potential
of a system of charges external to the volume V. It can be thought of as the
potential due to an external distribution of charges chosen to satisfy the homo-
geneous boundary conditions of zero potential (or zero normal derivative) on
the surface S when combined with the potential of a point charge at the source
point x'. Since the potential at a point x on the surface due to the point charge
depends on the position of the source point, the external distribution of charge
F(x, x') must also depend on the “parameter”” x’. From this point of view,
we see that the method of images (to be discussed in Chapter 2) is a physical
equivalent of the determination of the appropriate F(x, x') to satisfy the bound-
ary conditions (1.43) or (1.45). For the Dirichlet problem with conductors,
F(x, x")/47e, can also be interpreted as the potential due to the surface-charge
distribution induced on the conductors by the presence of a point charge at the
source point x'.

1.11 Electrostatic Potential Energy
and Energy Density; Capacitance

In Section 1.5 it was shown that the product of the scalar potential and the charge
of a point object could be interpreted as potential energy. More precisely, if a
point charge g; is brought from infinity to a point x, in a region of localized electric
fields described by the scalar potential ® (which vanishes at infinity), the work
done on the charge (and hence its potential energy) is given by

W; = q:(x;) (1.47)

The potential ® can be viewed as produced by an array of (n — 1) charges
q;(j=1,2,...,n — 1) at positions x;. Then

1 n—1 qj

4mep 21 |x; — xj]

d(x;) =

(1.48)

*See K.-J. Kim and J. D. Jackson, Am. J. Phys. 61, (12) 1144-1146 (1993).
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so that the potential energy of the charge g; is

n—1

q; 4;
W, = 1.4
"o dme A X — X (149)

il

The total potential energy of all the charges due to all the forces acting between
them is:
1 < q:9;
W = 1.50
4me, 1=21 =% = x| (1.50)

as can be seen most easily by adding each charge in succession. A more symmetric
form can be written by summing over i and j unrestricted, and then dividing by 2:

1 q:4;
W = 1.51
87760 21 E]: |x,» - le ( )

It is understood that i = j terms (infinite “self-energy”’ terms) are omitted in the
double sum.

For a continuous charge distribution [or, in general, using the Dirac delta
functions (1.6)] the potential energy takes the form:

=i f f POOP(X') 3y o (1.52)

- x| ¢

Another expression, equivalent to (1.52), can be obtained by noting that one of
the integrals in (1.52) is just the scalar potential (1.17). Therefore

W = %fp(x)d>(x) d’x (1.53)

Equations (1.51), (1.52), and (1.53) express the electrostatic potential energy
in terms of the positions of the charges and so emphasize the interactions between
charges via Coulomb forces. An alternative, and very fruitful, approach is to
emphasize the electric field and to interpret the energy as being stored in the
electric field surrounding the charges. To obtain this latter form, we make use of
the Poisson equation to eliminate the charge density from (1.53):

W= _760 f ® VP d’x
Integration by parts leads to the result:
W=529f|vq>|2 d3x=%f[E|2 d*x (1.54)

where the integration is over all space. In (1.54) all explicit reference to charges
has gone, and the energy is expressed as an integral of the square of the electric
field over all space. This leads naturally to the identification of the integrand as
an energy density w:

= 2 gp (1.55)
2
This expression for energy density is intuitively reasonable, since regions of high

fields “must” contain considerable energy.
There is perhaps one puzzling thing about (1.55). The energy density is pos-
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itive definite. Consequently its volume integral is necessarily nonnegative. This
seems to contradict our impression from (1.51) that the potential energy of two
charges of opposite sign is negative. The reason for this apparent contradiction
is that (1.54) and (1.55) contain ‘‘self-energy” contributions to the energy density,
whereas the double sum in (1.51) does not. To illustrate this, consider two point
charges g, and g, located at x; and x,, as in Fig. 1.8. The electric field at the point
P with coordinate x is

E = 1 qi(x — x) 4 1 g(x — %)
- 3 3
ey |x — xq dmey |x — x5

so that the energy density (1.55) is

2 2 _ C(x —
qi 9z +2q1q2(x X) - (X — xp) (1.56)

3272 =
e A P x = x [x - %P

Clearly the first two terms are “‘self-energy’’ contributions. To show that the third
term gives the proper result for the interaction potential energy we integrate over
all space:

- _ 992 f(x—xl)'(x_xz) 3
Win 167%¢, ) |x — x;? |x — x,? d'x (1.57)

A change of integration variable to p = (x — x,)/|x; — X,| yields

1 919> X i p- (p + n) d3 (1 58)

Wi =
nt 47760 [Xl - X2| 477 p3 |p + ll|3

where n is a unit vector in the direction (x; — X,). Using the fact that (p + n)/
|p + n> = —V,(1/|p + n|), the dimensionless integral can easily be shown to
have the value 4, so that the interaction energy reduces to the expected value.

Forces acting between charged bodies can be obtained by calculating the
change in the total electrostatic energy of the system under small virtual displace-
ments. Examples of this are discussed in the problems. Care must be taken to
exhibit the energy in a form showing clearly the factors that vary with a change
in configuration and those that are kept constant.

As a simple illustration we calculate the force per unit area on the surface
of a conductor with a surface-charge density o(x). In the immediate neighbor-
hood of the surface the energy density is

w = 529 IEP = %26, (1.59)

If we now imagine a small outward displacement Ax of an elemental area Aa of
the conducting surface, the electrostatic energy decreases by an amount that is
the product of energy density w and the excluded volume Ax Aa:

AW = —g? Aa Ax/2¢, (1.60)

‘P

q1

X) q2
X2

o Figure 1.8
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This means that there is an outward force per unit area equal to 0?/2¢, = w at
the surface of the conductor. This result is normally derived by taking the product
of the surface-charge density and the electric field, with care taken to eliminate
the electric field due to the element of surface-charge density itself.

For a system of n conductors, each with potential V; and total charge
Q;(i=1,2,...,n) in otherwise empty space, the electrostatic potential energy
can be expressed in terms of the potentials alone and certain geometrical quan-
tities called coefficients of capacity. For a given configuration of the conductors,
the linear functional dependence of the potential on the charge density implies
that the potential of the ith conductor can be written as

Vi:E;Piij (i=1,2,...,n)
=

where the p; depend on the geometry of the conductors. These n equations can
be inverted to yield the charge on the ith conductor in terms of all the potentials:

Qi = i CUV] (l = 1, 2, ey I’l) (161)

The coefficients C;; are called capacities or capacitances while the C;;, i # j, are
called coefficients of induction. The capacitance of a conductor is therefore the
total charge on the conductor when it is maintained at unit potential, all other
conductors being held at zero potential. Sometimes the capacitance of a system
of conductors is also defined. For example, the capacitance of two conductors
carrying equal and opposite charges in the presence of other grounded conduc-
tors is defined as the ratio of the charge on one conductor to the potential dif-
ference between them. The equations (1.61) can be used to express this capaci-
tance in terms of the coefficients C;;.
The potential energy (1.53) for the system of conductors is

W= ! > 0= 1 PR AAY (1.62)
2= 23 =

The expression of the energy in terms of the potentials V; and the Cj;, or in terms
of the charges Q; and the coefficients p;;, permits the application of variational
methods to obtain approximate values of capacitances. It can be shown, based
on the technique of the next section (see Problems 1.17 and 1.18), that there are
variational principles giving upper and lower bounds on C;;. The principles permit
estimation with known error of the capacitances of relatively involved configu-
rations of conductors. High-speed computational techniques permit the use of
elaborate trial functions involving several parameters. It must be remarked, how-
ever, that the need for a Green function satisfying Dirichlet boundary conditions
in the lower bound makes the error estimate nontrivial. Further consideration of
this technique for calculating capacitances is left to the problems at the end of
this and subsequent chapters.

1.12 Variational Approach to the Solution of the Laplace
and Poisson Equations

Variational methods play prominent roles in many areas of classical and quantum
physics. They provide formal techniques for the derivation of “‘equations of mo-
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tion” and also practical methods for obtaining approximate, but often accurate,
solutions to problems not amenable to other approaches. Estimates of resonant
frequencies of acoustic resonators and energy eigenvalues of atomic systems
come readily to mind.

The far-reaching concept that physical systems in equilibrium have minimal
energy content is generalized to the consideration of energy-like functionals. As
an example, consider the functional

1
I[y] = Efv Vi Vi d’x — fv gy d’x (1.63)

where the function ¢(x) is well-behaved inside the volume V and on its surface
S (which may consist of several separate surfaces), and g(x) is a specified
“source” function without singularities within V. We now examine the first-order
change in the functional when we change ¢ — ¢ + 8, where the modification
d(x) is infinitesimal within V. The difference 81 = I[y + 8] — I[y] is

ol = fv Vi - V(8y) dPx — fv goy d + - - (1.64)

The neglected term is semipositive definite and is second order in 8. Use of
Green’s first identity with ¢ = & and = ¢ yields

| vy _ 3 Y '
o = fv [~V2y — g] 8 d®x + jgs 8y~ da (1.65)

Provided 6 = 0 on the boundary surface S (so that the surface integral vanishes),
the first-order change in I[¢] vanishes if (x) satisfies

V2 = —g (1.66)

Recalling that the neglected term in (1.64) is semipositive definite, we see that
I[y] is a stationary minimum if ¢ satisfies a Poisson-like equation within the
volume V and the departures 8 vanish on the boundary. With s - ® and g — -
p/e€y, the minimization of the functional yields the “equation of motion” of the
electrostatic potential in the presence of a charge density and Dirichlet boundary
conditions (® given on S and so 6@ = 0 there).

The derivation of the Poisson equation from the variational functional is the
formal aspect. Equally important, the stationary nature of the extremum of I[y]
permits a practical approach to an approximate solution for y(x). We choose a
flexible “‘trial” function (x) = AV(X, a, B, . . .) that depends on a normalization
constant A and some number of other parameters, «, 8, ..., and is constructed
to satisfy the given boundary conditions on the surface S. The function ¥ may
be a sum of terms with the parameters as coefficients, or a single function of
several parameters; it should be chosen with some eye toward the expected form
of the solution. (Intuition plays a role here!) Calculation of I[y] gives the func-
tion, I(A, «, B, . . .). We now vary the parameters to locate the extremum (actually
a minimum) of I(A, «, B,...). With the optimum parameters, the trial solution
is the best possible approximation to the true solution with the particular func-
tional form chosen. For the Laplace equation, the normalization constant is de-
termined by the Dirichlet boundary values of . For the Poisson equation, it is
determined by the source strength g(x), as well as the boundary values on S.

A different functional is necessary for Neumann boundary conditions. Sup-
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pose that the boundary conditions on ¢ are specified by dy/on|s = f(s), where s
locates a point on the surface S. The appropriate functional is

I[y] = % fv Vi Vi d’x — L gud’x — i fip da (1.67)

The same steps as before with iy — ¢ + 8 lead to the first-order difference in
functionals,

_ 2. 3 ?L/’ _
8l fv[ Vi — gl ¢ dx + ﬁ <8n f(s) | & da (1.68)
The requirement that 8/ vanish independent of &y implies

d
V4 = —g within V' and a—;/; = f(s)on S (1.69)
Again the functional is a stationary minimum for ¢ satisfying (1.69). Approximate
solutions can be found by the use of trial functions that satisfy the Neumann
boundary conditions, just as described above for Dirichlet boundary conditions.
As a simple application to the Poisson equation, consider the two-dimen-
sional problem of a hollow circular cylinder of unit radius centered on the z-axis,
with an interior source density g(x) = g(p), azimuthally symmetric and inde-
pendent of z. The potential vanishes at p = 1. The “equation of motion” for
¢ (a function of p alone) in polar coordinates is
19 ( oy
- — (p —> = —g(p) (1.70)
pop \" dp
For trial functions we consider finite polynomials in powers of (1 — p) and p. A
three-parameter function of the first type is

V= a(1 - p) + Bi(1 = p)* + n(1 — p)’ (1.71)

This choice might seem natural because it automatically builds in the boundary
condition at p = 1, but it contains a flaw that makes it a less accurate represen-
tation of i than the power series in p. The reason is that, if the source density g
is well behaved and finite at the origin, Gauss’s law shows that ¢ has a maximum
or minimum there with vanishing slope. The requirements at both the origin and
p = 1 are met by a three-parameter trial function in powers of p:

U, =ap®+ Bp’ + yp* — (a+ B+ ) (1.72)

We expect this trial function in general to be a better approximation to ¢ than

W, for the same number of variational parameters. [We could, of course, impose

the constraint, & + 28; + 3y, = 0 on (1.71) to get the proper behavior at the

origin, but that would reduce the number of parameters from three to two.]
The functional integral (1.63) for ¥, is easily shown to be

L L DN UV g
27‘_1[‘1’2]—[2012+5a/3+3ay+4/3
(1.73)

12
+ £ By + 72] — [exa + esB + esy]

where e, = [ g(p)(p" — 1) p dp.
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The integral for ¥, has the same form as (1.73), but different coefficients.
As described above, we seek an extremum of (1.73) by setting the partial deriv-
atives with respect to the parameters o, 3, and y equal to zero. The three coupled
algebraic linear equations yield the “best” values,

a = 22562 - 42063 + 21064

24
B = _42062 + % €3 — 42064 (1.74)
441
Y = 21062 - 42063 + — €4

2

These values can be inserted into (1.73) to give I[W;]mia as a not very illuminating
function of the e,. One would then find that the “kinetic” (first) bracket was
equal to half the “potential” (second) bracket and opposite in sign, a character-
istic of the extremum.

To go further we must specify g(p). The results for the best trial functions
¥, and ¥, are shown in Fig. 1.9 for the source density,

g(p) = =5(1 — p) + 10°°(1 — p)° (1.75)

The choice of source is arbitrary and is chosen to give a potential that is not quite
featureless. The “best” parameters for ¥, are @ = 2.915, 8 = —7.031, and y =
3.642. The variational integral has the value, I[W¥,],;, = —1.5817, compared to
I[]exact = —1.6017. The fractional error is 1.3%.

Note that the trial function ¥, fails rather badly for p < 0.3 because it does
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Figure 1.9 Comparison of the exact solution ¢(p) (solid curve) with two variational
approximations for the potential, ¥, (dotted curve) and ¥, (dashed curve). The charge
density (1.75) is indicated by the dash-dot curve (arbitrary scale).
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not respect the vanishing slope at p = 0. Nonetheless, it gives I[¥ ], = —1.5136,
which is somewhat, but not greatly, worse than ¥, (5.5% error). The insensitivity
of I[W] to errors in the trial function illustrates both a strength and a weakness
of the variational method. If the principle is used to estimate eigenvalues (related
to the value of I[W]), it does well. Used as a method of estimating a solution
¢ =~ V¥, it can fail badly, at least in parts of the configuration space.

The reader will recognize from (1.70) that a polynomial source density leads
to an exact polynomial solution for i, but the idea here is to illustrate the vari-
ational method, not to demonstrate a class of explicit solutions. Further illustra-
tion is left to the problems at the end of this and later chapters.

1.13 Relaxation Method for Two-Dimensional
Electrostatic Problems

The relaxation method is an iterative numerical scheme (sometimes called iter-
ative finite difference method) for the solution of the Laplace or Poisson equation
in two dimensions. Here we present only its basic ideas and its connection with
the variational method. First we consider the Laplace equation with Dirichlet
boundary conditions within a two-dimensional region S with a boundary contour
C. We imagine the region § spanned by a square lattice with lattice spacing &
(and the boundary contour C approximated by a step-like boundary linking lat-
tice sites along C). The independent variables are the integers (i, j) specifying
the sites; the dependent variables are the trial values of the potential (i, j) at
each site. The potential values on the boundary sites are assumed given.

To establish the variational nature of the method and to specify the iterative
scheme, we imagine the functional integral I[¢] over S as a sum over small do-
mains of area h?, as shown in Fig. 1.10a. We consider the neighboring trial values
of the potential as fixed, while the value at the center of the subarea is a varia-
tional quantity to be optimized. The spacing is small enough to permit us to
approximate the derivatives in, say, the northeast quarter of the subarea by

W\ L (W) L,
®) tonsr (P, =t w

and similarly for the other three quarters. The functional integral over the north-

east quarter is
lJ~h/2 J~h/2 o 2 W 2
= — —_— + —_—
Ie 2 Jo dx 0 dy ox ay

1 (1.76)
~3 [($o — ¥n)* + (Yo — ¥&)’]

The complete integral over the whole (shaded) subarea is evidently

1
I = 2 (W — ¢)® + (Yo — ¥e)> + (Yo — ¥s)” + (Yo — Yw)’]  (1.77)
Minimizing this integral with respect to iy, gives the optimum value,

1
(d’())optimum = Z ((;[’N + l//E + lﬂs + l//W) (178)
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Figure 1.10 (a) Enlargement of one of the subareas in the functional integral (shaded).
The trial values of the potential at the neighboring sites are labeled i, s, Y, and P,
while the value at the center of the subarea is . (b) One possible iteration is to
replace the trial values at the lattice sites (0) with the average of the values at the
surrounding sites (X).

The integral is minimized if 4, is equal to the average of the values at the “cross”
points.

Now consider the whole functional integral, that is, the sum of the integrals
over all the subareas. We guess a set of (i, j) initially and approximate the
functional integral I[¢] by the sum of terms of the form of (1.77). Then we go
over the lattice and replace half the values, indicated by the circles in Fig. 1.10b,
by the average of the points (crosses) around them. The new set of trial values
(i, j) will evidently minimize /[¢] more than the original set of values; the new
set will be closer to the correct solution. Actually, there is no need to do the
averaging for only half the points—that was just a replication for half of the
subareas of the process for Fig. 1.10a.

There are many improvements that can be made. One significant one con-
cerns the type of averaging. We could have taken the average of the values at
the corners of the large square in Fig. 1.10a instead of the ‘“cross” values. Or we
could take some linear combination of the two. It can be shown (see Problem
1.22) by Taylor series expansion of any well-behaved function F(x, y) that a
particular weighted average,

4 1
(e, y)) = 3 (P + < (F), (1.79)
where the “cross” and ‘“‘square’” averages are

(F(x, y)). = % [F(x+h, y) + F(x, y+h) + F(x—h, y) + F(x, y—h)] (1.80a)

(F(x, y))s = % [F(x+h, y+h) + F(x+h, y—h) (L50D)
+ F(x—h, y+h) + F(x—h, y—h)] |

yields

(F(x, y)) = F(x, y) + %hz V2F + %h“ V2(V2F) + O(h®) (1.81)
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In (1.81) the Laplacians of F are evaluated at (x, y). If F(x, y) is a solution of the
Laplace equation, the weighted averaging over the eight adjacent lattice sites in
(1.79) gives F at the center with corrections only of order A°. Instead of (1.78),
which is the same as (1.80a), a better iteration scheme uses v (i, /) = ¥, j))
+ O(h®). With either the “cross” or “square” averaging separately, the error is
O(h*). The increase in accuracy with ((¢)) is at the expense of twice as much
computation for each lattice site, but for the same accuracy, far fewer lattice sites
are needed: ((N)) = O((N)*?), where ((N)) is the number of sites needed with
((¢)) and (N is the corresponding number with the “cross” or “‘square” average.

Equation (1.81) has an added advantage in application to the Poisson equa-
tion, V2 = —g. The terms of order A* and h* can be expressed directly in terms
of the specified charge density and the simplest approximation for its Laplacian.
It is easy to show that the new value of the trial function at (i, j) is generated by

oo ) = G D) + 5 806 J) + 35 (8 D + OG89 (182)

where (g). is the ““cross” average of g, according to (1.80a).

A basic procedure for the iterative numerical solution of the Laplace or
Poisson equation in two dimensions with Dirichlet boundary conditions is as
follows:

1. A square lattice spacing & is chosen and the lattice sites, including the sites
on the boundary, are labeled in some manner [which we denote here as (i, j)].

2. The values of the potential at the boundary sites are entered in a table of the
potential at all sites.

3. A guess is made for the values, called ®4(i, j), at all interior sites. A constant
value everywhere is easiest. These are added to the table or array of “start-
ing” values.

4. The first iteration cycle begins by systematically going over the lattice sites,
one by one, and computing ((®(7, j))) with (1.79) or one of the averages in
(1.80). This quantity (or (1.82) for the Poisson equation) is entered as
®,...(i, j) in a table of “new” values of the potential at each site. Note that
the sites next to the boundary benefit from the known boundary values, and
so their ((®)) values are likely initially to be closer to the ultimate values of
the potential than those for sites deep in the interior. With each iteration,
the accuracy works its way from the boundaries into the interior.

5. Once all interior sites have been processed, the set of ®4(, j) is replaced
by the set of ®,.,(i, j), and the iteration cycle begins again.

6. Iterations continue until some desired level of accuracy is achieved. For ex-
ample, one might continue iterations until the absolute value of the differ-
ence of old and new values is less than some preassigned value at every
interior site.

The scheme just outlined is called Jacobian iteration. It requires two arrays
of values of the potential at the lattice sites during each iteration. A better
scheme, called Gauss—Seidel iteration, employs a trivial change: one replaces
D14(i, j) with @, (i, j) as soon as the latter is determined. This means that during
an iteration one benefits immediately from the improved values. Typically, at any
given site, ((®)) is made up half of old values and half of new ones, depending
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on the path over the lattice. There are many other improvements possible—
consult Press et al., Numerical Recipes, or some of the references cited at the end
of the chapter. The relaxation method is also applicable to magnetic field prob-
lems, as described briefly in Section 5.14.
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Problems

L1  Use Gauss’s theorem [and (1.21) if necessary] to prove the following:
(a) Any excess charge placed on a conductor must lie entirely on its surface. (A
conductor by definition contains charges capable of moving freely under the
action of applied electric fields.)
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(b) A closed, hollow conductor shields its interior from fields due to charges out-
side, but does not shield its exterior from the fields due to charges placed
inside it.

(¢) The electric field at the surface of a conductor is normal to the surface and
has a magnitude o/e;,, where o is the charge density per unit area on the
surface.

The Dirac delta function in three dimensions can be taken as the improper limit as
a — 0 of the Gaussian function

1
D(e; x,y,z) = m) ¥ a? exp[—p (2 + y* + 22)]
o

Consider a general orthogonal coordinate system specified by the surfaces u =
constant, v = constant, w = constant, with length elements du/U, dv/V, dw/W in
the three perpendicular directions. Show that

8(x —x')=8u—u) s —-v)éw-—w) U'W

by considering the limit of the Gaussian above. Note that as o — 0 only the infin-
itesimal length element need be used for the distance between the points in the
exponent.

Using Dirac delta functions in the appropriate coordinates, express the following
charge distributions as three-dimensional charge densities p(x).

(a) In spherical coordinates, a charge Q uniformly distributed over a spherical
shell of radius R.

(b) In cylindrical coordinates, a charge A per unit length uniformly distributed
over a cylindrical surface of radius b.

(¢) In cylindrical coordinates, a charge Q spread uniformly over a flat circular
disc of negligible thickness and radius R.

(d) The same as part (c), but using spherical coordinates.

Each of three charged spheres of radius a, one conducting, one having a uniform
charge density within its volume, and one having a spherically symmetric charge
density that varies radially as #” (n > —3), has a total charge Q. Use Gauss’s theorem
to obtain the electric fields both inside and outside each sphere. Sketch the behavior
of the fields as a function of radius for the first two spheres, and for the third with
n=-2,+2.

The time-averaged potential of a neutral hydrogen atom is given by

q e ar
b = 1+ —=
4mey 1 ( 2 )
where q is the magnitude of the electronic charge, and o™ = a,/2, a, being the
Bohr radius. Find the distribution of charge (both continuous and discrete) that will
give this potential and interpret your result physically.

A simple capacitor is a device formed by two insulated conductors adjacent to each
other. If equal and opposite charges are placed on the conductors, there will be a
certain difference of potential between them. The ratio of the magnitude of the
charge on one conductor to the magnitude of the potential difference is called the
capacitance (in SI units it is measured in farads). Using Gauss’s law, calculate the
capacitance of

(a) two large, flat, conducting sheets of area A, separated by a small distance d;
(b) two concentric conducting spheres with radii a, b (b > a);

(¢) two concentric conducting cylinders of length L, large compared to their radii
a, b (b > a).
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(d) Whatis the inner diameter of the outer conductor in an air-filled coaxial cable
whose center conductor is a cylindrical wire of diameter 1 mm and whose
capacitance is 3 X 107" F/m? 3 X 10712 F/m?

Two long, cylindrical conductors of radii a, and a, are parallel and separated by a

distance d, which is large compared with either radius. Show that the capacitance

per unit length is given approximately by

-1
C = 7T60<ln L_i>
a

where a is the geometrical mean of the two radii.

Approximately what gauge wire (state diameter in millimeters) would be nec-
essary to make a two-wire transmission line with a capacitance of 1.2 X 107! F/m
if the separation of the wires was 0.5 cm? 1.5 cm? 5.0 cm?

(a) For the three capacitor geometries in Problem 1.6 calculate the total electro-
static energy and express it alternatively in terms of the equal and opposite
charges O and —Q placed on the conductors and the potential difference
between them.

(b) Sketch the energy density of the electrostatic field in each case as a function
of the appropriate linear coordinate.

Calculate the attractive force between conductors in the parallel plate capacitor
(Problem 1.6a) and the parallel cylinder capacitor (Problem 1.7) for

(a) fixed charges on each conductor;
(b) fixed potential difference between conductors.

Prove the mean value theorem: For charge-free space the value of the electrostatic
potential at any point is equal to the average of the potential over the surface of
any sphere centered on that point.

Use Gauss’s theorem to prove that at the surface of a curved charged conductor,
the normal derivative of the electric field is given by

1ok (L, 1
E on R1 Rz

where R; and R, are the principal radii of curvature of the surface.

Prove Green’s reciprocation theorem: If @ is the potential due to a volume-charge
density p within a volume V and a surface-charge density o on the conducting
surface § bounding the volume V, while @’ is the potential due to another charge
distribution p’ and ¢, then

f p®’ d3x+f od’ da:f p'® d3x+f o'® da
v s v s

Two infinite grounded parallel conducting planes are separated by a distance d. A
point charge g is placed between the planes. Use the reciprocation theorem of
Green to prove that the total induced charge on one of the planes is equal to (—q)
times the fractional perpendicular distance of the point charge from the other plane.
(Hint: As your comparison electrostatic problem with the same surfaces choose one
whose charge densities and potential are known and simple.)

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and

Neumann boundary conditions on the surface S bounding the volume V. Apply

Green’s theorem (1.35) with integration variable y and ¢ = G(x, y), ¢ = G(x', y),

with V2, G(z, y) = —4w8(y — z). Find an expression for the difference [G(x, x') —

G(x', x)] in terms of an integral over the boundary surface S.

(a) For Dirichlet boundary conditions on the potential and the associated bound-
ary condition on the Green function, show that Gp(x, x’ must be symmetric
in x and x'.
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(b) For Neumann boundary conditions, use the boundary condition (1.45) for
Gp(x, x') to show that Gy(x, X’) is not symmetric in general, but that Gu(x,
x') — F(x) is symmetric in x and x’, where

F(x) = %ﬁ GN(x, y) da,

(¢) Show that the addition of F(x) to the Green function does not affect the po-
tential ®(x). See problem 3.26 for an example of the Neumann Green function.

Prove Thomson’s theorem: If a number of surfaces are fixed in position and a given
total charge is placed on each surface, then the electrostatic energy in the region
bounded by the surfaces is an absolute minimum when the charges are placed so
that every surface is an equipotential, as happens when they are conductors.

Prove the following theorem: If a number of conducting surfaces are fixed in po-
sition with a given total charge on each, the introduction of an uncharged, insulated
conductor into the region bounded by the surfaces lowers the electrostatic energy.

A volume V in vacuum is bounded by a surface S consisting of several separate
conducting surfaces S;. One conductor is held at unit potential and all the other
conductors at zero potential.

(a) Show that the capacitance of the one conductor is given by
C= eof |V d’x
14

where ®(x) is the solution for the potential.
(b) Show that the true capacitance C is always less than or equal to the quantity

C[¥] = ¢ J; |VI|? d*x

where ¥ is any trial function satisfying the boundary conditions on the con-
ductors. This is a variational principle for the capacitance that yields an upper
bound.

Consider the configuration of conductors of Problem 1.17, with all conductors ex-

cept S; held at zero potential.

(a) Show that the potential ®(x) anywhere in the volume V and on any of the
surfaces S; can be written

1
P(x) = ——é 01(x")G(x, x") da’
d1rey Js,

where o7(x’) is the surface charge density on S; and G(x, x') is the Green
function potential for a point charge in the presence of all the surfaces that
are held at zero potential (but with S; absent). Show also that the electrostatic
energy is

W =

8rey ﬁ‘l da i] da' o (x)G(x, x")oy(x")

where the integrals are only over the surface S;.
(b) Show that the variational expression

921 da ngl da'o(x)G(x, x")o(x")

4#&0“;31 o(x) da]2

with an arbitrary integrable function o(x) defined on S}, is stationary for small
variations of o away from ¢;. Use Thomson’s theorem to prove that the

C o] =
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reciprocal of C™'[a] gives a lower bound to the true capacitance of the con-
ductor S;.

For the cylindrical capacitor of Problem 1.6¢, evaluate the variational upper bound
of Problem 1.17b with the naive trial function, ¥,(p) = (b — p)/(b — a). Compare
the variational result with the exact result for b/a = 1.5, 2, 3. Explain the trend of
your results in terms of the functional form of ¥;. An improved trial function is
treated by Collin (pp. 275-277).

In estimating the capacitance of a given configuration of conductors, comparison
with known capacitances is often helpful. Consider two configurations of n conduc-
tors in which the (n — 1) conductors held at zero potential are the same, but the
one conductor whose capacitance we wish to know is different. In particular, let the
conductor in one configuration have a closed surface S; and in the other configu-
ration have surface Si, with S totally inside S;.

(a) Use the extremum principle of Section 1.12 and the variational principle of
Problem 1.17 to prove that the capacitance C’ of the conductor with surface
S is less than or equal to the capacitance C of the conductor with surface S;
that encloses ;.

(b) Set upper and lower limits for the capacitance of a conducting cube of side a.
Compare your limits and also their average with the numerical value,
C = 0.655(4meqa).

(¢) By how much do you estimate the capacitance per unit length of the two-wire
system of Problem 1.7 will change (larger? smaller?) if one of the wires is
replaced by a wire of square cross section whose side is equal to its diameter?

A two-dimensional potential problem consists of a unit square area (0 = x < 1,
0 =y = 1) bounded by “‘surfaces” held at zero potential. Over the entire square
there is a uniform charge density of unit strength (per unit length in z).

(a) Apply the variational principle (1.63) for the Poisson equation with the ‘“vari-
ational” trial function ¥(x, y) = A - x(1 — x) - y(1 — y) to determine the best
value of the constant A. [I use quotation marks around variational because
there are no parameters to vary except the overall scale.]

(b) The exact (albeit series) solution for this problem is [see Problems 2.15 and
2.16)

= sin[(2m + 1)x] { | _ cosh[@m + Dym(y - %)]}

16
47, ®(x, y) = s @em + 1) cosh[(2m + 1)7/2]

Fory = 0.25 and y = 0.5, plot and compare the simple variational solution of
part a with the exact solution as functions of x.
Two-dimensional relaxation calculations commonly use sites on a square lattice with
spacing Ax = Ay = h, and label the sites by (i, j), where i, j are integers and x; =
ih + xo, y; = jh + yo. The value of the potential at (i, j) can be approximated by
the average of the values at neighboring sites. [Recall the relevant theorem about
harmonic functions.] But what average?
(a) If F(x, y) is a well-behaved function in the neighborhood of the origin, but
not necessarily harmonic, by explicit Taylor series expansions, show that the
“cross” sum

S, = F(h, 0) + F(0, h) + F(—h, 0) + F(0, —h)

can be expressed as

h4
S. = 4F(0, 0) + A°V?F + It (Fuxx + F,y,,) + O(R%)
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Similarly, show that the “square” sum,
Ss = F(h, h) + F(—=h, h) + F(—h, —h) + F(h, —h)

can be expressed as
h4 h4
Ss = 4F(0, 0) + 2K*V*F — 3 (Foxx + Fyyy) + > VX(V?F) + O(K%)

Here F,,,, is the fourth partial derivative of F with respect to x, evaluated at
x =0,y =0, etc. If V>)F = 0, the averages S./4 and S,/4 each give the value of
F(0, 0), correct to order A* inclusive. Note that an improvement can be ob-
tained by forming the “improved” average,

«ro,0m = 1[5+ 1s.)

where

3 I
(F(0, 0))) = F(0,0) + 0 HW*V?F + 0 V4(V2F) + O(h®)
If V2F = 0, then S gives F(0, 0), correct to order A’ inclusive. For Poisson’s
equation, the charge density and its lowest order Laplacian can be inserted

for the same accuracy.

1.23 A transmission line consists of a long straight conductor with a hollow square region
in its interior, with a square conductor of one-quarter the area of the hollow region
centered in the empty space, with edges parallel to the inner sides of outer con-
ductor. If the conductors are raised to different potentials, the potential and electric
field in the space between them exhibit an eightfold symmetry; the basic unit is
sketched in the accompanying figure. The efficacy of the relaxation method in de-
termining the properties of the transmission line can be illustrated by a simple
calculation.

(@)

(b)

()

Using only the four interior points indicated in the figure, write down the
relaxation equation for each point for the “cross” and the “improved” aver-
aging schemes (defined in Problem 1.22) if the inner conductor has ® = 100
V and the outer has ® = 0. By performing either the relaxation iteration
process or solving the set of algebraic equations for each scheme, find esti-
mates for the potential at each of the four points for the two schemes.

From the results of part a make the best estimate (or estimates) you can for
the capacitance per unit length of the transmission line.

(Optional) Using your favorite computational tools, repeat the relaxation cal-
culation with half the lattice spacing (21 interior points) and compare.

Answer: ®; = 4887V, ®, = 4718 V, &, = 3834V, d, = 19.81 V and C = 10.23
€ F/m [from an accurate numerical calculation].

2

®2 *3 4 3

———o———4
—

o N N Problem 1.23
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124 Consider solution of the two-dimensional Poisson equation problem of Problem
1.21, a unit square with zero potential on the boundary and a constant unit charge
density in the interior, by the technique of relaxation. Choose # = 0.25 so that there
are nine interior sites. Use symmetry to reduce the number of needed sites to three,
at (0.25, 0.25), (0.5, 0.25), and (0.5, 0.5). With so few sites, it is easy to do the
iterations with a block of paper and a pocket calculator, but suit yourself.

(a) Use the “improved grid” averaging of Problem 1.22 and the simple (Jacobian)
iteration scheme, starting with 47e,® = 1.0 at all three interior sites. Do at
least six iterations, preferably eight or ten.

(b) Repeat the iteration procedure with the same starting values, but using Gauss—
Seidel iteration.

(¢) Graph the two sets of results of each iteration versus iteration number and
compare with the exact values, 47e,®(0.25, 0.25) = 0.5691, 47, ®(0.5, 0.25)
= 0.7205, 4me,®(0.5, 0.5) = 0.9258. Comment on rate of convergence and final
accuracy.



CHAPTER 2

Boundary-Value Problems
in Electrostatics: 1

Many problems in electrostatics involve boundary surfaces on which either the
potential or the surface-charge density is specified. The formal solution of such
problems was presented in Section 1.10, using the method of Green functions.
In practical situations (or even rather idealized approximations to practical sit-
uations) the discovery of the correct Green function is sometimes easy and some-
times not. Consequently a number of approaches to electrostatic boundary-value
problems have been developed, some of which are only remotely connected to
the Green function method. In this chapter we will examine three of these special
techniques: (1) the method of images, which is closely related to the use of Green
functions; (2) expansion in orthogonal functions, an approach directly through
the differential equation and rather remote from the direct construction of a
Green function; (3) an introduction to finite element analysis (FEA), a broad
class of numerical methods. A major omission is the use of complex-variable
techniques, including conformal mapping, for the treatment of two-dimensional
problems. The topic is important, but lack of space and the existence of self-
contained discussions elsewhere accounts for its absence. The interested reader
may consult the references cited at the end of the chapter.

2.1 Method of Images

The method of images concerns itself with the problem of one or more point
charges in the presence of boundary surfaces, for example, conductors either
grounded or held at fixed potentials. Under favorable conditions it is possible to
infer from the geometry of the situation that a small number of suitably placed
charges of appropriate magnitudes, external to the region of interest, can simu-
late the required boundary conditions. These charges are called image charges,
and the replacement of the actual problem with boundaries by an enlarged region
with image charges but not boundaries is called the method of images. The image
charges must be external to the volume of interest, since their potentials must be
solutions of the Laplace equation inside the volume; the “particular integral”
(i.e., solution of the Poisson equation) is provided by the sum of the potentials
of the charges inside the volume.

A simple example is a point charge located in front of an infinite plane con-
ductor at zero potential, as shown in Fig. 2.1. It is clear that this is equivalent to
the problem of the original charge and an equal and opposite charge located at
the mirror-image point behind the plane defined by the position of the conductor.

57
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2.2

7
e— d =0

|

{ Figure 2.1 Solution by method of

| images. The original potential problem
| is on the left, the equivalent-image

| problem on the right.

Point Charge in the Presence of a Grounded
Conducting Sphere

As an illustration of the method of images we consider the problem illustrated
in Fig. 2.2 of a point charge g located at y relative to the origin, around which is
centered a grounded conducting sphere of radius a. We seek the potential ®(x)
such that ®(|x| = a) = 0. By symmetry it is evident that the image charge ¢’
(assuming that only one image is needed) will lie on the ray from the origin to
the charge g. If we consider the charge g outside the sphere, the image position
y' will lie inside the sphere. The potential due to the charges g and ¢’ is:

qldme, L 4 'l4 e

® ==
R e e

2.1)

We now must try to choose ¢’ and |y’ | such that this potential vanishes at |x| = a.
If n is a unit vector in the direction x, and n’ a unit vector in the direction y, then

qlde, q'l4me,

P(x) = (2.2)

xn — yn'|  |xn — y'n’|

If x is factored out of the first term and y’' out of the second, the potential at
X = a becomes:
qlde, N q'l4e,

n—Xn’
a

d(x = a) = 2.3)

a
- —n

’

y

’

a n

P

Figure 2.2 Conducting sphere of radius
a, with charge g and image charge ¢q'.



Sect. 2.2 Point Charge in the Presence of a Grounded Conducting Sphere 59

From the form of (2.3) it will be seen that the choices:
9__9 y_=4

! !

a y'ooa vy
make ®(x = a) = 0, for all possible values of n-n’. Hence the magnitude and

position of the image charge are

2
, a

a
q’ = ——gq, y'=— (24

We note that, as the charge g is brought closer to the sphere, the image charge
grows in magnitude and moves out from the center of the sphere. When q is just
outside the surface of the sphere, the image charge is equal and opposite in
magnitude and lies just beneath the surface.

Now that the image charge has been found, we can return to the original
problem of a charge g outside a grounded conducting sphere and consider various
effects. The actual charge density induced on the surface of the sphere can be

calculated from the normal derivative of ® at the surface:
2

@

2
a y
JERTHC
e ( 2;005 y>

1+}7"‘

P
ax

g = —€

where vy is the angle between x and y. This charge density in units of —g/4ma’ is
shown plotted in Fig. 2.3 as a function of y for two values of y/a. The concentra-

Yy —>

Figure 2.3 Surface-charge density o induced on the grounded sphere of radius a as a
result of the presence of a point charge g located a distance y away from the center of
the sphere. o is plotted in units of —g/4ma* as a function of the angular position y away
from the radius to the charge for y = 2a, 4a. Inset shows lines of force for y = 2a.
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dF = (6%2¢p)da

Figure 2.4

tion of charge in the direction of the point charge g is evident, especially for
yla = 2. It is easy to show by direct integration that the total induced charge on
the sphere is equal to the magnitude of the image charge, as it must be, according
to Gauss’s law. ‘

The force acting on the charge g can be calculated in different ways. One
(the easiest) way is to write down immediately the force between the charge g
and the image charge ¢g'. The distance between them is y — y’ = y(1 — a’/y?).
Hence the attractive force, according to Coulomb’s law, is:

3 -2
1 ¢*fa a’
Fl= e <y> (1 y2> 20

For large separations the force is an inverse cube law, but close to the sphere it
is proportional to the inverse square of the distance away from the surface of the
sphere.

The alternative method for obtaining the force is to calculate the total force
acting on the surface of the sphere. The force on each element of area da is
(0°/2€p) da, where o'is given by (2.5), as indicated in Fig. 2.4. But from symmetry
it is clear that only the component parallel to the radius vector from the center
of the sphere to g contributes to the total force. Hence the total force acting on
the sphere (equal and opposite to the force acting on g) is given by the integral:

q’ a\’ 2\’ cos y
Fl=—-"F—I(-)I1-= f daQ 2.
¥l = s <y>< y2> @ 2a ’ @7)

1+4 -

— cos y
y

Integration immediately yields (2.6).

The whole discussion has been based on the understanding that the point
charge q is outside the sphere. Actually, the results apply equally for the charge
q inside the sphere. The only change necessary is in the surface-charge density
(2.5), where the normal derivative out of the conductor is now radially inward,
implying a change in sign. The reader may transcribe all the formulas, remem-
bering that now y < a. The angular distributions of surface charge are similar to
those of Fig. 2.3, but the total induced surface charge is evidently equal to —g,
independent of y.

2.3 Point Charge in the Presence of a Charged, Insulated,
Conducting Sphere

In the preceding section we considered the problem of a point charge g near a
grounded sphere and saw that a surface-charge density was induced on the
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sphere. This charge was of total amount g’ = —ag/y, and was distributed over
the surface in such a way as to be in equilibrium under all forces acting.

If we wish to consider the problem of an insulated conducting sphere with
total charge Q in the presence of a point charge g, we can build up the solution
for the potential by linear superposition. In an operational sense, we can imagine
that we start with the grounded conducting sphere (with its charge ¢’ distributed
over its surface). We then disconnect the ground wire and add to the sphere an
amount of charge (Q — ¢g’). This brings the total charge on the sphere up to Q.
To find the potential we merely note that the added charge (Q — ¢') will dis-
tribute itself uniformly over the surface, since the electrostatic forces due to the
point charge g are already balanced by the charge g'. Hence the potential due
to the added charge (Q — ¢g') will be the same as if a point charge of that mag-
nitude were at the origin, at least for points outside the sphere.

The potential is the superposition of (2.1) and the potential of a point charge
(Q — q’) at the origin:

Q+gq
1 q aq y
d(x) = - + 2.8
® = G | =] ‘x_gf x| @9
yzy

The force acting on the charge g can be written down directly from Coulomb’s
law. It is directed along the radius vector to g and has the magnitude:

3 2 2
F=_ %[Q—f’-"—(zf—z‘?]z 29)
4y y yoy - a)y 1y
In the limit of y >> a, the force reduces to the usual Coulomb’s law for two small
charged bodies. But close to the sphere the force is modified because of the
induced charge distribution on the surface of the sphere. Figure 2.5 shows the
force as a function of distance for various ratios of Q/q. The force is expressed
in units of g*/4meyy?; positive (negative) values correspond to a repulsion (at-
traction). If the sphere is charged oppositely to g, or is uncharged, the force is
attractive at all distances. Even if the charge Q is the same sign as g, however,
the force becomes attractive at very close distances. In the limit of Q >> g, the
point of zero force (unstable equilibrium point) is very close to the sphere,
namely, at y = a(1 + 3V ¢/Q). Note that the asymptotic value of the force is
attained as soon as the charge g is more than a few radii away from the sphere.
This example exhibits a general property that explains why an excess of
charge on the surface does not immediately leave the surface because of mutual
repulsion of the individual charges. As soon as an element of charge is removed
from the surface, the image force tends to attract it back. If sufficient work is
done, of course, charge can be removed from the surface to infinity. The work
function of a metal is in large part just the work done against the attractive image
force to remove an electron from the surface.

2.4 Point Charge Near a Conducting Sphere at Fixed Potential

Another problem that can be discussed easily is that of a point charge near a
conducting sphere held at a fixed potential V. The potential is the same as for
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Qlg=3

5
yla —>
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Figure 2.5 The force on a point charge g due to an insulated, conducting sphere of
radius a carrying a total charge Q. Positive values mean a repulsion, negative an
attraction. The asymptotic dependence of the force has been divided out. 4me,Fy?/q? is
plotted versus y/a for Q/q = —1, 0, 1, 3. Regardless of the value of Q, the force is
always attractive at close distances because of the induced surface charge.

the charged sphere, except that the charge (Q — ¢’) at the center is replaced by
a charge (Va). This can be seen from (2.8), since at |x| = a the first two terms
cancel and the last term will be equal to V as required. Thus the potential is

1 q aq Va
P(x) = - — 2.10
®) 4mey | [x —y] a |x| (2.10)

G
The force on the charge g due ;o the sphere at fixed potential is
Al 1 _q |y

F=5 - — == 211
¥ 1 dme o7 - a7y &1

For corresponding values of 47e,Va/q and Q/q this force is very similar to that
of the charged sphere, shown in Fig. 2.5, although the approach to the asymptotic
value (Vag/y®) is more gradual. For Va >> g, the unstable equilibrium point has
the equivalent location y = a(1 + 3Vgl4me,Va).

2.5 Conducting Sphere in a Uniform Electric Field
by Method of Images

As a final example of the method of images we consider a conducting sphere of
radius 4 in a uniform electric field E,. A uniform field can be thought of as being
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produced by appropriate positive and negative charges at infinity. For example,
if there are two charges *(Q, located at positions z = ¥R, as shown in Fig. 2.6a,
then in a region near the origin whose dimensions are very small compared to R
there is an approximately constant electric field E, = 2Q/4me,R* parallel to the
z axis. In the limit as R, Q — %, with Q/R? constant, this approximation becomes
exact.

If now a conducting sphere of radius a is placed at the origin, the potential
will be that due to the charges =(Q at ¥R and their images *Qa/R at z =
Ta*R:

_ Qldme, _ Q/4me,
(r> + R* + 2rR cos )2 (r> + R?> — 2rR cos 6)'? (2.12)
aQl4me, aQl4me,
- at a>r m a* 2a%r 1
R<r2+7€“2+"R—COSG> R<’2+R§_?COSG>

where ® has been expressed in terms of the spherical coordinates of the obser-
vation point. In the first two terms R is much larger than r by assumption. Hence
we can expand the radicals after factoring out R% Similarly, in the third and
fourth terms, we can factor out r* and then expand. The result is:
1 20 20 a®

(DZK&)[—'I?I‘COSO-FF?COSG + - (2.13)
where the omitted terms vanish in the limit R — . In that limit 2Q/47e,R>
becomes the applied uniform field, so that the potential is

a3
O =—-E)r - ﬁ) cos 6 (2.14)

The first term (— Eyz) is, of course, just the potential of a uniform field E, which
could have been written down directly instead of the first two terms in (2.12).

P
,,,,, "'%*Eo
+Q ___————"" - -8
z= =R 0 z=R
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()
Figure 2.6 Conducting sphere in a uniform electric field by the method of images.
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The second is the potential due to the induced surface-charge density or, equiv-
alently, the image charges. Note that the image charges form a dipole of strength
D = QalR X 2a*/R = 4me, Eya’. The induced surface-charge density is

9P

€y ar = 3EOE0 cos 6 (2.15)

g = -

We note that the surface integral of this charge density vanishes, so that there is
no difference between a grounded and an insulated sphere.

\

2.6 Green Function for the Sphere; General Solution
for the Potential

In preceding sections the problem of a conducting sphere in the presence of a
point charge was discussed by the method of images. As mentioned in Section
1.10, the potential due to a unit source and its image (or images), chosen to satisfy
homogeneous boundary conditions, is just the Green function (1.43 or 1.45) ap-
propriate for Dirichlet or Neumann boundary conditions. In G(x, x") the variable
x’ refers to the location P’ of the unit source, while the variable x is the point P
at which the potential is being evaluated. These coordinates and the sphere are
shown in Fig. 2.7. For Dirichlet boundary conditions on the sphere of radius a
the Green function defined via (1.39) for a unit source and its image is given by
(2.1) with ¢ — 4me, and relations (2.4). Transforming variables appropriately,
we obtain the Green function:

1 _ a

G(x, x') = (2.16)

x — x|

A R ——

Figure 2.7
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In terms of spherical coordinates this can be written:

1 1

(x* + x — 2xx’ cos y)'” xXx? 2
>— +a — 2xx' cosy
a

G(x,x') = (2.17)

where vy is the angle between x and x’. The symmetry in the variables x and x’
is obvious in the form (2.17), as is the condition that G = 0 if either x or x’ is on
the surface of the sphere.

For solution (1.44) of the Poisson equation we need not only G, but also
dG/on'. Remembering that m’ is the unit normal outward from the volume of
interest (i.e., inward along x’ toward the origin), we have

G (x* — a%
on' a(x?® + a® — 2ax cos y)*”?

(2.18)

[Note that this is essentially the induced surface-charge density (2.5).] Hence the
solution of the Laplace equation outside a sphere with the potential specified on
its surface is, according to (1.44),

a(x* — %)

(x* + a@* — 2ax cos y

dQy (2.19)

1

o9 = - [ @ 0. )
where d()' is the element of solid angle at the point (a, 6', ¢') and cosy =
cos 0 cos ' + sin 6 sin 6’ cos(¢p — ¢'). For the interior problem, the normal
derivative is radially outward, so that the sign of dG/dn’ is opposite to (2.18).
This is equivalent to replacing the factor (x* — a”) by (¢*> — x?) in (2.19). For a
problem with a charge distribution, we must add to (2.19) the appropriate integral
in (1.44), with the Green function (2.17).

2.7 Conducting Sphere with Hemispheres at Different Potentials

As an example of the solution (2.19) for the potential outside a sphere with
prescribed values of potential on its surface, we consider the conducting sphere
of radius a made up of two hemispherical shells separated by a small insulating
ring. The hemispheres are kept at different potentials. It will suffice to consider
the potentials as £V, since arbitrary potentials can be handled by superposition
of the solution for a sphere at fixed potential over its whole surface. The insu-
lating ring lies in the z = 0 plane, as shown in Fig. 2.8, with the upper (lower)
hemisphere at potential +V (=V).

Figure 2.8
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From (2.19) the solution for ®(x, 6, ¢) is given by the integral:
174 27 1
Dd(x, 0, ¢) = Erfo d¢'{L d(cos 6")
0 2 _ 2
- j_l d(cos 6’)} ax” — @)

(@® + x? — 2ax cos y)*?

(2.20)

By a suitable change of variables in the second integral (¢’ — 7 — 6', ¢’ —
¢' + m), this can be cast in the form:

®(x, 0, ¢) = Va(® = @) r” do’ fl d(cos 0")[(a® + x* — 2ax cosy) >
e 4w Jo 0 Y 2.21)

—(a® + x* + 2ax cos y)"*?]

Because of the complicated dependence of cos y on the angles (6', ¢ ") and (6, ¢),
equation (2.21) cannot in general be integrated in closed form.

As a special case we consider the potential on the positive z axis. Then
cosy = cos ', since @ = 0. The integration is elementary, and the potential can
be shown to be

@ - @)
D(z) V[l N a2] (2.22)
At z = a, this reduces to ® = V as required, while at large distances it goes
asymptotically as ® = 3Va*/2z".

In the absence of a closed expression for the integrals in (2.21), we can ex-
pand the denominator in power series and integrate term by term. Factoring out
(@® + x*) from each denominator, we obtain

Va(x®> — &) (7
d(x* + a*)*? Jo

— (1 + 2acos y)*?]

®(x, 6, ¢) = do’ L d(cos 8)[(1 — 2acos y)™*?

(2.23)

where a = ax/(a* + x?). We observe that in the expansion of the radicals only
odd powers of «cos vy will appear:

[(1 — 2acosy) ™32 = (1 + 2acos y) *?] = 6acosy + 35a°cos’ y + - -+ (2.24)
It is now necessary to integrate odd powers of cos y over d¢ ' d(cos 0'):
2 1
fo de¢’ L d(cos 0") cosy = mcos 0

2T 1 o (2.25)
fo de’ L d(cos 0') cos’y = 4 o8 6(3 — cos®0)

If (2.24) and (2.25) are inserted into (2.23), the potential becomes

Ve (x*(x* — @) 35 ax?
b 0 = 4= - _ 20) + - - -
(x, 0, ¢) = 5 ((x2 Ty ) o1+, @+ 2 (3 — cos’0)

(2.26)
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We note that only odd powers of cos 0 appear, as required by the symmetry of
the problem. If the expansion parameter is (a*/x?), rather than o7, the series takes
on the form:

2 2
D(x, 0, ¢) = 32‘)/;; [cos 0 — 172‘;2 (% cos’ — %cos 6) + ] (2.27)
For large values of x/a this expansion converges rapidly and so is a useful rep-
resentation for the potential. Even for x/a = 5, the second term in the series is
only of the order of 2%. It is easily verified that, for cos 6 = 1, expression (2.27)
agrees with the expansion of (2.22) for the potential on the axis. [The particular
choice of angular factors in (2.27) is dictated by the definitions of the Legendre
polynomials. The two factors are, in fact, P;(cos 6) and Ps(cos ), and the expan-
sion of the potential is one in Legendre polynomials of odd order. We establish
this in a systematic fashion in Section 3.3.] Further consideration of both the
exterior and interior problem of the two hemispheres is found in Problem 2.22.

2.8 Orthogonal Functions and Expansions

The representation of solutions of potential problems (or any mathematical phys-
ics problem) by expansions in orthogonal functions forms a powerful technique
that can be used in a large class of problems. The particular orthogonal set chosen
depends on the symmetries or near symmetries involved. To recall the general
properties of orthogonal functions and expansions in terms of them, we consider
an interval (a, b) in a variable ¢ with a set of real or complex functions U,(§),
n=1,2,...,square integrable and orthogonal on the interval (a, b). The ortho-
gonality condition on the functions U,,(§) is expressed by

L USEU(E) dE=0, m#n (2.28)

If n = m, the integral is nonzero. We assume that the functions are normalized
so that the integral is unity. Then the functions are said to be orthonormal, and
they satisfy

|, vxoue ae= s, 229)

An arbitrary function f(¢), square integrable on the interval (a, b), can be
expanded in a series of the orthonormal functions U, (§). If the number of terms
in the series is finite (say N),

N

f(&) < 2 a,Uy (&) (2.30)

n=1
then we can ask for the “best” choice of coefficients a,, so that we get the “‘best”
representation of the function f(&). If “best” is defined as minimizing the mean
square error My:
b N 2
M= |
a

f&) = 2 a,U.8)| dé (2.31)

n=1
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it is easy to show that the coefficients are given by

o = | Ui at )

where the orthonormality condition (2.29) has been used. This is the standard
result for the coefficients in an orthonormal function expansion.

If the number of terms N in series (2.30) is taken larger and larger, we in-
tuitively expect that our series representation of f(£) is “better” and “better.”
Our intuition will be correct provided the set of orthonormal functions is com-
plete, completeness being defined by the requirement that there exist a finite
number N, such that for N > N, the mean square error M, can be made smaller
than any arbitrarily small positive quantity. Then the series representation

o

2 aU(§) = f(&) (2.33)

n=1

with a,, given by (2.32) is said to converge in the mean to f(¢). Physicists generally
leave the difficult job of proving completeness of a given set of functions to the
mathematicians. All orthonormal sets of functions normally occurring in math-
ematical physics have been proven to be complete.

Series (2.33) can be rewritten with the explicit form (2.32) for the coef-
ficients a,,:
b

f&) = |

. {Zl Uﬁ(é')Un@)} f(¢&) d¢’ (2.34)
Since this represents any function f(£) on the interval (a, b), it is clear that the
sum of bilinear terms U}(£)U,(£) must exist only in the neighborhood of

&' = & In fact, it must be true that

2 USE)U(E) = 5 — &) 2.35)

This is the so-called completeness or closure relation. It is analogous to the or-
thonormality condition (2.29), except that the roles of the continuous variable ¢
and the discrete index n have been interchanged.

The most famous orthogonal functions are the sines and cosines, an expan-
sion in terms of them being a Fourier series. If the interval in x is (—a/2, a/2), the
orthonormal functions are

\/5 . (271'mx) \/5 (27me>
— sin , —cos| ——
a a a a

where m is a non-negative integer and for m = 0 the cosine function is 1/Va.
The series equivalent to (2.33) is customarily written in the form:

f@ =140+ 3 [Am cos<2"mx> + B, sm<2”aﬂ)] (2.36)

2 al2 2
A, =- , fx) cos( wmx) dx
—al

where

a (2.37)

al2

B.==| f( sm<27’2"x> dx

a J-al2
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If the interval spanned by the orthonormal set has more than one dimension,
formulas (2.28)—(2.33) have obvious generalizations. Suppose that the space is
two-dimensional, and the variable £ ranges over the interval (a, b) while the
variable 7 has the interval (c, d). The orthonormal functions in each dimension
are U, (¢) and V(7). Then the expansion of an arbitrary function f(¢, ) is

f&m) = ; ; A Un(E)V () (2.38)

where

tn = [ at [ anu@ViIE (.39

If the interval (a, b) becomes infinite, the set of orthogonal functions U, (&)
may become a continuum of functions, rather than a denumerable set. Then the
Kronecker delta symbol in (2.29) becomes a Dirac delta function. An important
example is the Fourier integral. Start with the orthonormal set of complex
exponentials,

1 .

Um x) = — et(27-rmx/a) 240
W) == (2:40)

m =0, =1, =2,..., on the interval (—a/2, a/2), with the expansion:

1 = _
fx)=—= 2 A,elCmmo (2.41)
a m=—o
where
1 al2

A - —i(2mmx’la) ’ d ’ 242
VAR fx') dx (242)

Then let the interval become infinite (a — ), at the same time transforming

\
2mm
a
» a [
% - f_w dm = ;J_W dk } (2.43)
A, — zm A(k)
/
The resulting expansion, equivalent to (2.41), is the Fourier integral,
1 j * .
X) = —F— A(k)e™ dk 2.44
f0) = =] A (244)
where
1 [~ _
A(k) = —J e *f(x) dx 2.45
®) == |, e (243)
The orthogonality condition is
O
— ek dx = §(k — k') (2.46)

27 J -
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while the completeness relation is
1 [

ik(x—x") — !
s I dk = 8(x — x') (%.47)

These last integrals serve as convenient representations of a delta function. We
note in (2.44)—(2.47) the complete equivalence of the two continuous variables
x and k.

2.9 Separation of Variables; Laplace Equation
in Rectangular Coordinates

The partial differential equations of mathematical physics are often solved con-
veniently by a method called separation of variables. In the process, one often
generates orthogonal sets of functions that are useful in their own right. Equa-
tions involving the three-dimensional Laplacian operator are known to be sep-
arable in eleven different coordinate systems (see Morse and Feshbach, pp. 509,
655). We discuss only three of these in any detail—rectangular, spherical, and
cylindrical—beginning with the simplest, rectangular coordinates.
The Laplace equation in rectangular coordinates is

2, 2, 2,

2+@+£=0 (2.48)

0x ay 9z
A solution of this partial differential equation can be found in terms of three
ordinary differential equations, all of the same form, by the assumption that the
potential can be represented by a product of three functions, one for each
coordinate:

®(x, y, 2) = X(x)Y(y)Z(z) (2.49)
Substitution into (2.48) and division of the result by (2.49) yields
1 &X 1LY, 1 FZ
X(x) dx*  Y(y) dy*  Z(z) dz’
where total derivatives have replaced partial derivatives, since each term involves

a function of one variable only. If (2.50) is to hold for arbitrary values of the
independent coordinates, each of the three terms must be separately constant:

(2.50)

= -p) (2.51)

where

If we arbitrarily choose o and 82 to be positive, then the solutions of the three

ordinary differential equations (2.51) are e='®*, e='®, ¢* ™ ***F% The potential
(2.49) can thus be built up from the preduct solutions:

B = prioxg iBypt N @ (2.52)
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At this stage o and B are completely arbitrary. Consequently (2.52), by linear
superposition, represents a very large class of solutions to the Laplace equation.

To determine « and S it is necessary to impose specific boundary conditions
on the potential. As an example, consider a rectangular box, located as shown
in Fig. 2.9, with dimensions (a, b, ¢) in the (x, y, z) directions. All surfaces of the
box are kept at zero potential, except the surface z = ¢, which is at a potential
V(x, y). It is required to find the potential everywhere inside the box. Starting
with the requirement that ® = 0 for x = 0, y = 0, z = 0, it is easy to see that the
required forms of X, Y, Z are

X = sinax
Y = sin By (2.53)
Z = sinh(Vo? + B%2)

To have ® = 0 at x = g and y = b, we must have aa = n7 and b = mm. With
the definitions,

nw
a, = —
a
mm
n*  m?
Yom = 7 [ 2t ?J

we can write the partial potential @, satisfying all the boundary conditions
except one,

d,,, = sin(a,x) sin(B,,y) sinh(y,,,.z) (2.55)

The potential can be expanded in terms of these ®,, with initially arbitrary
coefficients (to be chosen to satisfy the final boundary condition):

B y.2) = D Ay sin(a) sin(By) sinh(ymz)  (2.56)

nm=1

There remains only the boundary condition ® = V(x, y) at z = c:

V(x,y) = D A,y sin(a,x) sin(B,y) sinh(y,mc) (2.57)
nm=1
2
&= V(xy)
z=c [
Y
e=0—{_ =0
y=b y
r=a 44

V Figure 2.9 Hollow, rectangular box

2=0 with five sides at zero potential, while

the sixth (z = c) has the specified
x potential ® = V(x, y).
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This is just a double Fourier series for the function V(x, y). Consequently the
coefficients A, are given by:

Apn = f f dy V(x, y) sin(a,x) sin(B,.y)  (2.58)

ab smh(y,,mc)

If the rectangular box has potentials different from zero on all six sides, the
required solution for the potential inside the box can be obtained by a linear
superposition of six solutions, one for each side, equivalent to (2.56) and (2.58).
The problem of the solution of the Poisson equation, that is, the potential inside
the box with a charge distribution inside, as well as prescribed boundary condi-
tions on the surface, requires the construction of the appropriate Green function,
according to (1.43) and (1.44). Discussion of this topic will be deferred until we
have treated the Laplace equation in spherical and cylindrical coordinates. For
the moment, we merely note that the solution given by (2.56) and (2.58) is equiv-
alent to the surface integral in the Green function solution (1.44).

2.10 A Two-Dimensional Potential Problem;
Summation of a Fourier Series

We now consider briefly the solution by separation of variables of the two-
dimensional Laplace equation in Cartesian coordinates. By two-dimensional
problems we mean those in which the potential can be assumed to be indepen-
dent of one of the coordinates, say, z. This is usually only an approximation, but
may hold true to high accuracy, as in a long uniform transmission line. If the
potential is independent of z, the basic solutions of the previous section reduce
to the products

e TiaxpTay
where « is any real or complex constant. The imposition of boundary conditions
on the potential will determine what values of « are permitted and the form of
the linear superposition of different solutions required.

A simple problem that can be used to demonstrate the separation of variables
technique and also to establish connection with the use of complex variables is
indicated in Fig. 2.10. The potential in the region, 0 = x < a, y =< 0, is desired,
subject to the boundary conditions that ® = 0 at x = 0 and x = a, while ® = V
aty = 0 for 0 = x = a and ® — 0 for large y. Inspection of the basic solutions
shows that « is real and that, to have the potential vanish at x = 0 and x = a
for all y and as y — o, the proper linear combinations are e~ sin(ax) with
a = nm/a. The linear combination of solutions satisfying the boundary conditions
on three of the four boundary surfaces is thus

D(x,y) = >, A, exp(—nmyla) sin(nmx/a) (2.59)
n=1

The coefficients A, are determined by the requirement that ® = V for y = 0,
0 = x = a. As discussed in Section 2.8, the Fourier coefficients are

2 a
= fo ®(x, 0) sin(nmx/a) dx (2.60)
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Figure 2.10 Two-dimensional potential problem.

With ®(x, 0) = V, one finds

_4v {1 for n odd

" om0 for n even

The potential ®(x, y) is therefore determined to be
4V 1
D(x, y) = - > . exp(—nmyla) sin(nmx/a) (2.61)
n odd

For small values of y many terms in the series are necessary to give an accurate
approximation, but for y = a/ it is evident that only the first few terms are
appreciable. The potential rapidly approaches its asymptotic form given by the
first term,

4
D(x,y) — _:r/ exp(—myla) sin(mx/a) (2.62)

Parenthetically, we remark that this general behavior is characteristic of all
boundary-value problems of this type, independently of whether ®(x, 0) is a
constant, provided the first term in the series is nonvanishing. The coefficient A,
(2.60) will be different, but the smooth behavior in x of the asymptotic solution
sets in for y = a, regardless of the complexities of ®(x, 0). This is shown quan-
titatively for the present example in Fig. 2.11 where the potential along the two
dashed lines, y/a = 0.1, 0.5, of Fig. 2.10 is plotted. The solid curves are the exact
potential, the dotted, the first term (2.62). Close to the boundary (y/a = 0.1) the
curves differ appreciably, but for y/a = 0.5 the asymptotic form is already an
excellent approximation.
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10—

® (x, y)

x/a

Figure 2.11 Potentials at y/a = 0.1, 0.5 (along the dashed lines of Fig. 2.10) as
functions of x/a. The solid curves are the exact solution; the dashed curves are the first
term in the series solution (2.61).

There are many Fourier series that can be summed to give an answer in
closed form. The series in (2.61) is one of them. We proceed as follows. Observing
that sin @ = Im(e'®), where Im stands for the imaginary part, we see that (2.61)
can be written as

4v 1 4, .
d(x,y) = — Im n%d - elinm D +iy)
With the definition,
Z = elmoety) (2.63)
this can be put in the suggestive form,
4v "
D(x, y) = — Im n%d -
At this point we can perhaps recall the expansion,*
In(1+ 2)=2—-32>+32> - 3Z* + -+~

*Alternatively, we observe that (d/dZ)(E;_,Z"In) = 27-,Z" = (1 — 7). Integration then gives
S ,Z"n = —In(1 — Z).
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Evidently,
3 z" 1 In 1+ Z
nodd N 2 1-Z
and
2V 1+ 272
P =— | 2.64
(r,y) =~ Im[ "(1 _Z>] (2.64
Since the imaginary part of a logarithm is equal to the phase of its argument, we
consider

1+7Z (1+2)1-2% 1-|ZF+2ImZ
1-z 1 - ZzP 1 - Z]
The phase of the argument of the logarithm is thus tan~'[2 Im Z/(1 — |Z]*)].

With the explicit form (2.63) of Z substituted, it is found that the potential
becomes

. TX
s —
a

d(x, y) = 2—: tan™! (2.65)

sinh my
a

The branch of the tangent curve corresponds to the angle lying between 0 and
7r/2. The infinite series (2.61) has been transformed into the explicit closed form
(2.65). The reader may verify that the boundary conditions are satisfied and that
the asymptotic form (2.62) emerges in a simple manner.

The potential (2.64) with Z given by (2.63) is obviously related to functions
of a complex variable. This connection is a direct consequence of the fact that
the real or the imaginary part of an analytic function satisfies the Laplace equa-
tion in two dimensions as a result of the Cauchy—Riemann equations. As men-
tioned at the beginning of the chapter, we omit discussion of the complex-variable
technique, not because it is unimportant but for lack of space and because
completely adequate discussions exist elsewhere. Some of these sources are listed
at the end of the chapter. The methods of summation of Fourier series, with
many examples, are described in Collin (Appendix A.6).

2.11 Fields and Charge Densities in Two-Dimensional
Corners and Along Edges

In many practical situations conducting surfaces come together in a way that can
be approximated, on the small scale at least, as the intersection of two planes.
The edges of the box shown in Fig. 2.9 are one example, the corners at x = 0,
y=0and x = a,y = 0 in Fig. 2.10 another. It is useful therefore to have an
understanding of how the potential fields, and the surface-charge densities be-
have in the neighborhood of such sharp “corners” or edges. To be able to look
at them closely enough to have the behavior of the fields determined in functional
form solely by the properties of the “corner’ and not by the details of the overall
configuration, we assume that the “corners” are infinitely sharp.
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The general situation in two dimensions is shown in Fig. 2.12. Two conducting
planes intersect at an angle 8. The planes are assumed to be held at potential V.
Remote from the origin and not shown in the figure are other conductors or
possibly configurations of charges that specify the potential problem uniquely.
Since we are interested in the functional behavior of the fields, etc. near the
origin, but not in the absolute magnitudes, we leave the “far away”” behavior
unspecified as much as possible.

The geometry of Fig. 2.12 suggests use of polar rather than Cartesian coor-
dinates. In terms of the polar coordinates (p, ¢), the Laplace equation in two

dimensions is
1 ad 1 5P
_i<p_)+_2_2=o (2.66)
pop \" dp p~ 0
Using the separation of variables approach, we substitute
(p, b) = R(p)¥(¢)
This leads, upon multiplication by p*/®, to

p d dR 1 d>v
——\|lp—)+=--—7=5=0 2.67
de<”dp> v dg? (267)
Since the two terms are separately functions of p and ¢ respectively, each one
must be constant:
p d dR 1 d*v
LA E8) _p Lo 2.68
The solutions to these equations are
R(p) = ap” + bp™*
(p) = ap P . (2.69)
W(p) = A cos(vep) + B sin(ve)

For the special circumstance of v = 0, the solutions are

R(p) = aop + by In p}
Y(¢p) = Ag + Bod

(2.70)

- X

Figure 2.12 Intersection of two conducting planes defining a corner in two dimensions
with opening angle B.
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These are the building blocks with which we construct the potential by linear
superposition.

Although not central to our present purpose, we note the general solution
of the Laplace equation in two dimensions when the full azimuthal range is per-
mitted as, for example, for the potential between two cylindrical surfaces, p = a
and p = b, on which the potential is given as a function of ¢. If there is no
restriction on ¢, it is necessary that v be a positive or negative integer or zero to
ensure that the potential is single-valued. Furthermore, for » = 0, the constant
By in (2.70) must vanish for the same reason. The general solution is therefore
of the form,

D(p, d) = ap + boIn p + D, ap" sin(nd + a,)
n=1

w0 2.71)
+ > bp " sin(ne + B
n=1
If the origin is included in the volume in which there is no charge, all the b,, are
zero. Only a constant and positive powers of p appear. If the origin is excluded,
the b, can be different from zero. In particular, the logarithmic term is equivalent
to a line charge on the axis with charge density per unit length A = —27eyb,, as
is well known.
For the situation of Fig. 2.12 the azimuthal angle is restricted to the range
0 = ¢ = B. The boundary conditions are that ® = V for all p = 0 when ¢ = 0
and ¢ = B. This requires that b, = B, = 0 in (2.70) and » = 0 and A = 0 in
(2.69). Furthermore, it requires that v be chosen to make sin(»8) = 0. Hence

mar

and the general solution becomes

D(p, p) =V + 21 a,,p™™"® sin(mm/B) (2.72)

The still undetermined coefficients a,, depend on the potential remote from the
corner at p = 0. Since the series involves positive powers of p™#, for small enough
p only the first term in the series will be important.* Thus, near p = 0, the po-
tential is approximately

B(p, ) = V + ayp™ sin(w/p) 273)

The electric field components are

E(p, ¢) = —% — T2 sin(mglp)
2.74
Euip ¢) = —2 2% = ™ 01 cos(malp) e
’ p I B

*Here we make a necessary assumption about the remote boundary conditions, namely, that they
are such that the coefficient a, is not zero. Ordinarily this is of no concern, but special symmetries
might make a,, or even a,, etc., vanish. These unusual examples must be treated separately.
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The surface-charge densities at ¢ = 0 and ¢ = B are equal and are approximately

o(p) = ek (p, 0) = == 5= o0 (275)
The components of the field and the surface-charge density near p = 0 all vary
with distance as p(™®~!. This dependence on p is shown for some special cases
in Fig. 2.13. For a very deep corner (small B) the power of p becomes very large.
Essentially no charge accumulates in such a corner. For 8 = = (a flat surface),
the field quantities become independent of p, as is intuitively obvious. When
B > , the two-dimensional corner becomes an edge and the field and the surface-
charge density become singular as p — 0. For B = 2 (the edge of a thin sheet)
the singularity is as p~"/2. This is still integrable so that the charge within a finite
distance from the edge is finite, but it implies that field strengths become very
large at the edges of conducting sheets (or, in fact, for any configuration where
B> m).

The preceding two-dimensional electrostatic considerations apply to many
three-dimensional situations, even with time-varying fields. If the edge is a sharp
edge of finite length, as the edge of a cube away from a corner, then sufficiently
close to the edge the variation of the potential along the edge can be ignored.
The two-dimensional considerations apply, although the coefficient a; in (2.75)
may vary with distance along the edge. Similarly, the electrostatic arguments are
valid even for time-varying fields. The point here is that with time dependence
another length enters, namely, the wavelength. Provided one is concerned with
distances away from the edge that are small compared to a wavelength, as well
as other relevant distances, the behavior of the fields reduces to electrostatic or
magnetostatic behavior. In the diffraction of microwaves by a hole in a thin
conducting sheet, for example, the fields are singular as p~ "% as p — 0, where p
is the distance from the boundary of the hole, and this fact must be taken into
account in any exact solution of the diffraction problem.

The singular behavior of the fields near sharp edges is the reason for the
effectiveness of lightning rods. In the idealized situation discussed here the field
strength increases without limit as p — 0, but for a thin sheet of thickness d with
a smoothly rounded edge it can be inferred that the field strength at the surface
will be proportional to d ">, For small enough d this can be very large. In ab-
solute vacuum such field strengths are possible; in air, however, electrical break-
down and a discharge will occur if the field strength exceeds a certain value
(depending on the exact shape of the electrode, its proximity to the other elec-

-1/2

Figure 2.13 Variation of the surface-charge density (and the electric field) with
distance p from the “corner” or edge for opening angles 8 = /4, m/2, m, 37/2, and 2.
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trodes, etc., but greater than about 2.5 X 10° V/m for air at normal temperature
and pressure (NTP), sometimes by a factor of 4). In thunderstorms, with large
potential differences between the ground and the thunderclouds, a grounded
sharp conducting edge, or better, a point (see Section 3.4), will have breakdown
occur around it first and will then provide one end of the jagged conducting path
through the air along which the lightning discharge travels.

2.12 Introduction to Finite Element Analysis for Electrostatics

Finite element analysis (FEA) encompasses a variety of numerical approaches
for the solution of boundary-value problems in physics and engineering. Here
we sketch only an introduction to the essential ideas, using Galerkin’s method
for two-dimensional electrostatics as an illustration. The generalization to three
dimensions is mentioned briefly at the end. The reader who wishes a deeper
introduction may consult Binns, Lawrenson, and Trowbridge, Ida and Bastos,
Sadiku, Strang, or Zhou.

Consider the Poisson equation, V*) = —g in a two-dimensional region R,
with Dirichlet boundary conditions on the boundary curve C. We construct the
vanishing integral,

fR [¢ V4 + gdp]ldxdy =0 (2.76)

where ¢ (x, y) is a test function specified for the moment only as piecewise con-
tinuous in R and vanishing on C. Use of Green’s first identity on the first term
above leads to

fR [V - Vg — gb] dx dy = 0 (2.77)

The surface integral vanishes because ¢ vanishes on C. Galerkin’s method con-
sists first of approximating the desired solution ¢(x, y) by a finite expansion in
terms of a set of localized, linearly independent functions, ¢;(x, y), with support
only in a finite neighborhood of x = x;, y = y,. For definiteness, we imagine the
region R spanned by a square lattice with lattice spacing 4. Then a possible choice
for ¢;(x, y) is,

by(x, y) = (1 = |x = x|/h)(1 = |y = y;l/h) (2.78)
for |x — x;| = h, |y — y;| = h; otherwise, ¢,;(x, y) = 0. The sum of all the ¢, over
the square lattice is unity. Other choices of the localized functions are possible,
of course. Whatever the choice, if the number of lattice sites, including the bound-
ary, is Vo, the expansion of (x, y) takes the form

(No)

P(x, y) = % Yidi(x, y) (2.79)

Apart from the known values at sites on the boundary, the constant coefficients
¥, may be thought of as the approximate values of s(x,, y;). If the lattice spacing
h is small enough, the expansion (2.79) will be a reasonable approximate to the
true i, provided the coefficients are chosen properly.

The second step in Galerkin’s method is to choose the test function ¢ in
(2.77) to be the (i, j)™ function on the expansion set, with i and j running suc-



80 Chapter 2 Boundary-Value Problems in Electrostatics: I—SI

cessively over all N internal sites of the lattice. The typical equation derived from
2.77) is
No)

; Wi fR Vi(x, y) « Vou(x, y) dx dy = g(x;, y;) fR ¢ii(x, y) dx dy (2.80)

While the integrals are indicated as being over the whole region R, ¢,; has support
only in a small region around the site (x;, y;). In (2.80) it is assumed that g(x, y)
varies slowly enough on the scale of the cell size to be approximated in the
integral on the right by its value at the lattice site. Once the integrals have been
performed, (2.80) becomes one of N coupled inhomogeneous linear algebraic
equations for the N unknowns, ¥,,. The coupling among the W, is confined to a
small number of sites near (x;, y;), as indicated in Fig. 2.14 for the localized
function (2.78). It is left as a problem to show that the needed integrals for the
functions (2.78) are

|y ay = e

k=i 1=j (2.81)
fv¢( )+ Vebu(x, y)dx d {SB}f k=ixl1l=j
(X, V) * X, y)ax = or T h= b
PR CR G S A (Y k=i I=j%1
k=ix11=j+1

When the site (i, j) is adjacent to the boundary, there are three or more terms
on the left-hand side of (2.80) that are (—1/3) times known boundary values of

(B, 1)

@ J)

Figure 2.14 Sketch of the ¢;(x, y) in (2.78). The sites marked with a dot in the lattice
(bottom) are those coupled by the integrals on the left in (2.80) for the localized
function (2.78).
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. These can be moved to the right-hand side as part of the inhomogeneity. If
we write (2.80) in matrix form, KW = G, with K an N X N square matrix and
W and G N-column vectors, the matrix K is a “sparse’” matrix, with only a few
nonvanishing elements in any row or column. The solution of the matrix operator
equation by inversion of such a sparse matrix can be accomplished rapidly by
special numerical techniques (see Press et al.). Concrete illustration of this ap-
proach is left to the problems at the end of the chapter.

A square lattice is not optimal in many problems because the solution may
change more rapidly in some parts of the domain of interest than in other parts.
In such regions one wishes to have a finer mesh. An FEA method with a standard
generic shape, but permitting different sizes, will be more flexible and therefore
superior. We describe the popular triangle as the basic unit in two dimensions.

The triangular element is assumed to be small enough that the field variable
changes little over the element and may be approximated by a linear form in
each direction. The basic triangular element e(1, 2, 3) is shown in Fig. 2.15. Within
this region, we approximate the field variable ¥(x, y) = .(x,y) = A + Bx +
Cy. The three values (¢, ¢, ) at the nodes or vertices determine the coeffi-
cients (A, B, C). It is useful, however, to systematize the procedure for numerical
computation by defining three shape functions N{(x, y), one for each vertex,
such that N = 1 when x = x;, y = y; and N{© = 0 at the other vertices. The
shape functions for the element e vanish outside that triangular domain.

Consider N{® = a; + b;x + ¢;y. Demand that
a; + bx; + ey =1
a, + bx, + ¢y, =0
a, + bixs +cy3 =0
The determinant D of the coefficients on the left is
1x; y1
D= 1xy:| = (22— x)(¥s—y1) = (x3 = x)(y2 = y1)
1x;3y3

The determinant D is invariant under rotations of the triangle; in fact, D = 2§, where S,
is the area of the triangle. The coefficients (a,, by, ¢;) are

1

a, = 5 (%293 — X3y2)
1

b, = 2. (y2 — y3)
-1

¢ = g (%2 — x3)

3
(x3,y3)
2

(xz, yz)

Figure 2.15 Basic triangular element
1 e(1, 2, 3) with area S, for FEA in two
(1, 51 dimensions.
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The other N can be written down by cyclic permutation of indices. The N; and their
coefficients obey the following relations:

3 3

3 3
SNOwy) =1 Da=1 2 b=0 2¢=0
i=1 i=1 =1

i=1 i=
_ _ 1 .
a,+b,xe+c,e=§ (G=1273)

Here X, = (x; + X, + x3)/3 and . = (y1 + y2 + y3)/3 are the coordinates of the center of
gravity of the triangular element e.

The shape functions for the triangular elements spanning the region R can
be used in the Galerkin method as the localized linearly independent expansion
set. The field variable y(x, y) has the expansion,

Plx, y) = 2 VOND(x, y) (2.82)
fiJ

where the sum goes over all the triangles f and over the vertices of each triangle.
The constants W) are the desired values of the field at the vertices. (There is
redundant labeling here because adjacent triangles have some vertices in com-
mon.) It is worth noting that despite the shift from one set of shape functions to
another as the point (x, y) crosses from one triangle to one adjacent to it, the
function defined by the right-hand side of (2.82) is continuous. Because of the
linearity of the shape functions, the value of (2.82) along the common side of
the two triangles from either representation is the same weighted average of the
values at each end, with no contributions from the shape functions for the vertices
not in common.

We return to the Poisson equation with Dirichlet boundary conditions and
the vanishing integral (2.77). With the expansion (2.82) for ¢(x, y), we choose
the test function ¢ (x, y) = N{(x, y) for some particular element e and vertex i
(only avoiding vertices on the boundary because we require ¢ = 0 on C). The
choice reduces the integral [and the sum in (2.82)] to one over the particular
clement chosen, just as did the choice of the localized function in (2.80). The
integral, with the inhomogeneity transferred to the right-hand side, is

3
21 P© f VN®© . VN dx dy = f gN© dx dy (2.83)
j= e e

If g(x, y) changes very little over the element e, it can be approximated by its
value g, = g(X., .) at the center of gravity of the triangle and factored out of
the right-hand integral. The remaining integral is

J N® dx dy = S,(a; + bx, + cy.) = 1S, (2.84)

For the left-hand integral in (2.83), the linearity of the shape functions means
that the integrand is a constant. We note that oN(?/dx = b;, oN ©/gy = ¢;, and
define

kz(je) = Se(bibj + c,»c,-) (2.85)

The coefficients k{’ form an array of dimensionless coupling coefficients for the
triangle e. It is straightforward to show that they depend on the shape of the
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N|—=

N|—
—

-1 V3 _1 V3
2 2v3
Figure 2.16 Examples of the triangular coupling coefficients. The “diagonal”
coefficients are at the corners (vertices) and the “off-diagonal” coefficients along the
sides, between vertices.

triangle, but not its orientation or size. Two examples are shown in Fig. 2.16,

where the diagonal elements k(¢ are located at the corresponding vertices (i) and

the off-diagonal elements k{” along the line connecting vertex i with vertex j.
With the definition (2.85) of the coupling coefficients, (2.83) becomes

3

> kv = %ge (i=123) (2.86)
j=1

For each element e there are three algebraic equations, except when the side(s)

of the triangle form part of the boundary. The three coupled equations can be

written in matrix form, kOW¥® = G©.

The result for one element must now be generalized to include all the tri-
angular elements spanning R. Let the number of interior vertices or nodes be N
and the total number of vertices, including the boundary, be N,. Label the inter-
nal nodes with j = 1, 2, 3,..., N, and the boundary nodes by j = N + 1,
N + 2,..., N,. Now enlarge and rearrange the matrix k@ — K, where K is an
N X N matrix with rows and columns labeled by the node index. Similarly, define
the N-column vectors, ¥ and G. For each triangular element in turn, add the
elements of k&’ and S,g./3 to the appropriate rows and columns of K and G. The
end result is the matrix equation

K¥ =G (2.87)
where
K= (k) withk;=>k® and k;=> k¥, i#j
. ! Ny £ (2.88)
Gi =3 E Sege - E k[(je)q,](e)
37 J=N+1
The summation over 7 means over all the triangles connected to the internal
node i; the summation over E means a sum over all the triangles with a side from
internal node i to internal node j. The final sum in G; contains, for nodes con-
nected directly to the boundary nodes, the known boundary values of ¢ there
and the corresponding k{ values (not present in the matrix K). The reader may
ponder Fig. 2.17 to be convinced of the correctness of (2.88). Just as for the square
lattice, the N X N matrix K is a symmetric sparse matrix, with positive diagonal
elements. As mentioned earlier, there are special efficient methods of inverting
such matrices, even if very large.
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Figure 2.17 A part of the array of
104 triangular elements spanning the region R,
Boundary 103 assumed to have 100 internal nodes.

The obvious generalization of the triangle to three-dimensional FEA is to
add another vertex out of the plane to make a tetrahedron the basic element of
volume. Now four shape functions, N (x, y, z), are used to give an approxima-
tion to the field variable within the tetrahedron. The algebra is more involved,
but the concept is the same.

Our discussion is a bare introduction to finite element analysis. Many variants
exist in every branch of physics and engineering. National laboratories and com-
mercial companies have “canned” FEA packages: POISSON is one such pack-
age, developed at the Lawrence Berkeley National Laboratory jointly with
Livermore National Laboratory; TOSCA and CARMEN are two developed at
the Rutherford—Appleton Laboratory in Britain.
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Kelvin, p. 186

Jeans, pp. 250-251
A truly encyclopedic source of examples of all sorts with numerous diagrams is the book
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Complex variables and conformal mapping techniques for the solution of two-

dimensional potential problems are discussed by
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There are, in addition, many engineering books devoted to the subject, e.g.,
Gibbs
Rothe, Ollendorff, and Polhausen

Elementary, but clear, discussions of the mathematical theory of Fourier series and
integrals, and orthogonal expansions, can be found in
Churchill
Hildebrand, Chapter 5
A somewhat old-fashioned treatment of Fourier series and integrals, but with many ex-
amples and problems, is given by
Byerly

The literature on numerical methods is vast and growing. A good guidepost to per-
tinent literature is
Paul L. DeVries, Resource Letter CP-1: Computational Physics, Am. J. Phys.
64, 364-368 (1996)
In addition to the books cited at the beginning of Section 2.12, two others are
P. Hammond and J. K. Sykulski, Engineering Electromagnetism, Physical Pro-
cesses and Computation, Oxford University Press, New York (1994).
C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Van
Nostrand, New York (1987).
The first of these has a brief but clear discussion of FEA in Chapter 7; the second treats
FEA and related topics in greater depth.

Problems

21 A point charge ¢ is brought to a position a distance d away from an infinite plane
conductor held at zero potential. Using the method of images, find:

(a) the surface-charge density induced on the plane, and plot it;

(b) the force between the plane and the charge by using Coulomb’s law for the
force between the charge and its image;

(c) the total force acting on the plane by integrating 0*/2¢, over the whole plane;
(d) the work necessary to remove the charge g from its position to infinity;

(e) the potential energy between the charge ¢ and its image [compare the answer
to part d and discuss].

(f) Find the answer to part d in electron volts for an electron originally one ang-
strom from the surface.

2.2 Using the method of images, discuss the problem of a point charge q inside a hollow,
grounded, conducting sphere of inner radius a. Find

(a) the potential inside the sphere;
(b) the induced surface-charge density;
(¢) the magnitude and direction of the force acting on q.

(d) Is there any change in the solution if the sphere is kept at a fixed potential V?
If the sphere has a total charge Q on its inner and outer surfaces?

2.3 Astraight-line charge with constant linear charge density A is located perpendicular
to the x-y plane in the first quadrant at (xo, yo). The intersecting planes x = 0,
y=0andy =0, x =0 are conducting boundary surfaces held at zero potential.
Consider the potential, fields, and surface charges in the first quadrant.
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24

2.5

2.6

(a) The well-known potential for an isolated line charge at (xo, yo) is d(x,y) =
(MAmeo)In(R?/r?), where r* = (x — xo)> + (y — Yo)” and R is a constant. De-
termine the expression for the potential of the line charge in the presence of
the intersecting planes. Verify explicitly that the potential and the tangential
electric field vanish on the boundary surfaces.

(b) Determine the surface charge density o on the plane y = 0, x = 0. Plot ali
versus x for (xo = 2, yo = 1), (xo = 1, yo = 1), and (xo = 1, yo = 2).

(¢) Show that the total charge (per unit length in z) on the plane y = 0,x =0 is

0, = _2 A tan‘1<ﬁ>
™ Yo

What is the total charge on the plane x = 0?

(d) Show that far from the origin [p>>p,, where p = V(x> +)°) and
po = V(x3 + y3)] the leading term in the potential is
_4x (xaY0)(xy)

P - (I)asym - 4
€y p

Interpret.
A point charge is placed a distance d > R from the center of an equally charged,
isolated, conducting sphere of radius R.
(a) Inside of what distance from the surface of the sphere is the point charge
attracted rather than repelled by the charged sphere?
(b) What is the limiting value of the force of attraction when the point charge is
located a distance a (= d — R) from the surface of the sphere, if a << R?
(¢) What are the results for parts a and b if the charge on the sphere is twice
(half) as large as the point charge, but still the same sign?
[Answers: (a) d/R — 1 = 0.6178, (b) F = —q*/(16eya?), i.e., image force, () for
0 = 2q, dIR — 1 = 0.4276; for Q = q/2, d/R — 1 = 0.8823. The answer for part b
is the same.]
(a) Show that the work done to remove the charge g from a distance r > a to
infinity against the force, Eq. (2.6), of a grounded conducting sphere is
___qa
8meo(r* — a®)
Relate this result to the electrostatic potential, Eq. (2.3), and the energy dis-
cussion of Section 1.11.
(b) Repeat the calculation of the work done to remove the charge ¢ against the

force, Eq. (2.9), of an isolated charged conducting sphere. Show that the work
done is

wo L |_ga da_ 40
4mey | 2077 — a®) 277 r

Relate the work to the electrostatic potential, Eq. (2.8), and the energy dis-
cussion of Section 1.11.

The electrostatic problem of a point charge ¢ outside an isolated, charged con-
ducting sphere is equivalent to that of three charges, the original and two others,
one located at the center of the sphere and another (‘“‘the image charge”) inside
the now imaginary sphere, on the line joining the center and the original charge.
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If the point charge and sphere are replaced by two conducting spheres of radii
r, and r,, carrying total charges Q, and Q,, respectively, with centers separated by
a distance d > r, + r,, there is an equivalence with an infinite set of charges within
each sphere, one at the center and a set of images along the line joining the centers.
The charges and their locations can be determined iteratively, starting with a charge
q.(1) at the center of the first sphere and g,(1) correspondingly for the second
sphere. The charge g,(1) has its image g,(2) within the first sphere and vice versa.
Then the image charge within the first sphere induces another image within the
second sphere, and so on. The sum of all the charges within each sphere must be
scaled to be equal to Q, or Q,.

The electrostatic potential outside the spheres, the force between the spheres,
etc. can be found by summing the contributions from all the charges.

(a) Show that the charges and their positions are determined iteratively by the
relations,

9() = (i = Wi = 1), x,() = Bl ~ D, d) = d = x,0)
0(i) = =1gui = DI = 1), 1) = IdG = 1), do() = d — x,())
forj=2,3,4,...,withd,(1) = d,(1) = d, and x,(1) = x,(1) = 0.

(b) Find the image charges and their locations as well as the potentials on the
spheres and force between them by means of a suitable computer program.
[In computing the potential on each sphere, evaluate it in different places: e.g.,
in the equatorial plane and at the pole opposite the other sphere. This permits
a check on the equipotential of the conductor and on the accuracy of
computation.]

(¢) As an example, show that for two equally charged spheres of the same radius
R, the force between them when almost in contact is 0.6189 times the value
that would be obtained if all the charge on each sphere were concentrated
at its center. Show numerically and by explicit summation of the series that

the capacitance of two identical conducting spheres in contact is C/4me,R =
1.3863 - - - [= In 4].

Reference: J. A. Soules, Am. J. Phys. 58, 1195 (1990).

Consider a potential problem in the half-space defined by z = 0, with Dirichlet
boundary conditions on the plane z = 0 (and at infinity).

(a) Write down the appropriate Green function G(x, x").

(b) If the potential on the plane z = 0 is specified to be ® = V inside a circle of
radius a centered at the origin, and ® = 0 outside that circle, find an integral
expression for the potential at the point P specified in terms of cylindrical
coordinates (p, ¢, z).

(c) Show that, along the axis of the circle (p = 0), the potential is given by

b4
®=V[1- =
< Va* + z2>
(d) Show that at large distances (p*> + z* >> a°) the potential can be expanded in
a power series in (p? + z*)7!, and that the leading terms are
& — va® z - 3a® 5(3p%a* + a*)
2 (pZ + Z2)3/2 4(p2 + ZZ) 8(p2 + Z2)2
Verify that the results of parts ¢ and d are consistent with each other in
their common range of validity.
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A two-dimensional potential problem is defined by two straight parallel line charges
separated by a distance R with equal and opposite linear charge densities A
and —A.

(a) Show by direct construction that the surface of constant potential V is a cir-

cular cylinder (circle in the transverse dimensions) and find the coordinates
of the axis of the cylinder and its radius in terms of R, A and V.

(b) Use the results of part a to show that the capacitance per unit length C of two
right-circular cylindrical conductors, with radii a and b, separated by a distance
d>a+b,is

277'60

dz _ aZ _ bz
-1
cosh <———2ab )

C =

(¢) Verify that the result for C agrees with the answer in Problem 1.7 in the
appropriate limit and determine the next nonvanishing order correction in
powers of a/d and b/d.

(d) Repeat the calculation of the capacitance per unit length for two cylinders
inside each other (d < |b — a|). Check the result for concentric cylinders
(d =0).

An insulated, spherical, conducting shell of radius a is in a uniform electric field E,.

If the sphere is cut into two hemispheres by a plane perpendicular to the field, find

the force required to prevent the hemispheres from separating

(a) if the shell is uncharged;
(b) if the total charge on the shell is Q.

A large parallel plate capacitor is made up of two plane conducting sheets with
separation D, one of which has a small hemispherical boss of radius a on its inner
surface (D >> a). The conductor with the boss is kept at zero potential, and the
other conductor is at a potential such that far from the boss the electric field between
the plates is Ej.

(a) Calculate the surface-charge densities at an arbitrary point on the plane and
on the boss, and sketch their behavior as a function of distance (or angle).

(b) Show that the total charge on the boss has the magnitude 37egEoa®.

(¢) If, instead of the other conducting sheet at a different potential, a point charge
q is placed directly above the hemispherical boss at a distance d from its center,
show that the charge induced on the boss is

d2 _ aZ
’ —_ — 1 —
R [ d\/m]
A line charge with linear charge density 7 is placed parallel to, and a distance R

away from, the axis of a conducting cylinder of radius b held at fixed voltage such
that the potential vanishes at infinity. Find

(a) the magnitude and position of the image charge(s);

(b) the potential at any point (expressed in polar coordinates with the origin at
the axis of the cylinder and the direction from the origin to the line charge as
the x axis), including the asymptotic form far from the cylinder;

(¢) the induced surface-charge density, and plot it as a function of angle for
R/b = 2, 4 in units of 7/27b;

(d) the force per unit length on the line charge.
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Starting with the series solution (2.71) for the two-dimensional potential problem
with the potential specified on the surface of a cylinder of radius b, evaluate the
coefficients formally, substitute them into the series, and sum it to obtain the po-
tential inside the cylinder in the form of Poisson’s integral:

b2 _ 2
; b
+ p° — 2bp cos(¢’ — ¢)

What modification is necessary if the potential is desired in the region of space
bounded by the cylinder and infinity?

1 21
o, ) = 5 | 0. 4)

(a) Two halves of a long hollow conducting cylinder of inner radius b are sepa-
rated by small lengthwise gaps on each side, and are kept at different poten-
tials V; and V,. Show that the potential inside is given by

+ -V 2b
D(p, ¢) = 4 5 2 I - . tan1<b2 _pp2 cos d))

where ¢ is measured from a plane perpendicular to the plane through the gap.
(b) Calculate the surface-charge density on each half of the cylinder.

A variant of the preceding two-dimensional problem is a long hollow conducting

cylinder of radius b that is divided into equal quarters, alternate segments being

held at potential +V and —V.

(a) Solve by means of the series solution (2.71) and show that the potential inside
the cylinder is

D(p, ¢) =

n=0 2n + 1

71/ 3 < )“"” sin[(4n + 2)@)]

(b) Sum the series and show that

2V 2p°b? sin 2¢
(I)(p7 (b) = < b4 —
T o
(¢) Sketch the field lines and equipotentials.

(a) Show that the Green function G(x, y; x', y') appropriate for Dirichlet bound-
ary conditions for a square two-dimensional region,0 =x <1,0=y =1, has
an expansion

Gx,y;x',y) =2 2 &:.(y, y") sin(nmx) sin(nmx’)
n=1
where g,(y, y') satisfies

dZ
(W - n2ﬂ2> gy, y') = —4md(y' —y) and g.(y,0) = g.(y,1) =0

(b) Taking for g,(y, y') appropriate linear combinations of sinh(nwy’) and
cosh(nmy’) in the two regions, y’' < y and y’ > y, in accord with the boundary
conditions and the discontinuity in slope required by the source delta function,
show that the explicit form of G is

Gx, y;x',y')
=8> 1 sin(nmx) sin(nax’) sinh(nary.) sinh[nw(l — y.)]

a=1 n sinh(n)

where y_(y.) is the smaller (larger) of y and y’.
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A two-dimensional potential exists on a unit square area (0 =x =1,0=y =1)
bounded by “‘surfaces” held at zero potential. Over the entire square there is a
uniform charge density of unit strength (per unit length in z). Using the Green
function of Problem 2.15, show that the solution can be written as

(a)

(b)

(c)

(2)

(b)

(©

4 & sin[(2m + 1)mx] cosh[(2m + 1)7(y — 3)]
d(x,y) = —— 1-

* ) == m%, Qm + 1) cosh[(2m + 1)m/2]
Construct the free-space Green function G(x, y; x', y') for two-dimensional
electrostatics by integrating 1/R with respect to (z' — z) between the limits
+Z, where Z is taken to be very large. Show that apart from an inessential
constant, the Green function can be written alternately as

G(x, y;x',y) = —In[(x — x")* + (y — y')’]
—Infp? + p"> — 2pp’ cos(¢ — ¢')]

Show explicitly by separation of variables in polar coordinates that the Green
function can be expressed as a Fourier series in the azimuthal coordinate,

1 &, )
G = Ey _2 em@=¢g (p, p')
where the radial Green functions satisfy

19 9 2 3(p — p'
_’_/< ,er> e = —ap Yo p)
p'op ap p p

Note that g,,(p, p’) for fixed p is a different linear combination of the solutions

of the homogeneous radial equation (2.68) for p’ < p and for p’ > p, with a
discontinuity of slope at p’ = p determined by the source delta function.

Complete the solution and show that the free-space Green function has the
expansion

Glp, s p', ¢') = —In(p2) + 2 2:1 % (%) - cos[m(¢d — ¢)]

>

where p_(p.) is the smaller (larger) of p and p’.

By finding appropriate solutions of the radial equation in part b of Problem
2.17, find the Green function for the interior Dirichlet problem of a cylinder
of radius b [g,.(p, p’ = b) = 0. See (1.40)]. First find the series expansion akin
to the free-space Green function of Problem 2.17. Then show that it can be
written in closed form as

nl:pzplz + bt — 2pp’b2 COS((f) - d’,):l
bZ(pZ + p72 — 2pp’ COS((}‘) - d)/))

or

2 _ 2 2 12 + 2 a2
G=ln[(b P —p?) + b lp pl]
b*|p — p'l
Show that the solution of the Laplace equation with the potential given as
®(b, ¢) on the cylinder can be expressed as Poisson’s integral of Problem 2.12.

What changes are necessary for the Green function for the exterior problem
(b < p < x), for both the Fourier expansion and the closed form? [Note that
the exterior Green function is not rigorously correct because it does not vanish
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for p or p’ — . For situations in which the potential falls off fast enough as
p — %, no mistake is made in its use.]

Show that the two-dimensional Green function for Dirichlet boundary conditions
for the annular region, b < p = ¢ (concentric cylinders) has the expansion

In(p2/b?) In(c*/p?) cos[m(¢p — ¢)]

ik Ut S it Nl + 2 bt Shlhd S SN S | r<n__b2m/r<n 1/>_>/2m
In(c2/b?) ,,,21 m[l — (bl p)(UpE! = p2ic™)

Two-dimensional electric quadrupole focusing fields for particle accelerators can

be modeled by a set of four symmetrically placed line charges, with linear charge

densities = A, as shown in the left-hand figure (the right-hand figure shows the elec-

tric field lines).

G =

Problem 2.20
The charge density in two dimensions can be expressed as
A 3
ap, ) = 2 ZO (-=1)" 8(p — a) (¢ — nml2)

(a) Using the Green function expansion from Problem 2.17c, show that the elec-
trostatic potential is

D(p, ¢) = i 2 T <”<> cos[(4k + 2) ¢]

(b) Relate the solution of part a to the real part of the complex function

21 ln[(z — ia)(z + ia)]

47re, (z —a)z +a)

where z = x + iy = pe’®. Comment on the connection to Problem 2.3.

w(z) =

(¢) Find expressions for the Cartesian components of the electric field near the
origin, expressed in terms of x and y. Keep the kK = 0 and k = 1 terms in the
expansion. For y = 0 what is the relative magnitude of the k = 1 (2°-pole)
contribution to E, compared to the k = 0 (2>-pole or quadrupole) term?

Use Cauchy’s theorem to derive the Poisson integral solution. Cauchy’s theorem
states that if F(z) is analytic in a region R bounded by a closed curve C, then
1 [ F(z')dz' _ {F(z) .. . inside

if z is

2miJc 7' -z 0 outside

Hint: You may wish to add an integral that vanishes (associated with the image
point) to the integral for the point inside the circle.
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(a) For the example of oppositely charged conducting hemispherical shells sepa-
rated by a tiny gap, as shown in Figure 2.8, show that the interior potential
(r < a) on the z axis is

a (@ - 7%
P(z) =V-|1l - —F——=
@ z [ aVa® + zz]
Find the first few terms of the expansion in powers of z and show that they
agree with (2.27) with the appropriate substitutions.

(b) From the result of part a and (2.22), show that the radial electric field on the
positive z axis is

. Va2 a
E\(z) = (z T2 e + )" <3 + Zz)

for z > a, and

__ V| 3+@z @&
E(z) = a [(1 T (Z/a)2)3/2 Zz]

for | z| < a. Show that the second form is well behaved at the origin, with the
value, E,(0) = —3V/2a. Show that at z = a (north pole inside) it has the value
—(V2 — 1)V/a. Show that the radial field at the north pole outside has the
value V2 Via.

(¢) Make asketch of the electric field lines, both inside and outside the conducting
hemispheres, with directions indicated. Make a plot of the radial electric field
along the z axis from z = —2ato z = +2a.

A hollow cube has conducting walls defined by six planes x = 0,y = 0, z = 0, and
x=a,y =a,z = a. The walls z = 0 and z = a are held at a constant potential V.
The other four sides are at zero potential.

(a) Find the potential ®(x, y, z) at any point inside the cube.

(b) Evaluate the potential at the center of the cube numerically, accurate to three
significant figures. How many terms in the series is it necessary to keep in
order to attain this accuracy? Compare your numerical result with the average
value of the potential on the walls. See Problem 2.28.

(¢) Find the surface-charge density on the surface z = a.

In the two-dimensional region shown in Fig. 2.12, the angular functions appropriate
for Dirichlet boundary conditions at ¢ = 0 and ¢ = B are ®(p) = A,, sin(mwd/p).
Show that the completeness relation for these functions is

3

8(p— @) = 2 sin(mw/ B) sin(mard'/B) for0< ¢, o' <pB

B m=1

Two conducting planes at zero potential meet along the z axis, making an angle 8
between them, as in Fig. 2.12. A unit line charge parallel to the z axis is located
between the planes at position (p’, ¢').

(a) Show that (47e,) times the potential in the space between the planes, that is,
the Dirichlet Green function G(p, ¢; p’, ¢'), is given by the infinite series

Gp, &3 p', ¢') = 4 2 —p'z“’ﬁ ZmmE sin(marlB) sin(mard'/p)
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(b) By means of complex-variable techniques or other means, show that the series
can be summed to give a closed form,

(pV™ + ()™ = 2pp)™" coslm( + ¢’)/B]}
PV + ()7 = 2pp ) coslm(d — /1]

(¢) Verify that you obtain the familiar results when 8 = 7 and 8 = 7/2.

G(p, ¢ p's ¢') = 111{

The two-dimensional region, p = a, 0 =< ¢ = B, is bounded by conducting surfaces
at ¢ =0, p = a, and ¢ = B held at zero potential, as indicated in the sketch. At
large p the potential is determined by some configuration of charges and/or con-
ductors at fixed potentials.

Problem 2.26

(a) Write down a solution for the potential ®(p, ¢) that satisfies the boundary
conditions for finite p.

(b) Keeping only the lowest nonvanishing terms, calculate the electric field com-
ponents E, and E, and also the surface-charge densities a(p, 0), o(p, 8), and
o(a, ¢) on the three boundary surfaces.

(¢) Consider 8 = 7 (a plane conductor with a half-cylinder of radius a on it).
Show that far from the half-cylinder the lowest order terms of part b give a
uniform electric field normal to the plane. Sketch the charge density on and
in the neighborhood of the half-cylinder. For fixed electric field strength far
from the plane, show that the total charge on the half-cylinder (actually charge
per unit length in the z direction) is twice as large as would reside on a strip
of width 24 in its absence. Show that the extra portion is drawn from regions
of the plane nearby, so that the total charge on a strip of width large compared
to a is the same whether the half-cylinder is there or not.

Consider the two-dimensional wedge-shaped region of Problem 2.26, with 8 = 2.
This corresponds to a semi-infinite thin sheet of conductor on the positive x axis
from x = a to infinity with a conducting cylinder of radius a fastened to its edge.

(a) Sketch the surface-charge densities on the cylinder and on the top and bottom
of the sheet, using the lowest order solution.

(b) Calculate the total charge on the cylinder and compare with the total defi-
ciency of charge on the sheet near the cylinder, that is, the total difference in
charge for a finite compared with a = 0, assuming that the charge density far
from the cylinder is the same.
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]

A closed volume is bounded by conducting surfaces that are the n sides of a regular
polyhedron (n = 4, 6, 8, 12, 20). The n surfaces are at different potentials V;,
i=1,2,..., n Prove in the simplest way you can that the potential at the center
of the polyhedron is the average of the potential on the n sides. This problem bears
on Problem 2.23b, and has an interesting similarity to the result of Problem 1.10.

For the Galerkin method on a two-dimensional square lattice with lattice spacing
h, verify the relations (2.81) for the localized “‘pyramid” basis functions, ¢;(x, y)
= (1 - |x|/h)(A — |y|/h), |x| < h, |y| < h, where x and y are measured from the
site (Z, j). In particular,

8
J’ dx J’ dy ¢ j(x,y) = h% f dx f dy Vo ;- Vo ; = 3

1 1
J’dx f dy Va1, Ve, = _5; fdx f dy Ve jor - Vb, = _5;
1

fdx J’ dy Vd’i+1,j+1 ° Vd),',j = —5

Using the results of Problem 2.29, apply the Galerkin method to the integral equiv-
alent of the Poisson equation with zero potential on the boundary,

N
fv dx dy[V¢,; - Vi — 4mpdp; ;] = 0 with ¢(x, y) = 2

=

. i jr in (X, )

for the lattice of Problem 1.24, with its three independent lattice sites. Show that
you get three coupled equations for the i, ; values (i1, ¢, ¢5) and solve to find the
“Galerkin” approximations for the potential at these sites. Compare with the exact
values and the results of the various iterations of Problem 1.24c. Comment.

[y = 47e;®).
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In this chapter the discussion of boundary-value problems is continued. Spherical
and cylindrical geometries are first considered, and solutions of the Laplace equa-
tion are represented by expansions in series of the appropriate orthonormal func-
tions. Only an outline is given of the solution of the various ordinary differential
equations obtained from the Laplace equation by separation of variables, but the
properties of the different functions are summarized.

The problem of construction of Green functions in terms of orthonormal
functions arises naturally in the attempt to solve the Poisson equation in the
various geometries. Explicit examples of Green functions are obtained and ap-
plied to specific problems, and the equivalence of the various approaches to
potential problems is discussed.

3.1 Laplace Equation in Spherical Coordinates

In spherical coordinates (r, 6, ¢), shown in Fig. 3.1, the Laplace equation can be
written in the form:

& 1 8 oD 1 RO
5 (r®) + ( sin 9—) — =0 (3.1)

72 sin 6 90 a6 r? sin” § ¢
If a product form for the potential is assumed, then it can be written:

U(r)

= P(6)Q(¢) (32)

When this is substituted into (3.1), there results the equation:

2 2
U, U9 i('9£)+ UP_ d*Q

=0
r? sin 6 do do r? sin” 0 d¢?

PQ—5

If we multiply by r* sin® /UPQ, we obtain:
1 d*U 1 d dP 1 d*Q
—— = =)l += = .
r* sin t9l:U dr*  Pr*sin @ d6 < sin 0 )] 0 d¢? -0 (33)

The ¢ dependence of the equation has now been isolated in the last term. Con-
sequently that term must be a constant which we call (—m?):

1 dZQ o,
0 dq.'>2 = —m (3.4)

95
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L)

N

/

A=
/
/
/

e A,

/

x Figure 3.1

This has solutions
Q = e™™m* (3.5)

For Q to be single valued, m must be an integer if the full azimuthal range is
allowed. By similar considerations we find separate equations for P(6) and U(r):

1 d dP m?
—— —({sing— ] + +1) - P = .
sin 0 d6 (Sm b da) [l(l D~ G 9] 0 (3.6)
U I+ 1)
= T2 U=0 (3.7)

where /(I + 1) is another real constant.
From the form of the radial equation it is apparent that a single power of r
(rather than a power series) will satisfy it. The solution is found to be:

U= Ar'*"' + Br! (3.8)

but / is as yet undetermined.

3.2 Legendre Equation and Legendre Polynomials

The 0 equation for P(6) is customarily expressed in terms of x = cos 6, instead
of @itself. Then it takes the form:

f}; [(1 — %’;’] + [z(z 1) -+ ’fxz]P =0 (3.9)

This equation is called the generalized Legendre equation, and its solutions are
the associated Legendre functions. Before considering (3.9) we outline the
solution by power series of the ordinary Legendre differential equation with
m? = 0;

d » aP

il - X)) — |+ 11+ = .

I [(1 x°) dx] I+ 1HP =0 (3.10)

We assume that the whole range of cos 6, including the north and south poles, is
in the region of interest. The desired solution should then be single valued, finite,
and continuous on the interval —1 = x = 1 in order that it represent a physical
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potential. The solution will be assumed to be represented by a power series of
the form:

P(x) = x“ i ax’ (3.11)

where « is a parameter to be determined. When this is substituted into (3.10),
there results the series:

]2) {(a + e+ = Dax*? = [(a + j)(a +j+ 1) = (I + D]ax*T} =0
(3.12)

In this expansion the coefficient of each power of x must vanish separately. For
j =0, 1 we find that

if a, # 0, th -1H)=0
% a en a(a ) (3.13)
ifa, # 0, then a(ae + 1) = 0
while for a general j value
e+t pla+j+1)—Ul+1)
Kich [ @+j+)a+jt+2) |V (3.14)

A moment’s thought shows that the two relations (3.13) are equivalent and that
it is sufficient to choose either a, or a, different from zero, but not both. Making
the former choice, we have @ = 0 or a = 1. From (3.14) we see that the power
series has only even powers of x (o = 0) or only odd powers of x (o = 1).

For either of the series @ = 0 or « = 1 it is possible to prove the following
properties:

the series converges for x> < 1, regardless of the value of /;
the series diverges at x = *1, unless it terminates.

Since we want a solution that is finite at x = *1, as well as for x? < 1, we demand
that the series terminate. Since « and j are positive integers or zero, the recur-
rence relation (3.14) will terminate only if / is zero or a positive integer. Even
then only one of the two series converges at x = *1. If / is even (odd), then only
the @ = 0 (a = 1) series terminates.* The polynomials in each case have x’ as
their highest power of x, the next highest being x’~2, and so on, down to x°(x)
for I even (odd). By convention these polynomials are normalized to have the
value unity at x = +1 and are called the Legendre polynomials of order I, P,(x).
The first few Legendre polynomials are:

Py(x) =1
Pi(x) =x
Py(x) =1(3x% - 1) (3.15)

Ps(x) = 3(5x° — 3x)
Py(x) = §(35x* — 30x2 + 3)

*For example, if / = 0 the a = 1 series has a general coefficient a, = ao/(j + 1) forj = 0, 2,4, . ... Thus
the series is ao(x + 3x* + £x° + - --). This is just a, times the power series expansion of a function
Qo(x) =3In(1 + x)/(1 — x), which clearly diverges at x = *1. For each [ value there is a similar function
Q,(x) with logarithms in it as the partner to the well-behaved polynomial solution. See Magnus et al.
(pp. 151 ff). Whittaker and Watson (Chapter XV) give a treatment using analytic functions.
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By manipulation of the power series solutions (3.11) and (3. 14) it is possible
to obtain a compact representation of the Legendre polynomials, known as
Rodrigues’ formula:

1 d

Pl(x) 21” dx l( 2 -

1y! (3.16)

[See, for example, Arfken.]

The Legendre polynomials form a complete orthogonal set of functions on
the interval —1 < x = 1. To prove the orthogonality we can appeal directly to
the differential equation (3.10). We write down the differential equation for P; (x),
multiply by P,(x), and then integrate over the interval:

f P (x){ [(1 - x?) ——] + 11+ 1)P,(x)} x =0 (3.17)

Integrating the first term by parts, we obtain

f_l [(x2 - )‘fiP ! d; Ly + 1Py (x)P,(x)] dx =0 (3.18)

If we now write down (3.18) with / and !’ interchanged and subtract it from (3.18),
the result is the orthogonality condition:

[+ 1) - 1@ +1)] f_l Py(x)Py(x) dx = 0 (3.19)

For I # I', the integral must vanish. For [ = /', the integral is finite. To determine
its value it is necessary to use an explicit representation of the Legendre poly-
nomials, e.g., Rodrigues’ formula. Then the integral is explicitly:
' 1 (" d
— 2 — 2 ) !
= [ e = i [ e -y w1y a

Integration by parts / times yields the result:

(=1 21 1y
N, = 221(1')2f (x d i (x 1) dx

The differentiation 2/ times of (x? — 1)’ yields the constant (2/)!, so that
_@nt
N, = 221(1,)2 (1 x%) dx

The remaining integral can be done by brute force, but also by induction. We
write the integrand as
d

1—x) =1 -x)1—x)"=(1—x)" +2

_ pAVS
)

Thus we have

20— 1 L @= ! _ av
Nl - < 2[ )Nl 1 221(1!)2 -1 X d[(l X )]
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Integration by parts in the last integral yields

or
@l + )N, = (2l — )N,_, (3.20)

This shows that (2/ + 1)N, is independent of /. For / = 0, with Py(x) = 1, we have
N, = 2. Thus N, = 2/(2] + 1) and the orthogonality condition can be written:

1
2
J;1 PIV(X)PI(X) dx = El—.-!-_l 8[![ (321)

and the orthonormal functions in the sense of Section 2.8 are

21+ 1

Ui(x) = )

P(x) (3.22)

Since the Legendre polynomials form a complete set of orthogonal functions,
any function f(x) on the interval —1 < x = 1 can be expanded in terms of them.
The Legendre series representation is:

fx) = go A Pi(x) (3.23)
where
a,=2 > L L F)Px) dx (3.24)

As an example, consider the function shown in Fig. 3.2:

fix) = +1 forx >0
= -1 forx <0

Then

A= 2[; 1 [JOI Py(x) dx — f,1 P(x) dx]

Since P)(x) is odd (even) about x = 0 if [ is odd (even), only the odd !/
coefficients are different from zero. Thus, for / odd,

1
A= (2l + I)J’ P(x) dx (3.25)
0
S E—
I |
=11 0 I 1
! x—> |
| |
— : Figure 3.2
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By means of Rodrigues’ formula the integral can be evaluated, yielding
-1y 2L+ D = 2)!
I+1
= h
(1),

where (2n + 1)!! = 2n + 1)(2n — 1)(2n — 3) - -+ X 5 X 3 X 1. Thus the series
for f(x) is:

A= (=) (3.26)

fx) = 3Pi(x) = §P5(x) + fePs(x) — -+ (3.27)

Certain recurrence relations among Legendre polynomials of different order
are useful in evaluating integrals, generating higher order polynomials from
lower order ones, etc. From Rodrigues’ formula it is a straightforward matter to
show that

dPii4 _ P,

- =@+ 1P =0 (3.28)

This result, combined with differential equation (3.10), can be made to yield

various recurrence formulas, some of which are:

(l + 1)P1+1 - (2[ + 1)xPl + lPl—l = 0
dP., _ _dP

dx I — (l + I)PI =0 (3'29)

dP
uz—ngf—ua+u¢1=o

As an illustration of the use of these recurrence formulas, consider the evaluation
of the integral:

I = f_ll XPy(x)Py(x) dx (3.30)

From the first of the recurrence formulas (3.29) we obtain an expression for
xP,(x). Therefore (3.30) becomes

1
L—y+1

f_ll Pr()[( + D)Pq(x) + IP_1(x)] dx

The orthogonality integral (3.21) can now be employed to show that the integral
vanishes unless I’ = [ = 1, and that, for those values,

20+ 1)
— I'=1+1
! 21 + D21 + 3)°
f_l xP,(x)P; (x) dx = ( ;E ) (3.31)
I'=1-1

Q@ - 1)@+ 1)’
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These are really the same result with the roles of / and /' interchanged. In a
similar manner it is easy to show that
200+ DI+ 2)
21+ 1) + 3)@2 + 5)°
2P +20-1)
(21 — 1) + 1)(2 + 3)°

I'=1+2

fll x*P(x)Py(x) dx = (3.32)

I'=1

where it is assumed that I’ = [.

Boundary-Value Problems with Azimuthal Symmetry

From the form of the solution of the Laplace equation in spherical coordinates
(3.2), it will be seen that for a problem possessing azimuthal symmetry m = 0 in
(3.5). This means that the general solution for such a problem is:

O(r, 6) = > [A,;rF + Br~ @ D]P(cos 6) (3.33)
1=0

The coefficients A, and B, can be determined from the boundary conditions.
Suppose that the potential is specified to be V() on the surface of a sphere of
radius a, and it is required to find the potential inside the sphere. If there are no
charges at the origin, the potential must be finite there. Consequently B, = 0 for
all 1. The coefficients A, are found by evaluating (3.33) on the surface of the
sphere:

V() = D, A,d'Py(cos 0) (3.34)
=0
This is just a Legendre series of the form (3.23), so that the coefficients A, are:
20+ 1 (7
A = oy f V(6)P,(cos 6) sin 6 do (3.35)
0

If, for example, V(#) is that of Section 2.7, with two hemispheres at equal and
opposite potentials,

+V, 0 =6<a2)
V() =
-V, (72 < 0= )

then the coefficients are proportional to those in (3.27). Thus the potential inside
the sphere is

3 5
D(r, 6) = V[% 2 P,(cos 6) — %(2) P;(cos 0) + %(2) Ps(cos 6) - - ] (3.36)
To find the potential outside the sphere we merely replace (r/a)’ by (a/r)'™'. The
resulting potential can be seen to be the same as (2.27), obtained by another
means.
Series (3.33), with its coefficients determined by the boundary conditions, is
a unique expansion of the potential. This uniqueness provides a means of ob-
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taining the solution of potential problems from a knowledge of the potential in
a limited domain, namely on the symmetry axis. On the symmetry axis (3.33)
becomes (with z = r):

Pz =r) = ;‘6 [A;r' + Br= (D] (3.37)

valid for positive z. For negative z each term must be multiplied by (—1)". Sup-
pose that, by some means, we can evaluate the potential ®(z) on the symmetry
axis. If this potential function can be expanded in a power series in z = r of the
form (3.37), with known coefficients, then the solution for the potential at
any point in space is obtained by multiplying each power of r’ and r~“*" by
P(cos 6).

At the risk of boring the reader, we return to the problem of the hemispheres
at equal and opposite potentials. We have already obtained the series solution
in two different ways, (2.27) and (3.36). The method just stated gives a third way.
For a point on the axis we have found the closed form (2.22):

r2_a2
Dz =r)=V[1 -2
=" [ m]

This can be expanded in powers of a?/r?:

<I>(z =r) = \/17__712:‘41 (_1)1'—1 & - %)]1;(] — %) (?_)

r

Comparison with expansion (3.37) shows that only odd / values (I = 2j — 1) enter.
The solution, valid for all points outside the sphere, is consequently:

O(r, §) = % ]é -y E = %)ﬂr(; =2) (f’-> P;1(cos )

r

This is the same solution as already obtained, (2.27) and (3.36).
An important expansion is that of the potential at x due to a unit point charge

’

at x':

1 = rl
> i1 Pi(cos y) (3.38)

|X_X/| —I=Or>

where r_ (r.) is the smaller (larger) of |x| and |x’'|, and v is the angle between x
and x', as shown in Fig. 3.3. This can be proved by rotating axes so that x’ lies

2 ’

Figure 3.3
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along the z axis. Then the potential satisfies the Laplace equation, possesses
azimuthal symmetry, and can be expanded according to (3.33), except at the point
x =x":

1 i (A" + Bir “*D)Py(cos y)

|x — x'| 5
If the point x is on the z axis. the right-hand side reduces to (3.37), while the left-
hand side becomes:

1 1 1
x —x'| (P2 +r?—=2r" cosy)? |r—r'|

Expanding, we find, for x on axis,

13 (_)
Ix —x'| .= \r-
For points off the axis it is only necessary, according to (3.33) and (3.37), to
multiply each term by P,(cos y). This proves the general result (3.38).
Another example is the potential due to a total charge g uniformly distrib-
uted around a circular ring of radius a, located as shown in Fig. 3.4, with its axis

the z axis and its center at z = b. The potential at a point P on the axis of
symmetry with z = r is just g/4e, divided by the distance AP:

1 q
4me, (r* + ¢* — 2cr cos a)'”?

bz =r)=

where ¢ = a® + b*> and a = tan' (a/b). The inverse distance AP can be expanded
using (3.38). Thus, for r > c,

oo

q 3
Dz =r) = py Z;) ) P,(cos @)

For r < c, the corresponding form is:

o !
q r
(D(Z = r) = 47760 IZ() ‘Cm P,(COS a)

Figure 3.4 Ring of charge of radius a and total
x charge g located on the z axis with center at z = b.
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The potential at any point in space is now obtained by multiplying each member
of these series by P,(cos 6):

oo !

q r<
d(r, 0) = e, 126 ey P,(cos a)P,(cos 6)

where r_ (r.) is the smaller (larger) of r and c.

Behavior of Fields in a Conical Hole or Near a Sharp Point

Before turning to more complicated boundary-value problems, we consider one
with azimuthal symmetry, but with only a limited range of 6. This is a three-
dimensional analog of the situation discussed in Section 2.11. Suppose that the
limited angular region, 0 =< § =< 8,0 < ¢ < 2, is bounded by a conical conducting
surface, as indicated in Fig. 3.5. For B8 < /2, the region can be thought of as a
deep conical hole bored in a conductor. For 8 > /2, the region of space is that
surrounding a pointed conical conductor.

The treatment of Section 3.2 for the Legendre differential equation needs
modification. With the assumption of azimuth symmetry, (3.10) is still applicable,
but we now seek solutions finite and single-valued on the range of x = cos 6 of
cos B = x = 1. Furthermore, since the conducting surface § = B is at fixed po-
tential, which we can take to be zero, the solution in cos # must vanish at § = 8
to satisfy the boundary conditions. Since we demand regularity at x = 1 it is
convenient to make a series expansion around x = 1 instead of x = 0, as was
done with (3.11). With the introduction of the variable

£=10 -9

the Legendre equation (3.10) becomes
d dpP
— — —_— + = .
dE [5(1 £) df] viv+ 1P =0 (3.39)

z

Figure 3.5
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where [ has been replaced by » to avoid confusion. The corresponding radial
solutions for U(r)/r in (3.2) are r* and r~*~'. With a power series solution,

©

P§) = & a

j=0

substituted into (3.39), the vanishing of the coefficient of the lowest power of &
requires a = 0. The recursion relation between successive coefficients in the series
is then

G _(G-w@Gtr+1)
j (j+ 1)

; (3.40)

Choosing a, = 1 to normalize the solution to unity at £ = 0 (cos 6 = 1), we have
the series representation

(c»+1)
11!

CEr+ DO+ DEE2) o (54

P& =1+ 212!

&+
We first observe that if v is zero or a positive integer the series terminates. The
reader can verify that for v =1 = 0, 1, 2,..., the series (3.41) is exactly the
Legendre polynomials (3.15). For v not equal to an integer, (3.41) represents a
generalization and is called a Legendre function of the first kind and order v. The
series (3.41) is an example of a hypergeometric function ,F(a, b; c¢; z) whose
series expansion is

ab£+a(a + Dbb + 1) 2>

Fabcz)=1+%2
ofi(a, by e;2) =1+ 77y c+1) 2

Comparison with (3.41) shows that the Legendre function can be written

P,(x) = 2F1<—v, T . x) (3.42)
Here we have returned to our customary variable x = cos 6. The properties of
the hypergeometric functions are well known (see Morse and Feshbach, Chapter
5, Dennery and Krzywicki, Sections IV.16-18, Whittaker and Watson, Chapter
XIV). The Legendre function P,(x) is regular at x = 1 and for |x| < 1, but is
singular at x = —1 unless v is an integer. Depending on the value of v, it has a
certain number of zeros on the range |x| < 1. Since the polynomial P,(x) has /
zeros for |x| < 1, we anticipate that for real » more and more zeros occur as v
gets larger and larger. Furthermore, the zeros are distributed more or less uni-
formly on the interval. In particular, the first zero moves closer and closer to
x = 1 as vincreases.

The basic solution to the Laplace boundary-value problem of Fig. 3.5 is

Ar*P,(cos 6)

where v > 0 is required for a finite potential at the origin. Since the potential
must vanish at § = g for all , it is necessary that

P,(cosB) =0 (3.43)

This is an eigenvalue condition on v. From what was just stated about the
zeros of P, it is evident that (3.43) has an infinite number of solutions, v = v
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(k =1,2,...), which we arrange in order of increasing magnitude. For v = »,,
x = cos B is the first zero of P, (x). For v = 1,, x = cos B is the second zero
of P,,(x), and so on. The complete solution for the azimuthally symmetric poten-
tial in the region 0 = 6 < B is*

O(r, ) = ]Zl Agr*P, (cos 6) (3.44)

In the spirit of Section 2.11 we are interested in the general behavior of the
potential and fields in the neighborhood of » = 0 and not in the full solution with
specific boundary conditions imposed at large r. Thus we approximate the be-
havior of the potential near r = 0 by the first term in (3.44) and write

®