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Vector Formulas

a-(b X c) =b-(c X a) =e: (aX b)

a X (b X c) = (a- c)b — (a- b)e

(a X b)- (ec X d) = (a- c)(b- d) — (a- d)(b- Cc)

V x Vu = 0

V-(V x a) =0

Vx(V xa) = V(V-a) — Va

V-(wa)=a-Vi+ WV-a

V x (wa) = VW X a+ WV Xa

Via: b) = (a- V)b + (b- V)a + a x (V X b) + bX (V X a)

V-(a x b) =b-(V X a) — a-(V X Db)

V x (a X b) = a(V -b) — b(V-- a) + (b- V)a — (a- V)b

If x is the coordinate of a point with respect to someorigin, with magnitude

r = |x|, n = x/r is a unit radial vector, and f(r) is a well-behaved functionofr,

then

V-x=3 Vxx=0

Veinfj==f+% vx [ng()] = 0
or

(a- v)ng(r) = 2fa — ma m)] + nam) S
V(x: a) =a+x(V-a) + i(L X a)

1 :
where L = — (x X V)is the angular-momentum operator.
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Theorems from Vector Calculus

In the following ¢, W, and A are well-behaved scalar or vector functions, V is a

three-dimensional volume with volume element d°x, S is a closed two-

dimensional surface bounding V, with area element da and unit outward normal

n at da.

| V-Adx = | A-nda (Divergence theorem)
V S

| Vis d°x -| yn da
V S

| Vx Ad=| nx Ada
V S

| (PV+ Vb- Vi) d’x = I on» Vi da (Green’sfirst identity)
V

I, (dV— WV) dx = I (pbVu — WVdb)-n da (Green’s theorem)

Inthe following S is an open surface and is the contour boundingit, with line

element dl. The normal n to S is defined by the right-hand-screwrule in relation
to the sense of the line integral around C.

I (V x A)- nda = ¢ A: dl (Stokes’s theorem)
C

[n x Vu da =>wl
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To the memoryof myfather,

Walter David Jackson





Preface

It has been 36 years since the appearanceofthefirst edition of this book, and 23
years since the second. Such intervals may be appropriate for a subject whose

fundamental basis was completely established theoretically 134 years ago by

Maxwell and experimentally 110 years ago by Hertz. Still, there are changes in
emphasis and applications. This third edition attempts to address both without

any significant increase in size. Inevitably, some topics present in the second

edition had to be eliminated to make room for new material. One major omission

is the chapter on plasmaphysics, although somepieces appear elsewhere. Read-
ers who miss particular topics may, I hope, be able to avail themselves of the
second edition.

The mostvisible changeis the use of SI units in thefirst 10 chapters. Gaussian
units are retained in the later chapters, since such units seem more suited to
relativity and relativistic electrodynamics than SI. As a reminder of the sys-
tem of units being employed, the running head on each left-hand page carries
‘““__ST” or ‘““—G”depending on the chapter.

Mytardy adoption of the universally accepted SI system is a recognition that

almost all undergraduate physics texts, as well as engineering booksatall levels,
employ SI units throughout. For many years Ed Purcell and I had a pact to
support each other in the use of Gaussian units. Now I have betrayed him! Al-

though this book is formally dedicated to the memory of myfather, I dedicate

this third edition informally to the memory of Edward Mills Purcell (1912-1997),
a marvelous physicist with deep understanding, a great teacher, and a wonderful
man.

Becauseof the increasing use of personal computers to supplement analytical

work or to attack problems not amenable to analytic solution, I have included

some new sections on the principles of some numerical techniquesfor electro-

statics and magnetostatics, as well as some elementary problems. Instructors may

use their ingenuity to create more challenging ones. The aim is to provide an

understanding of such methods before blindly using canned software or even
Mathematica or Maple.

There has been some rearrangement of topics—Faraday’s law and quasi-

static fields are now in Chapter 5 with magnetostatics, permitting a morelogical

discussion of energy and inductances. Another major changeis the consolidation

of the discussion of radiation by charge-current sources, in both elementary and
exact multipole forms, in Chapter 9. All the applications to scattering and dif-
fraction are in Chapter 10.

The principles of optical fibers and dielectric waveguides are discussed in two

new sections in Chapter 8. In Chapter 13 the treatment of energy loss has been
shortened and strengthened. Because of the increasing importance of synchro-

tron radiation as a research tool, the discussion in Chapter 14 has been aug-
mented by a detailed section on the physics of wigglers and undulators for syn-
chroton light sources. There is new material in Chapter 16 on radiation reaction

and models of classical charged particles, as well as changed emphasis.
There is much tweaking by small amounts throughout. I hopethe reader will

Vil



Vill Preface

not notice, or will notice only greater clarity. To mention but a few minoraddi-
tions: estimating self-inductances, Poynting’s theorem in lossy materials, polar-
ization potentials (Hertz vectors), Goos—Hiancheneffect, attenuation in optical
fibers, London penetration depth in superconductors. And more problems, of
course! Over 110 new problems, a 40%increase, all aimed at educating, not
discouraging.

In preparing this new edition and making corrections, I have benefited from
questions, suggestions, criticism, and advice from manystudents, colleagues, and
newfoundfriends. I am in debtto all. Particular thanks for help in various ways
go to Myron Bander, David F. Bartlett, Robert N. Cahn, John Cooper, John L.
Gammel, David J. Griffiths, Leroy T. Kerth, Kwang J. Kim, Norman M.Kroll,
Michael A. Lee, Harry J. Lipkin, William Mendoza, Gerald A. Miller, William
A. Newcomb, Ivan Otero, Alan M.Portis, Fritz Rohrlich, Wayne M.Saslow,
Chris Schmid, Kevin E. Schmidt, and George H.Trilling.

J. David Jackson

Berkeley, California, 1998, 2001



Preface to the Second Edition

In the thirteen years since the appearance of the first edition, my interest in
classical electromagnetism has waxed and waned,but neverfallen to zero. The

subject is ever fresh. There are always important new applications and examples.
The present edition reflects two efforts on my part: the refinement and improve-

ment of material already in the first edition; the addition of new topics (and the
omission of a few).

The major purposes and emphasisarestill the same, but there are extensive
changes and additions. A major augmentation is the “Introduction and Survey”’
at the beginning. Topics such as the present experimental limits on the mass of

the photonandthestatus of linear superposition are treated there. The aim is to
provide a survey of those basics that are often assumed to be well known when

one writes down the Maxwell equations and begins to solve specific examples.

Other major changesin thefirst half of the book include a new treatmentof the
derivation of the equations of macroscopic electromagnetism from the micro-

scopic description; a discussion of symmetry properties of mechanical and elec-

tromagnetic quantities; sections on magnetic monopoles and the quantization
condition of Dirac; Stokes’s polarization parameters; a unified discussion of the

frequency dispersion characteristics of dielectrics, conductors, and plasmas;a dis-

cussion of causality and the Kramers-Kronig dispersion relations; a simplified,

but still extensive, version of the classic Sommerfeld—Brillouin problem of the

arrival of a signal in a dispersive medium (recently verified experimentally); an
unusual example of a resonant cavity; the normal-mode expansion of an arbitrary

field in a wave guide; and related discussions of sources in a guideor cavity and
the transmission andreflection coefficients of flat obstacles in wave guides.

Chapter 9, on simple radiating systems and diffraction, has been enlarged to
includescattering at long wavelengths (the blue sky, for example) and the optical
theorem. Thesections on scalar and vectorial diffraction have been improved.

Chapters 11 and 12, on special relativity, have been rewritten almost com-

pletely. The old pseudo-Euclidean metric with x, = ict has been replaced by

eo” (with g° = +1, g’ = —1,i = 1, 2, 3). The change of metric necessitated a
complete revision and thus permitted substitution of modern experiments and
concerns about the experimentalbasis of the special theory for the time-honored
aberration of starlight and the Michelson—Morley experiment. Other aspects

have been modernized, too. The extensive treatment of relativistic kinematics of

the first edition has been relegated to the problems. In its stead is a discussion
of the Lagrangian for the electromagnetic fields, the canonical and symmetric
stress-energy tensor, and the Proca Lagrangian for massive photons.

Significant alterations in the remaining chapters include a new section on

transition radiation, a completely revised (and much moresatisfactory) semi-
classical treatment of radiation emitted in collisions that stresses momentum
transfer instead of impact parameter, and a better derivation of the coupling of

multipole fields to their sources. The collection of formulas and pagereferences

to special functions on the front and backflyleaves is a much requested addition.

Of the 278 problems, 117 (more than 40 percent) are new.
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The one area that remains almost completely unchangedis the chapter on
magnetohydrodynamics and plasma physics. I regret this. But the book obviously

has grown tremendously, and there are available many books devoted exclusively

to the subject of plasmas or magnetohydrodynamics.

Of minor note is the change from Maxwell’s equations and a Green’s func-
tion to the Maxwell equations and a Green function. The latter boggles some

minds, but is in conformity with other usage (Bessel function, for example).It is
still Green’s theorem, however, because that’s whose theorem it is.

Work on this edition began in earnest during the first half of 1970 on the
occasion of a sabbatical leave spent at Clare Hall and the Cavendish Laboratory
in Cambridge. I am grateful to the University of California for the leave and

indebted to N. F. Mott for welcoming meas a visitor to the Cavendish Laboratory

and to R. J. Eden and A.B. Pippard for my appointmentas a Visiting Fellow of

Clare Hall. Tangible and intangible evidence at the Cavendish of Maxwell, Ray-
leigh and Thomsonprovided inspiration for my task; the stimulation of everyday
activities there provided necessary diversion.

This new edition has benefited from questions, suggestions, comments and
criticism from many students, colleagues, and strangers. Among those to whom
] owe somespecific debt of gratitude are A. M. Bincer, L. S. Brown, R. W. Brown,

E. U. Condon, H. H. Denman,S. Deser, A. J. Dragt, V. L. Fitch, M. B. Halpern,

A. Hobson,J. P. Hurley, D. L. Judd, L. T. Kerth, E. Marx, M. Nauenberg,A.B.

Pippard, A. M. Portis, R. K. Sachs, W. M.Saslow, R. Schleif, V. L. Telegdi, T.

Tredon, E. P. Tryon, V. F. Weisskopf, and Dudley Williams. Especially helpful
were D. G. Boulware, R. N. Cahn, Leverett Davis, Jr., K. Gottfried, C. K. Gra-

ham, E. M. Purcell, and E. H. Wichmann.I send my thanks andfraternalgreet-

ings to all of these people, to the other readers who have written to me, and the

countless students who havestruggled with the problems (and sometimeswritten
asking for solutions to be dispatched before some deadline!). To my mind, the

book is better than ever. May each reader benefit and enjoy!

J. D. Jackson

Berkeley, California, 1974



Preface to the First Edition

Classical electromagnetic theory, together with classical and quantum mechanics,
forms the core of present-day theoretical training for undergraduate and grad-

uate physicists. A thorough groundingin these subjects is a requirement for more
advancedorspecialized training.

Typically the undergraduate program in electricity and magnetism involves
two or perhaps three semesters beyond elementary physics, with the emphasis
on the fundamental laws, laboratory verification and elaboration of their con-

sequences, circuit analysis, simple wave phenomena, and radiation. The mathe-

matical tools utilized include vector calculus, ordinary differential equations with

constant coefficients, Fourier series, and perhaps Fourier or Laplace transforms,

partial differential equations, Legendre polynomials, and Bessel functions.
As a general rule, a two-semester course in electromagnetic theory is given

to beginning graduate students. It is for such a course that my bookis designed.

My aim in teaching a graduate course in electromagnetism 1sat least threefold.

The first aim is to present the basic subject matter as a coherent whole, with
emphasis on the unity of electric and magnetic phenomena,bothin their physical

basis and in the mode of mathematical description. The second, concurrent aim

is to develop and utilize a number of topics in mathematical physics which are

useful in both electromagnetic theory and wave mechanics. These include
Green’s theorems and Green’s functions, orthonormal expansions, spherical har-
monics, cylindrical and spherical Bessel functions. A third and perhaps most
important purpose is the presentation of new material, especially on the inter-

action of relativistic charged particles with electromagneticfields. In this last area

personal preferences and prejudices enter strongly. My choice of topics is gov-

erned by whatI feel is important and useful for students interested in theoretical
physics, experimental nuclear and high-energy physics, and thatas yetill-defined
field of plasma physics.

The book begins in the traditional manner with electrostatics. The first six
chapters are devoted to the development of Maxwell’s theory of electromagne-

tism. Much of the necessary mathematical apparatusis constructed along the way,

especially in Chapter 2 and 3, where boundary-value problems are discussed
thoroughly. The treatmentis initially in terms of the electric field E and the

magnetic induction B, with the derived macroscopic quantities, D and H,intro-

duced by suitable averaging over ensembles of atoms or molecules. In the dis-

cussion of dielectrics, simple classical models for atomic polarizability are de-
scribed, but for magnetic materials no such attempt to made.Partly this omission

was a question of space, but truly classical models of magnetic susceptibility are
not possible. Furthermore, elucidation of the interesting phenomenonofferro-
magnetism needs almost a bookinitself.

The next three chapters (7-9)illustrate various electromagnetic phenomena,
mostly of a macroscopic sort. Plane waves in different media, including plasmas
as well as dispersion and the propagation of pulses, are treated in Chapter 7. The

discussion of wave guides and cavities in Chapter 8 is developed for systems of
arbitrary cross section, and the problems of attenuation in guides and the Q of

Xi



Xi Preface to the First Edition

a cavity are handled in a very general way which emphasizes the physical pro-

cesses involved. The elementary theory of multipole radiation from a localized

source and diffraction occupy Chapter 9. Since the simple scalar theory of dif-
fraction is covered in manyoptics textbooks, as well as undergraduate books on

electricity and magnetism, I have presented an improved,althoughstill approx-

imate, theory of diffraction based on vector rather than scalar Green’s theorems.
The subject of magnetohydrodynamics and plasmas receives increasingly

more attention from physicists and astrophysicists. Chapter 10 represents a sur-
vey of this complexfield with an introduction to the main physical ideas involved.

The first nine or ten chapters constitute the basic material of classical elec-
tricity and magnetism. A graduate student in physics may be expected to have
been exposed to muchof this material, perhaps at a somewhatlowerlevel, as an
undergraduate. But he obtains a more mature view of it, understands it more
deeply, and gains a considerable technicalability in analytic methods of solution
when he studies the subject at the level of this book. He is then prepared to go
on to more advancedtopics. The advanced topics presented here are predomi-
nantly those involving the interaction of charged particles with each other and
with electromagnetic fields, especially when movingrelativistically.

The special theory of relativity had its origins in classical electrodynamics.
And even after almost 60 years, classical electrodynamicsstill impresses and de-
lights as a beautiful example of the covariance of physical laws under Lorentz
transformations. The special theory of relativity is discussed in Chapter 11, where
all the necessary formal apparatusis developed, various kinematic consequences
are explored, and the covariance of electrodynamics is established. The next
chapter is devotedtorelativistic particle kinematics and dynamics. Although the
dynamics of charged particles in electromagneticfields can properly be consid-
ered electrodynamics, the reader may wonder whether such things as kinematic
transformationsofcollision problems can. Myreply is that these examples occur
naturally once one has established the four-vector character of a particle’s mo-
mentum and energy, that they serve as useful practice in manipulating Lorentz
transformations, and that the end results are valuable and often hard to find
elsewhere.

Chapter 13 on collisions between charged particles emphasizes energy loss
and scattering and develops concepts of use in later chapters. Here forthefirst
time in the book I use semiclassical arguments based on the uncertainty principle
to obtain approximate quantum-mechanical expressions for energy loss, etc.,
from the classical results. This approach, so fruitful in the hands of Niels Bohr
and E. J. Williams, allows one to see clearly how and when quantum-mechanical
effects enter to modify classical considerations.

The important subject of emission of radiation by accelerated point charges
is discussed in detail in Chapters 14 and 15. Relativistic effects are stressed, and
expressions for the frequency and angular dependence of the emitted radiation
are developedin sufficient generality for all applications. The examples treated
range from synchrotron radiation to bremsstrahlung andradiative beta processes.
Cherenkovradiation and the Weizsacker—Williams methodof virtual quanta are
also discussed. In the atomic and nuclear collision processes semiclassical argu-
ments are again employed to obtain approximate quantum-mechanicalresults.I
lay considerable stress on this point because I feel that it is important for the
student to see that radiative effects such as bremsstrahlung are almost entirely
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classical in nature, even though involving small-scale collisions. A student who
meets bremsstrahlungforthefirst time as an example of a calculation in quantum

field theory will not understandits physical basis.
Multipole fields form the subject matter of Chapter 16. The expansion of

scalar and vectorfields in spherical wavesis developed from first principles with
no restrictions as to the relative dimensions of source and wavelength. Then the
properties of electric and magnetic multipole radiation fields are considered.

Once the connection to the multiple moments of the source has been made,

examples of atomic and nuclear multipole radiation are discussed, as well as a

macroscopic source whose dimensions are comparable to a wavelength. Thescat-

tering of a plane electromagnetic wave by a spherical object is treated in some

detail in order to illustrate a boundary-value problem with vector spherical

waves.
In the last chapter the difficult problem of radiative reaction is discussed.

The treatmentis physical, rather than mathematical, with the emphasis on delim-

iting the areas where approximate radiative corrections are adequate and on

finding where and whyexisting theories fail. The original Abraham—Lorentz the-
ory of the self-force is presented, as well as more recentclassical considerations.

The book ends with an appendix on units and dimensions and a bibliography.
In the appendix I have attempted to showthe logical steps involved in setting up

a system of units, without haranguing the reader as to the obvious virtues of my

choice of units. I have provided two tables which I hope will be useful, one for
converting equations and symbols and the other for converting a given quantity

of something from so many Gaussian units to so many mksunits, and vice versa.

The bibliography lists books which I think the reader may find pertinent and
useful for reference or additional study. These booksare referred to by author’s
namein the readinglists at the end of each chapter.

This book is the outgrowth of a graduate course in classical electrodynamics

which I have taught off and on over the past eleven years, at both the University

of Illinois and McGill University. I wish to thank my colleagues and students at
both institutions for countless helpful remarks and discussions. Special mention

must be madeof Professor P. R. Wallace of McGill, who gave methe opportunity

and encouragement to teach what was then a rather unorthodox coursein elec-

tromagnetism, and Professors H. W. Wyld and G. Ascoli of Illinois, who have
been particularly free with many helpful suggestions on the treatmentof various
topics. My thanksare also extended to Dr. A. N. Kaufmanfor reading and com-

menting on a preliminary version of the manuscript, and to Mr. G. L. Kane for

his zealous help in preparing the index.

J. D. Jackson

Urbana,Illinois, January, 1962
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[Introduction and Survey

Although amber and lodestone were knownto the ancient Greeks, electro-
dynamics developed as a quantitative subject in less than a hundred years.

Cavendish’s remarkable experiments in electrostatics were done from 1771 to
1773. Coulomb’s monumental researches began to be published in 1785. This

marked the beginning of quantitative research in electricity and magnetism on a
worldwidescale. Fifty years later Faraday wasstudying the effects of time-varying

currents and magnetic fields. By 1864 Maxwell had published his famous paper

on a dynamical theory of the electromagnetic field. ‘Twenty-four years later

(1888) Hertz published his discovery of transverse electromagnetic waves, which

propagated at the same speed as light, and placed Maxwell’s theory on a firm

experimental footing.

The story of the development of our understanding of electricity and mag-

netism and of light is, of course, much longer and richer than the mention of a
few names from one century would indicate. For a detailed accountof the fas-

cinating history, the reader should consult the authoritative volumes by
Whittaker.* A briefer account, with emphasis on optical phenomena, appearsat

the beginning of Born and Wolff.
Since the 1960s there has been a true revolution in our understandingof the

basic forces and constituents of matter. Now (1990s) classical electrodynamics

rests in a sector of the unified description of particles and interactions knownas

the standard model. The standard model gives a coherent quantum-mechanical
description of electromagnetic, weak, and strong interactions based on funda-

mental constituents—quarks and leptons—interacting via force carriers—pho-
tons, W and Z bosons, and gluons. The unified theoretical frameworkis gener-
ated through principles of continuous gauge (really phase) invariance of the

forces and discrete symmetries of particle properties.

From the point of view of the standard model, classical electrodynamicsis a
limit of quantum electrodynamics (for small momentum and energy transfers,

and large average numbersofvirtual or real photons). Quantum electrodynamics,

in turn, is a consequence of a spontaneously broken symmetry in a theory in

which initially the weak and electromagnetic interactions are unified and the

force carriers of both are massless. The symmetry breaking leaves the electro-

magnetic force carrier (photon) massless with a Coulomb’s law ofinfinite range,
while the weak force carriers acquire masses of the order of 80-90 GeV/c’ with

a weak interaction at low energies of extremely short range (2 X 107'* meter).
Because of the origins in a unified theory, the range and strength of the weak
interaction are related to the electromagnetic coupling (the fine structure con-

stant a ~ 1/137).

*Ttalicized surnames denote booksthat are cited fully in the Bibliography.
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Despite the presence of a rather large number of quantities that must be
taken from experiment, the standard model (together with generalrelativity at
large scales) provides a highly accurate description of nature in all its aspects,
from far inside the nucleus, to microelectronics, to tables and chairs, to the most
remote galaxy. Many of the phenomenaareclassical or explicable with nonrel-
ativistic quantum mechanics, of course, but the precision of the agreementof the
standard model with experimentin atomic and particle physics whererelativistic
quantum mechanicsrules is truly astounding. Classical mechanics and classical
electrodynamicsserved as progenitors of our current understanding,andstill play
important roles in practical life and at the research frontier.

This bookis self-contained in that, though some mathematical background
(vector calculus, differential equations) is assumed,the subject of electrodynam-
ics is developed from its beginningsin electrostatics. Most readersare not coming
to the subject for the first time, however. The purpose of this introduction is
therefore not to set the stage for a discussion of Coulomb’s law and otherbasics,
but rather to present a review and a surveyof classical electromagnetism. Ques-
tions such as the current accuracy of the inverse square law of force (mass of the
photon), the limits of validity of the principle of linear superposition, and the
effects of discreteness of charge and of energy differences are discussed. ““Bread
and butter’ topics such as the boundary conditions for macroscopic fields at
surfaces between different media and at conductors are also treated. The aim is
to set classical electromagnetism in context, to indicate its domain of validity,
and to elucidate someofthe idealizationsthat it contains. Someresults from later
in the book and some nonclassical ideas are used in the course of the discussion.
Certainly a reader beginning electromagnetism for the first time will not follow
all the argumentsor see their significance. For others, however, this introduction
will serve as a springboard into the later parts of the book, beyond Chapter5,
and will remind them of how the subject stands as an experimentalscience.

I.1 Maxwell Equations in Vacuum, Fields, and Sources

The equations governing electromagnetic phenomena are the Maxwell
equations,

V-D=p

vxH- way
ot (I.1a)

Vx E+ Bo
ot

V-B=0

where for external sources in vacuum, D = e,E and B = MoH. The first two
equations then become

V-E = ple

Vx B-—=.uJ
eat
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Implicit in the Maxwell equationsis the continuity equation for charge density

and current density,

0
F+v-J=0 (1.2)
ot

This follows from combining the time derivative of the first equation in (I.1a)

with the divergence of the second equation. Also essential for consideration of

charged particle motion is the Lorentz force equation,

F = q(E + v x B) (1.3)

which gives the force acting on a point charge g in the presence of electromag-

netic fields.
These equations have been written in SI units, the system of electromagnetic

units used in the first 10 chapters of this book. (Units and dimensionsare dis-
cussed in the Appendix.) The Maxwell equationsare displayed in the commoner

systems of units in Table 2 of the Appendix. Essential to electrodynamicsis the

speed of light in vacuum, given in SI units by c = (tro€p) ””. As discussed in the
Appendix, the meter is now defined in terms of the second (based on a hyperfine

transition in cesium-133) and the speedof light (c = 299 792 458 m/s, exactly).
These definitions assume that the speed oflight is a universal constant, consistent

with evidence (see Section 11.2.C) indicating that to a high accuracy the speed

of light in vacuum is independent of frequency from very low frequenciesto at

least vy = 10°* Hz (4 GeV photons). For most practical purposes we can approx-

imate c =~ 3 X 10® m/s or to be considerably more accurate, c = 2.998 x 10° m/s.

The electric and magnetic fields E and B in (1.1) were originally introduced
by means of the force equation (1.3). In Coulomb’s experiments forces acting

between localized distributions of charge were observed. Thereit 1s found useful
(see Section 1.2) to introduce the electric field E as the force per unit charge.
Similarly, in Ampére’s experiments the mutual forces of current-carrying loops

were studied (see Section 5.2). With the identification of NAqv as a current in a
conductor of cross-sectional area A with N charge carriers per unit volume mov-

ing at velocity v, we see that B in (1.3) is defined in magnitudeasa force per unit
current. Although E and B thusfirst appear just as convenient replacements for

forces produced bydistributions of charge and current, they have other important

aspects. First, their introduction decouples conceptually the sources from thetest

bodies experiencing electromagnetic forces. If the fields E and B from two source
distributions are the same at a given point in space, the force acting on a test
charge or current at that point will be the same, regardless of how different the

source distributions are. This gives E and B in (1.3) meaning in their ownright,
independent of the sources. Second, electromagnetic fields can exist in regions

of space where there are no sources. They can carry energy, momentum, and

angular momentum andso have an existence totally independent of charges and

currents. In fact, though there are recurring attempts to eliminate explicit ref-
erenceto thefields in favor of action-at-a-distance descriptions of the interaction

of charged particles, the concept of the electromagneticfield is one of the most
fruitful ideas of physics, both classically and quantum mechanically.

The concept of E and B as ordinary fields is a classical notion. It can be

thoughtof as the classical limit (limit of large quantum numbers) of a quantum-

mechanical description in terms of real or virtual photons. In the domain of
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macroscopic phenomenaand even some atomic phenomena,the discrete photon
aspect of the electromagneticfield can usually be ignoredorat least glossed over.
For example, 1 meter from a 100-watt light bulb, the root mean squareelectric
field is of the order of 50 V/m andthere are of the order of 10'° visible photons/
cm*-s. Similarly, an isotropic FM antenna with a power of 100 watts at 10° Hz
producesan rmselectric field of only 0.5 mV/m at a distance of 100 kilometers,
but this still correspondsto a flux of 10'* photons/cm?-s, or about 10° photonsin
a volume of 1 wavelength cubed (27 m*)at that distance. Ordinarily an apparatus
will not be sensible to the individual photons; the cumulative effect of many
photons emitted or absorbed will appear as a continuous, macroscopically ob-
servable response. Then a completely classical description in terms of the
Maxwell equationsis permitted and is appropriate.

Howis one to decide a priori whena classical description of the electromag-

netic fields is adequate? Some sophistication is occasionally needed, butthe fol-
lowing is usually a sufficient criterion: When the numberof photonsinvolved can
be taken as large but the momentum carried by an individual photon is small
compared to the momentum of the material system, then the response of the
material system can be determined adequately from classical description of the

electromagnetic fields. For example, each 10° Hz photon emitted by our FM

antennagives it an impulse of only 2.2 x 10-** N-s. A classical treatmentis surely
adequate. Again, the scattering of light by a free electron is governed by the
classical Thomson formula (Section 14.8) at low frequencies, but by the laws of
the Compton effect as the momentum hfw/c of the incident photon becomessig-

nificant compared to mc. The photoelectric effect is nonclassical for the matter
system, since the quasi-free electrons in the metal change their individual ener-
gies by amounts equal to those of the absorbed photons, but the photoelectric
current can be calculated quantum mechanically for the electrons usinga classical
description of the electromagneticfields.

The quantum nature of the electromagnetic fields must, on the other hand,
be taken into account in spontaneous emission of radiation by atoms, or by any
other system that initially lacks photons and has only a small numberof photons
presentfinally. The average behavior maystill be describable in essentially clas-
sical terms, basically because of conservation of energy and momentum. An ex-
ample is the classical treatment (Section 16.2) of the cascading of a charged
particle down throughthe orbits of an attractive potential. At high particle quan-
tum numbers,a classical description of particle motion is adequate, and the sec-
ular changes in energy and angular momentum canbecalculated classically from
the radiation reaction because the energies of the successive photons emitted are
small compared to the kinetic or potential energy of the orbiting particle.

The sources in (I.1) are p(x, t), the electric charge density, and J(x, t), the
electric current density. In classical electromagnetism they are assumed to be
continuous distributions in x, although weconsider from time to time localized
distributions that can be approximated by points. The magnitudesof these point
charges are assumed to be completely arbitrary, but are known to berestricted
in reality to discrete values. The basic unit of charge is the magnitude of the
charge on the electron,

lqe| = 4.803 206 8(15) x 107"? esu
= 1,602 177 33(49) x 107°C
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where the errors in the last two decimal places are shown in parentheses. The

charges on the proton and on all presently knownparticles or systemsof particles

are integral multiples of this basic unit.* The experimental accuracy with which

it is known that the multiples are exactly integers is phenomenal(better than 1
part in 107°). The experiments are discussed in Section 11.9, where the question
of the Lorentz invariance of chargeis also treated.

The discreteness of electric charge does not need to be considered in most

macroscopic applications. A 1-microfarad capacitor at a potential of 150 volts,

for example, has a total of 10° elementary charges on each electrode. A few
thousand electrons more or less would not be noticed. A current of 1 microam-
pere corresponds to 6.2 X 10'* elementary charges per second. Thereare, of

course, some delicate macroscopic or almost macroscopic experiments in which
the discreteness of charge enters. Millikan’s famous oil drop experimentis one.
His droplets were typically 10°* cm in radius and had a few or few tensofele-

mentary charges on them.

There is a lack of symmetry in the appearance of the source terms in the

Maxwell equations (I.1a). The first two equations have sources; the second two
do not. This reflects the experimental absence of magnetic charges and currents.

Actually, as is shown in Section 6.11, particles could have magnetic as well as
electric charge.If all particles in nature had the sameratio of magnetic to electric
charge, the fields and sources could be redefined in such a way that the usual

Maxwell equations (I.1a) emerge. In this sense it is somewhat a matter of con-
vention to say that no magnetic charges or currents exist. Throughout most of
this book it is assumedthat only electric charges and currents act in the Maxwell
equations, but some consequencesof the existence of a particle with a different
magnetic to electric charge ratio, for example, a magnetic monopole, are de-

scribed in Chapter6.

I.2 Inverse Square Law or the Mass of the Photon

The distance dependence of the electrostatic law of force was shown quantita-
tively by Cavendish and Coulombto be an inverse square law. Through Gauss’s

law and the divergence theorem (see Sections 1.3 and 1.4) this leads to thefirst
of the Maxwell equations (I.1b). The original experiments had an accuracy of
only a few percent and, furthermore, were at a laboratory length scale. Experi-

ments at higher precision and involving different regimes of size have beenper-

formed overthe years. It is now customary to quotethe tests of the inverse square

law in one of two ways:

2+e(a) Assumethat the force varies as 1/r“"* and quote a value orlimitfore.

(b) Assumethat the electrostatic potential has the “Yukawa” form (see Section
12.8), r-'e-“” and quote a value or limit for w or w*. Since w = m,clh,
where m,, is the assumed massof the photon,the test of the inverse square
law is sometimes phrased in terms of an upper limit on m,. Laboratory

experiments usually give e and perhaps yw or m,; geomagnetic experiments
give pw Or m,,.

*Quarks have charges ¥%3 and —% in these units, but are never (so far) seen individually.
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Figure I.1 Cavendish’s apparatus for establishing the inverse square law of
electrostatics. Top, facsimile of Cavendish’s own sketch; bottom,line drawing by a
draughtsman. The inner globe is 12.1 inches in diameter, the hollow pasteboard
hemispheresslightly larger. Both globe and hemispheres were covered with tinfoil “to
make them the more perfect conductorsof electricity.” (Figures reproduced by
permission of the Cambridge University Press.)
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The original experiment with concentric spheres by Cavendish* in 1772 gave
an upper limit on ¢ of |«| <= 0.02. His apparatus is shown in Fig. I.1.: About 100
years later Maxwell performed a very similar experiment at Cambridge’ andset
an upperlimit of |e] = 5 <X 107°. Two other noteworthy laboratory experiments

based on Gauss’s law are those of Plimpton and Lawton,* which gave |e| < 2 X
10~°, and the recent one of Williams, Faller, and Hill.’ A schematic drawing of
the apparatus of the latter experiment is shown in Fig. I.2. Though nota static
experiment (v = 4 X 10° Hz), the basic idea is almost the same as Cavendish’s.
He looked for a charge on the inner sphere after it had been broughtinto elec-
trical contact with the charged outer sphere and then disconnected; he found
none. Williams, Faller, and Hill looked for a voltage difference between two

concentric shells when the outer one was subjected to an alternating voltage of

+10 kV with respect to ground. Their sensitivity was such that a voltage differ-
ence of less than 10°’ V could have been detected. Their null result, when

interpreted by means of the Proca equations (Section 12.8), gives a limit of

e = (2.7 + 3.1) x 10-"*.
Measurements of the earth’s magnetic field, both on the surface and out from

the surface by satellite observation, permit the best direct limits to be set on € or
equivalently the photon mass m,. The geophysical and also the laboratory ob-
servations are discussed in the reviews by Kobzarev and Okun’ and by Goldhaber
and Nieto, listed at the end of this introduction. The surface measurements of

the earth’s magneticfield give slightly the best value (see Problem 12.15), namely,

m, <4 X 10-°' kg

Or

ww > 10° m

For comparison, the electron mass is m. = 9.1 X 10°*' kg. The laboratory
experiment of Williams, Faller, and Hill can be interpreted as setting a limit
m, <1.6 X 10°*° kg, only a factor of 4 poorer than the geomagneticlimit.

A rough limit on the photon mass can be set quite easily by noting the ex-
istence of very low frequency modes in the earth-ionosphere resonant cavity
(Schumann resonances, discussed in Section 8.9). The double Einstein relation,
hv = m,c’, suggests that the photon mass must satisfy an inequality, m, <
hyplc*, where v is any electromagnetic resonant frequency. The lowest Schumann
resonance has 1 ~ 8 Hz. From this we calculate m, < 6 X 10°’ kg, a very small
value only one order of magnitude above the best limit. While this argument has
crude validity, more careful consideration (see Section 12.8 and the references
given there) showsthat the limit is roughly (R/H)"” = 10 times larger, R ~ 6400
km being the radius of the earth, and H = 60 km beingthe height of the iono-

*H. Cavendish, Electrical Researches, ed. J. C. Maxwell, Cambridge University Press, Cambridge

(1879), pp. 104-113.

'Tbid., see note 19.

*S. J. Plimpton and W. E. Lawton, Phys. Rev. 50, 1066 (1936).

SE. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Lett. 26, 721 (1971).
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Figure 1.2. Schematic diagram of the “Cavendish” experiment of Williams, Faller, and
Hill. The concentric icosahedrons are conducting shells. A 4 MHz voltage of 10 kV
peak is applied betweenshells 5 and 4. Shell 4 and its contiguous shells 2 and 3 are
roughly 1.5 meters in diameter and contain shell 1 inside. The voltage difference
betweenshells 1 and 2 (if any) appears across the inductor indicated at about 8 o’clock
in shell 1. The amplifier and optics system are necessary to extract the voltage
information to the outside world. They are equivalent to Cavendish’s system ofstrings
that automatically opened the hinged hemispheres and brought upthe pith balls to test
for charge on the inner sphere. (Figure reproduced with permission of the authors.)
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sphere.* In spite of this dilution factor, the limit of 10~** kg set by the mere
existence of Schumann resonancesis quite respectable.

The laboratory and geophysical tests show that on length scales of order 1077
to 10’ m, the inverse square law holds with extreme precision. At smaller dis-
tances we must turn to less direct evidence often involving additional assump-

tions. For example, Rutherford’s historical analysis of the scattering of alpha
particles by thin foils substantiates the Coulomb law of force down to distances
of the order of 107 '* m, providedthe alpha particle and the nucleus can be treated
as classical point charges interacting statically and the charge cloud of the elec-
trons can be ignored. All these assumptions can be, and have been,tested, of

course, but only within the framework of the validity of quantum mechanics,
linear superposition (see below), and other (very reasonable) assumptions. At
still smaller distances, relativistic quantum mechanics is necessary, and strong
interaction effects enter to obscure the questions as well as the answers. Never-
theless, elastic scattering experiments with positive and negative electronsat cen-
ter of mass energies of up to 100 GeV have shown that quantum electrodynamics
(the relativistic theory of point electrons interacting with massless photons) holds
to distances of the order of 107~'* m. We conclude that the photon mass can be
taken to be zero (the inverse square force law holds) over the whole classical
range of distances and deep into the quantum domain as well. The inverse square
law is knownto hold overat least 25 orders of magnitude in the length scale!

L.3 Linear Superposition

The Maxwell equations in vacuum are /inearin the fields E and B. This linearity

is exploited so often, for example, with hundredsof different telephone conver-
sations on a single microwave link, that it is taken for granted. There are, of

course, circumstances where nonlinear effects occur—in magnetic materials, in

crystals responding to intense laser beams, even in the devices used to put those

telephone conversations on and off the microwave beam. But here weare con-
cerned with fields in vacuum or the microscopic fields inside atoms and nuclei.

Whatevidence do we have to support the idea of linear superposition? At
the macroscopic level, all sorts of experiments test linear superposition at the
level of 0.1% accuracy—groups of charges and currents produce electric and

magnetic forces calculable by linear superposition, transformers perform as ex-

pected, standing waves are observed on transmission lines—the reader can make
a list. In optics, slit systems show diffraction patterns; x-ray diffraction tells us

about crystal structure; white light is refracted by a prism into the colors of the
rainbow and recombinedinto white light again. At the macroscopic and even at
the atomic level, linear superposition is remarkably valid.

It is in the subatomic domain that departures from linear superposition can
be legitimately sought. As charged particles approach each other veryclosely,
electric field strengths become enormous. If we think of a charged particle as a

*The basic point is that, to the extent that H/R is negligible, the extremely low frequency (ELF)
propagation is the sameas in a parallel plate transmission line in the fundamental TEM mode.This

propagation is unaffected by a finite photon mass, except through changesin the static capacitance
and inductance per unit length. Explicit photon mass effects occur in order (H/R) p’.
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localized distribution of charge, we see that its electromagnetic energy grows
larger and largeras the chargeis localized more and more.In attempting to avoid
infinite self-energies of point particles, it is natural to speculate that somesort of
saturation occurs, that field strengths have some upper bound. Such classical
nonlinear theories have been studied in the past. One well-known example is
the theory of Born and Infeld.* The vacuum is given electric and magnetic
permeabilities,

1/2
€ Mo 1 2p2 2
—=-—=/1+—(“RB-E 1.4
Eo UL b? (c ( )

where b is a maximum field strength. Equation (1.4) is actually a simplification
proposed earlier by Born alone.It suffices to illustrate the general idea. Fields
are obviously modified at short distances; all electromagnetic energiesarefinite.
But such theories suffer from arbitrariness in the manner of how the nonlinearity
occurs and also from grave problems with a transition to a quantum theory.
Furthermore, there is no evidenceofthis kindofclassical nonlinearity. The quan-
tum mechanics of many-electron atomsis described to high precision by normal
quantum theory with the interactions between nucleus and electrons and between
electrons and electrons given by a linear superposition of pairwise potentials (or
retarded relativistic interactions for fine effects). Field strengths of the order of
10"'-10'’ V/m exist at the orbits of electrons in atoms, while the electric field at
the edge of a heavy nucleusis of the order of 10*' V/m. Energy level differences
in light atomslike helium,calculated on the basis of linear superposition of elec-
tromagnetic interactions, are in agreement with experiment to accuracies that
approach 1 part in 10°. And Coulomb energies of heavy nuclei are consistent
with linear superposition of electromagnetic effects. It is possible, of course, that
for field strengths greater than 10*' V/m nonlinear effects could occur. One place
to look for such effects is in superheavy nuclei (Z > 110), both in the atomic
energy levels and in the nuclear Coulomb energy.’ At the present time there
is no evidence for any classical nonlinear behavior of vacuum fields at short
distances.

There is a quantum-mechanical nonlinearity of electromagnetic fields that
arises because the uncertainty principle permits the momentary creation of an
electron-positron pair by two photons and the subsequent disappearanceof the
pair with the emission of two different photons, as indicated schematically in Fig.
I.3. This processis called the scattering of light by light.*S The two incident plane
waves e*!"*~'1" and e’2**~!2' do not merely add coherently, as expected with
linear superposition, but interact and (with small probability) transform into two
different plane waves with wave vectors k, and k,. This nonlinear feature of

*M. Born and L. Infeld, Proc. R. Soc. London A144, 425 (1934). See M. Born, Atomic Physics,
Blackie, London (1949), Appendix VI, for an elementary discussion.

"An investigation of the effect of a Born—Infeld type of nonlinearity on the atomic energy levels in
superheavy elements has been madeby J. Rafelski, W. Greiner, and L. P. Fulcher, Nuovo Cimento
13B, 135 (1973).

*Whentwo of the photonsin Fig. I.3 are virtual photons representing interaction to second order
with a static nuclear Coulombfield, the process is known as Delbriick scattering. See Section 15.8 of
J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons, Addison-Wesley, Reading, MA
(1955).
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 Figure 1.3 The scattering oflight by light.
Schematic diagram of the process by which

ky photon-photonscattering occurs.

ko

quantum electrodynamics can be expressed,at least for slowly varying fields, in

terms of electric and magnetic permeability tensors of the vacuum:

D; = € > ExLx, B; = [Lo » Mill,

where

ech
€ik — Oik + Ac.

AT

[2(E? -— CB)Six + 7 c’BB;]

457m'"c
(1.5)
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Mic = On + Teg [ACB — E*)8x + 7 wE,| + ++:

Here eg and marethe charge (in Gaussian units) and massof the electron. These
results were first obtained by Euler and Kockel in 1935.* We observethat in the
classical limit (4 — 0), these nonlinear effects go to zero. Comparison with the
classical Born—Infeld expression (1.4) shows that for small nonlinearities, the
quantum-mechanicalfield strength

_Vv 4S le eG _ CG
— 0.51 +

4 2 he ré ro
 

plays a role analogous to the Born—Infeld parameter b. Here ro = eG/mc? =

2.8 X 10°m is the classical electron radius and e,/r, = 1.8 X 107° V/m is the
electric field at the surface of such a classical electron. Two commentsin passing:
(a) the e,, and yw, in (1.5) are approximations that fail for field strengths ap-
proaching b, or whenthefields vary too rapidly in space or time (%/mc setting
the critical scale of length and f/mc* of time); (b) the chance numerical coinci-
dence of b, and e,/2ris suggestive but probably notsignificant, since b, involves
Planck’s constant h.

In analogy with the polarization P = D — €oE, we speak of the field-
dependent termsin (1.5) as vacuum polarization effects. In addition to the scat-
tering of light by light or Delbriick scattering, vacuum polarization causes very
small shifts in atomic energy levels. The dominant contribution involvesa virtual
electron-positron pair, just as in Fig. I.3, but with only two photonlines instead

*H. Euler and B. Kockel, Naturwissenschaften 23, 246 (1935).
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of four. If the photonsare real, the process contributes to the mass of the photon
and is decreed to vanish. If the photonsare virtual, however, as in the electro-

magnetic interaction between a nucleus and anorbiting electron, or indeed for
any externally applied field, the creation and annihilation of a virtual electron-

positron pair from time to time causes observable effects.
Vacuum polarization is manifest by a modification of the electrostatic inter-

action between two chargesat short distances, described as a screening of the

“bare” charges with distance, or in more modern termsas a “‘running”’ coupling

constant. Since the charge of a particle is defined as the strength of its electro-
magnetic coupling observed at large distances (equivalent to negligible momen-
tum transfers), the presence of a screening action by electron-positron pairs

closer to the charge implies that the “‘bare”’ charge observed at short distances
is larger than the charge defined at large distances. Quantitatively, the lowest
order quantum-electrodynamicresult for the Coulomb potential energy between

two charges Z,e and Z,e, corrected for vacuum polarization,is

0. \/2Ane 2
V(r) = hc £220 i + Za dk veoan (1 + aJe (1.6)

r 3a Jam K K

whereais the fine structure constant (~ 1/137), m is the inverse Compton wave-
length (electron mass, multiplied by c/h). The integral, a superposition of Yukawa
potentials (e“’/r) is the one-loop contributionofall the virtual pairs. It increases
the magnitude of the potential energy at distances of separation inside the elec-
tron Compton wavelength (A/mc = ad) ~ 3.86 X 1071? m).

Because of its short range, the added vacuum polarization energy is unim-
portant in light atoms, except for very precise measurements. It is, however,
important in high Z atoms and in muonic atoms, where the heavier mass of the
muon (m,, ~ 207 m.) meansthat, even in the lightest muonic atoms, the Bohr

radius is well inside the range of the modified potential. X-ray measurements in
medium-mass muonic atomsprovide a highly accurate verification of the vacuum
polarization effect in (1.6).

The idea of a “‘running”’ coupling constant, that is, an effective strength of
interaction that changes with momentum transfer, is illustrated in electromag-
netism by exhibiting the spatial Fourier transform of the interaction energy(I.6):

4mZ,Z> a(Q")
Q?

The 1/Q* dependence is characteristic of the Coulomb potential (familiar in
Rutherford scattering), but now the strength is governed by the so-called running
coupling constant a(Q7”), the reciprocal of which is

 V(Q’) = (1.7)

yi. lt  1,/2[a(Q*)]" = a0) 3a in(2 (1.8)

Here a(0) = 1/137. 036... is the fine structure constant, e is the base of natural
logarithms, and Q*is the square of the wavenumber (momentum)transfer. The
expression (1.8) is an approximationfor large Q’/m’. The running coupling a(Q7)
increases slowly with increasing Q* (shorter distances); the particles are pene-
trating inside the cloud of screening electron-positron pairs and experiencing a

larger effective product of charges.
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Since the lowest order vacuum polarization energyis proportional to a times

the external charges, we describeit as a linear effect, even though it involves (in
a) the square of the internal charge of the electron and positron. Small higher

order effects, such as in Fig. I.3 with three of the photons corresponding to the
third powerof the external field or charge, are truly nonlinear interactions.

The final conclusion about linear superposition of fields in vacuum 1s that in

the classical domain of sizes and attainable field strengths there is abundant ev-

idence for the validity of linear superposition and no evidence againstit. In the
atomic and subatomic domain there are small quantum-mechanical nonlinear

effects whose origins are in the coupling between charged particles and the elec-
tromagnetic field. They modify the interactions between charged particles and
cause interactions between electromagnetic fields even if physical particles are
absent.

I.4 Maxwell Equations in Macroscopic Media

So far we have considered electromagnetic fields and sources in vacuum. The

Maxwell equations (I.1b) for the electric and magnetic fields E and B can be
thought of as equations giving the fields everywhere in space, provided all the
sources p and J are specified. For a small number of definite sources, determi-

nation of the fields is a tractable problem; but for macroscopic aggregates of
matter, the solution of the equationsis almost impossible. There are two aspects
here. Oneis that the number of individual sources, the charged particles in every
atom and nucleus, is prohibitively large. The other aspect is that for macroscopic
observations the detailed behavior of the fields, with their drastic variations in

space over atomic distances, is not relevant. What is relevant is the average of a
field or a source over a volume large compared to the volume occupied by a

single atom or molecule. Wecall such averaged quantities the macroscopicfields

and macroscopic sources. It is shownin detail in Section 6.6 that the macroscopic
Maxwell equations are of the form (I.1a) with E and B the averaged E and B of
the microscopic or vacuum Maxwell equations, while D and H are no longer
simply multiples of E and B, respectively. The macroscopic field quantities D

and H,called the electric displacement and magnetic field (with B called the

magnetic induction), have components given by

0

D. = €& E. + (», - 5 Cie 4...)

Bp OXg (1.9)
1

H, = — B, — (M, + -:::)

Mo

The quantities P, M, Q/,, and similar higher order objects represent the mac-
roscopically averaged electric dipole, magnetic dipole, and electric quadrupole,
and higher momentdensities of the material medium in the presence of applied
fields. Similarly, the charge and current densities p and J are macroscopic aver-
ages of the “‘free’’ charge and currentdensities in the medium. The bound charges
and currents appear in the equations via P, M, and Q4,.

The macroscopic Maxwell equations (I.1a) are a set of eight equations in-

volving the componentsof the four fields E, B, D, and H. The four homogeneous
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equations can be solved formally by expressing E and B in termsof the scalar
potential ® and the vector potential A, but the inhomogeneous equations cannot

be solved until the derived fields D and H are knownin termsof E and B. These

connections, which are implicit in (1.9), are known as constitutive relations,

D = DIE,B]

H = H[E, B]

In addition, for conducting media there is the generalized Ohm’s law,

= JE, B]

The square brackets signify that the connections are not necessarily simple and

may depend onpasthistory (hysteresis), may be nonlinear,etc.

In most materials the electric quadrupole and higher termsin (1.9) are com-
pletely negligible. Only the electric and magnetic polarizations P and M aresig-
nificant. This does not mean, however, that the constitutive relations are then

simple. There is tremendousdiversity in the electric and magnetic properties of

matter, especially in crystalline solids, with ferroelectric and ferromagnetic ma-

terials having nonzero P or M in the absence of applied fields, as well as more
ordinary dielectric, diamagnetic, and paramagnetic substances. Thestudy of these

properties is one of the provinces of solid-state physics. In this book we touch

only very briefly and superficially on some more elementary aspects. Solid-state

books such as Kittel should be consulted for a more systematic and extensive
treatment of the electromagnetic properties of bulk matter.

In substances other than ferroelectrics or ferromagnets, for weak enough

fields the presence of an applied electric or magnetic field induces anelectric or

magnetic polarization proportional to the magnitude of the applied field. We

then say that the response of the medium is linear and write the Cartesian com-

ponents of D and H in the form,*

Dy = >) €apEp
B

H, = > LipBe

The tensors €,, and tog are called the electric permittivity or dielectric tensor

and the inverse magnetic permeability tensor. They summarize the linearre-

sponse of the medium and are dependent on the molecular and perhapscrystal-

line structure of the material, as well as bulk properties like density and temper-
ature. For simple materials the linear response is often isotropic in space. Then

€yg and (44g are diagonal with all three elements equal, and D = cE, H = p’B

= B/p.

(1.10)

To be generally correct Eqs. (1.10) should be understood as holding for the Fourier
transforms in space andtimeofthe field quantities. This is because the basic linear con-
nection between D and E (or H and B) can be nonlocal. Thus

D.Ax, t) = S | d°x' | dt’ €.e(x', t')Eg(x — x’, t — t’)
B

“Precedent would require writing B, = 2g w.gH,, but this reverses the naturalroles of B as thebasic

magnetic field and H as the derived quantity. In Chapter 5 werevertto thetraditional usage.
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where €,,(x’, t’) may be localized around x’ = 0, t’ = 0, but is nonvanishing for some
range away from theorigin. If we introduce the Fourier transforms D,(k, w), E(k, w),
and €,,(k, w) through ,

f(k, w) — | d°x | dt f(x, theikxtier

Eq. (1.10) can be written in terms of the Fourier transforms as

D(k, ) = 2 €,g(k, w)Eg(Kk, @) (1.11)

A similar equation can be written H,(k, w) in terms of B,(k, w). The permeability tensors
are therefore functions of frequency and wave vector in general. Forvisible light or elec-
tromagnetic radiation of longer wavelength it is often permissible to neglect the non-
locality in space. Then e,, and 44, are functions only of frequency. This is the situation
discussed in Chapter 7, which gives a simplified treatment of the high frequencyproperties
of matter and explores the consequencesof causality. For conductors and superconductors
long-range effects can be important. For example, when theelectronic collisional mean

free path in a conductor becomes large comparedto the skin depth, a spatially local form
of Ohm’s law is no longer adequate. Then the dependence on wavevectoralso enters. In
the understanding of a numberof properties of solids the concept of a dielectric constant
as a function of wave vector and frequencyis fruitful. Some exemplary references are
given in the suggested reading at the endof this introduction.

For orientation we mention that at low frequencies (v S 10° Hz) whereall
charges, regardless of their inertia, respond to appliedfields, solids have dielectric
constants typically in the range of €,,/€) ~ 2—20 with larger values not uncom-

mon. Systems with permanent molecular dipole moments can have muchlarger

and temperature-sensitive dielectric constants. Distilled water, for example, has
a Static dielectric constant of €/e€y = 88 at O°C and e/e, = 56 at 100°C. At optical

frequencies only the electrons can respondsignificantly. The dielectric constants

are in the range, €,,/€) ~ 1.7-10, with €,,/e€) = 2-3 for most solids. Water has

€/€y) = 1.77-1.80 over the visible range, essentially independent of temperature

from 0 to 100°C.
The type of response of materials to an applied magnetic field depends on

the properties of the individual atoms or molecules and also on their interactions.

Diamagnetic substances consist of atoms or molecules with no net angular mo-
mentum. The response to an applied magnetic field is the creation of circulating

atomic currents that produce a very small bulk magnetization opposing the ap-
plied field. With the definition of 2, in (1.10) and the form of(1.9), this means
Molleg > 1. Bismuth, the most diamagnetic substance known,has (tou— 1) =

1.8 x 10~*. Thus diamagnetism is a very small effect. If the basic atomic unit of
the material has a net angular momentum from unpairedelectrons, the substance

is paramagnetic. The magnetic momentof the odd electron is aligned parallel to
the applied field. Hence poi. < 1. Typical values are in the range (1 — wopia)

= 10~*-10-° at room temperature, but decreasing at higher temperatures be-
cause of the randomizing effect of thermal excitations.

Ferromagnetic materials are paramagnetic but, because of interactions be-
tween atoms, show drastically different behavior. Below the Curie temperature
(1040 K for Fe, 630 K for Ni), ferromagnetic substances show spontaneous mag-
netization; that is, all the magnetic moments in a microscopically large region

called a domain are aligned. The application of an external field tends to cause
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the domains to change and the momentsin different domainsto line up together,

leading to the saturation of the bulk magnetization. Removalof the field leaves

a considerable fraction of the momentsstill aligned, giving a permanent mag-

netization that can be as large as B, = uoM, = 1 tesla.

For data on the dielectric and magnetic properties of materials, the reader
can consult some of the basic physics handbooks* from which he or she will be
led to more specific and detailed compilations.

Materials that show a linear response to weakfields eventually show nonlin-
ear behavior at high enoughfield strengths as the electronic or ionic oscillators
are driven to large amplitudes. The linear relations (I.10) are modified to, for
example,

Dy = > €BEg + > €Q,E,E, + ++: (1.12)
B B,Y

For static fields the consequencesare not particularly dramatic, but for time-
varying fieldsit is another matter. A large amplitude wave of two frequencies w,
and w, generates waves in the medium with frequencies 0, 2w,, 2w3, w; + wn,

@ — Wp, as well as the original w, and w,. From cubic and higher nonlinear terms

an even richer spectrum of frequencies can be generated. With the development
of lasers, nonlinear behavior of this sort has becomea research areaof its own,

called nonlinear optics, and also a laboratory tool. At present, lasers are capable
of generating light pulses with peak electric fields approaching 107 or even 10°
V/m. Thestatic electric field experienced by the electroninits orbit in a hydrogen
atom is €g/aj =~ 5 X 10'' V/m. Suchlaser fields are thus seen to be capable of
driving atomic oscillators well into their nonlinear regime, capable indeed of
destroying the sample under study! References to someof the literature of this
specialized field are given in the suggested readingat the end of this introduction.
The readerof this book will have to be content with basically linear phenomena.

[5 Boundary Conditions at Interfaces Between Different Media

The Maxwell equations (I.1) are differential equations applying locally at each
point in space-time (x, t). By means of the divergence theorem and Stokes’s

theorem, they can becast in integral form. Let V be a finite volumein space, S
the closed surface (or surfaces) boundingit, da an element of area on the surface,
and n a unit normalto the surface at da pointing outward from the enclosed
volume. Then the divergence theorem applied to the first and last equations of

(I.1a) yields the integral statements

¢ D -nda - | p dx (1.13)
S V

> B-nda =0 (1.14)

*CRC Handbook of Chemistry and Physics, ed. D. R. Lide, 78th ed., CRC Press, Boca Raton, FL

(1997-98).

American Institute of Physics Handbook, ed. D. E. Gray, McGraw Hilll, New York, 3rd edition

(1972), Sections 5.d and 5.f.
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Thefirst relation is just Gauss’s law that the total flux of D out throughthe surface
is equal to the charge contained inside. The second is the magnetic analog, with

no netflux of B through a closed surface because of the nonexistence of magnetic

charges.

Similarly, let C be a closed contour in space, S’ an open surface spanning

the contour, dl a line element on the contour, da an element of area on S’, and

n’ a unit normal at da pointing in the direction given by the right-hand rule from
the sense of integration around the contour. Then applying Stokes’s theorem to

the middle two equationsin (I.1a) gives the integral statements

D
¢ H- d= | +P) en da (1.15)
C Ss’ ot

OB
 E-dl= | —-n’ da (1.16)
C s’ ot

Equation (1.15) is the Ampére—Maxwell law of magnetic fields and (1.16) is
Faraday’s law of electromagnetic induction.

These familiar integral equivalents of the Maxwell equations can be used
directly to deduce the relationship of various normal and tangential components
of the fields on either side of a surface between different media, perhaps with a
surface charge or current density at the interface. An appropriate geometrical

arrangementis shownin Fig. I.4. An infinitesimal Gaussian pillbox straddles the

boundary surface between two media with different electromagnetic properties.
Similarly, the infinitesimal contour C has its long arms on either side of the
boundary and is oriented so that the normalto its spanning surface is tangent to

the interface. Wefirst apply the integral statements (1.13) and (1.14) to the vol-
ume of the pillbox. In the limit of a very shallow pillbox, the side surface does

YY
Ui,    

Yj
Figure 1.4 Schematic diagram of boundary surface (heavy line) between different
media. The boundaryregion is assumed to carry idealized surface charge and current
densities o and K. The volumeV is a small pillbox, half in one medium andhalf in the
other, with the normal n to its top pointing from medium 1 into medium 2. The
rectangular contour C is partly in one medium andpartly in the other andis oriented
with its plane perpendicular to the surface so that its normal t is tangent to the surface.
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not contribute to the integrals on the left in (1.13) and (1.14). Only the top and
bottom contribute. If the top and the bottom areparallel, tangent to the surface,
and of area Aa,then the left-hand integral in (1.13) is

> D-mda = (D, ~ D,) +n Aa

and similarly for (1.14). If the charge density p is singular at the interface so as

to produce an idealized surface charge density o, then the integral on the right
in (1.13) is

| pd°x =o AaV

Thus the normal components of D and B oneither side of the boundary surface

are related according to

(D, — D,):n=o (1.17)
(B, — B,)-n=0 (1.18)

In words, we say that the normal componentof B is continuous andthe discon-

tinuity of the normal componentofD at any point is equal to the surface charge
density at that point.

In an analogous mannerthe infinitesimal Stokesian loop can be used to de-
termine the discontinuities of the tangential components of E and H.If the short
arms of the contour in Fig. 1.4 are of negligible length and each long arm is
parallel to the surface and has length AJ, then the left-hand integral of (1.16) is

p E-dl=(tx n)-(B, - E) Al

and similarly for the left-handside of (I.15). The right-handsideof (I.16) vanishes
because 0B/0dtis finite at the surface andthe area of the loopis zero as the length
of the short sides goes to zero. The right-handside of (1.15) does not vanish,
however, if there is an idealized surface current density K flowing exactly on the
boundary surface. In such circumstancesthe integral on the rightof (1.15) is

| fa Pl eda = Ket a
Ss’ ot

The second term in the integral vanishes by the same argument that was just
given. The tangential components of E and H oneitherside of the boundaryare
therefore related by

n x (E, — E,) = 0 (1.19)
n x (Hj — H,) = K (1.20)

In (1.20) it is understoodthat the surface current K has only componentsparallel
to the surface at every point. The tangential componentof E across an interface
is continuous, while the tangential componentofH is discontinuous by an amount
whose magnitude is equal to the magnitude of the surface current density and
whosedirection is parallel to K x n.

The discontinuity equations (J.17)-(1.20) are useful in solving the Maxwell
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equations in different regions and then connecting the solutions to obtain the
fields throughout all space.

1.6 Some Remarks on Idealizations in Electromagnetism

In the preceding section we madeuseofthe idea of surface distributions of charge

and current. These are obviously mathematical idealizations that do not exist in

the physical world. There are other abstractions that occur throughout electro-
magnetism.In electrostatics, for example, we speak of holding objects at a fixed
potential with respect to some zero of potential usually called “ground.” The

relations of such idealizations to the real world is perhaps worthyofa little dis-
cussion, even though to the experienced hand most will seem obvious.

First we consider the question of maintaining some conducting object at a

fixed electrostatic potential with respect to some reference value. Implicit is the

idea that the means does notsignificantly disturb the desired configuration of

charges andfields. To maintain an object at fixed potential it is necessary,at least
from timeto time, to have a conducting path or its equivalent from the object to
a source of charge far away (‘‘at infinity’’) so that as other charged or uncharged
objects are broughtin the vicinity, charge can flow to or from the object, always
maintaining its potential at the desired value. Although more sophisticated

meansare possible, metallic wires are commonly used to make the conducting

path. Intuitively we expect small wires to be less perturbing than large ones. The
reasonis as follows:

Since the quantity of electricity on any given portion of a wire at a given

potential diminishes indefinitely when the diameter of the wire is indefi-

nitely diminished, the distribution of electricity on bodies of considerable
dimensions will not be sensibly affected by the introduction of very
fine metallic wires into the field, such as are used to form electrical con-

nexions between these bodies and the earth, an electrical machine, or an

electrometer.”

The electric field in the immediate neighborhood of the thin wire is very large,

of course. However,at distances away of the order of the size of the “‘bodies of

considerable dimensions” the effects can be made small. An importanthistorical
illustration of Maxwell’s words is given by the work of Henry Cavendish 200

years ago. By experiments donein a converted stable of his father’s house, using

Leyden jars as his sources of charge, thin wires as conductors, and suspending

the objects in the room, Cavendish measured the amounts of charge on cylinders,
discs, etc., held at fixed potential and compared them to the charge on a sphere

(the same sphere shownin Fig. I.1) at the same potential. His values of capaci-
tance, so measured, are accurate to a few per cent. For example, he found the

ratio of the capacitance of a sphere to that of a thin circular disc of the same

radius was 1.57. The theoretical value is 7/2.

There is a practical limit to the use of finer and finer wires. The charge per
unit length decreases only logarithmically [as the reciprocal of In(d/a), where a

*J. C. Maxwell, A Treatise on Electricity and Magnetism, Dover, New York, 1954 reprint of the 3rd

edition (1891), Vol. 1, p. 96.
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is the mean radius of the wire andd is a typical distance of the wire from some
conducting surface]. To minimize the perturbation of the system below some
level, it is necessary to resort to other means to maintain potentials, comparison

methods using beamsof charged particles intermittently, for example.
When a conducting object is said to be grounded,it is assumedto be con-

nected by a very fine conducting filament to a remote reservoir of charge that

serves as the commonzeroof potential. Objects held at fixed potentials are sim-
ilarly connected to oneside of a voltage source, such as a battery, the other side
of which is connected to the common“ground.” Then, wheninitially electrified
objects are movedrelative to one anotherin such a waythat their distributions
of electricity are altered, but their potentials remain fixed, the appropriate
amounts of charge flow from or to the remote reservoir, assumed to have an

inexhaustible supply. The idea of grounding somethingis a well-defined concept
in electrostatics, where time is not a factor, but for oscillating fields the finite
speed of propagation blurs the concept. In other words, stray inductive and ca-

pacitive effects can enter significantly. Great care is then necessary to ensure a
“good ground.”

Anotheridealization in macroscopic electromagnetism is the idea of a surface
charge density or a surface current density. The physical reality is that the charge
or current is confined to the immediate neighborhoodofthe surface.If this region
has thickness small comparedto the length scale of interest, we may approximate

the reality by the idealization of a region ofinfinitesimal thickness and speak of

a surface distribution. Two different limits need to be distinguished. Oneis the

limit in which the “surface” distribution is confined to a region near the surface
that is macroscopically small, but microscopically large. An example is the pen-

etration of time-varying fields into a very good, but not perfect, conductor, de-

scribed in Section 8.1. It is found that the fields are confined to a thickness 6,

called the skin depth, and that for high enough frequencies and good enough
conductivities 6 can be macroscopically very small. It is then appropriate to in-

tegrate the current density J over the direction perpendicular to the surface to
obtain an effective surface current density Ker.

The other limit is truly microscopic and is set by quantum-mechanicaleffects
in the atomic structure of materials. Consider, for instance, the distribution of
excess charge of a conducting body in electrostatics. It is well known that this
charge lies entirely on the surface of a conductor. We then speak of a surface
charge density o. Thereis no electric field inside the conductor, but thereis, in
accord with (1.17), a normal componentofelectric field just outside the surface.
At the microscopic level the charge is not exactly at the surface and thefield
does not change discontinuously. The most elementary considerations would in-
dicate that the transition region is a few atomic diameters in extent. Theionsin
a metal can be thought of as relatively immobile and localized to 1 angstrom
or better; the lighter electrons are less constrained. The results of model cal-

culations* are shown in Fig. I.5. They come from a solution of the quantum-
mechanical many-electron problem in which the ions of the conductor are
approximated by a continuous constant charge density for x < 0. The electron
density (7, = 5) is roughly appropriate to copper and the heavier alkali metals.

*N. D. Lang and W. Kohn, Phys. Rev. B1, 4555 (1970); B3, 1215 (1971); V. E. Kenner, R. E. Allen,

and W. M.Saslow, Phys. Lett. 38A, 255 (1972).
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Figure [5 Distribution of excess charge at the surface of a conductor and of the
normal componentof the electric field. The ions of the solid are confined to x < 0 and
are approximated by a constant continuous charge distribution through which the
electrons move. The bulk of the excess charge is confined to within +2 A of the

“surface.”

The excess electronic charge is seen to be confined to a region within +2 A of
the ‘‘surface”’ of the ionic distribution. The electric field rises smoothly over this
region to its value of o “‘outside” the conductor. For macroscopic situations
where 10~’ m is a negligible distance, we can idealize the charge density and
electric field behavior as p(x) = o6(x) and E,(x) = a@6(x)/€, corresponding to a
truly surface density and a step-function jumpofthefield.

Weseethat the theoretical treatment of classical electromagnetism involves

several idealizations, some of them technical and some physical. The subject of
electrostatics, discussed in the first chapters of the book, developed as an exper-

imental science of macroscopic electrical phenomena,as did virtually all other

aspects of electromagnetism. The extension of these macroscopic laws, even for

charges and currents in vacuum, to the microscopic domain wasfor the most part
an unjustified extrapolation. Earlier in this introduction we discussed some of
the limits to this extrapolation. The point to be madehereis the following. With
hindsight we know that manyaspects of the laws of classical electromagnetism
apply well into the atomic domain provided the sources are treated quantum
mechanically, that the averaging of electromagnetic quantities over volumes con-

taining large numbers of molecules so smoothsthe rapid fluctuations that static

applied fields induce static average responses in matter, and that excess charge
is on the surface of a conductor in a macroscopic sense. Thus Coulomb’s and
Ampére’s macroscopic observations and our mathematical abstractions from
them have a widerapplicability than might be supposed by a supercautiousphys-
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icist. The absenceforair of significant electric or magnetic susceptibility certainly
simplifies matters!
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CHAPTER 1

Introduction to Electrostatics

Webegin our discussion of electrodynamics with the subject of electrostatics—
phenomena involving time-independentdistributions of charge and fields. For
most readers this material is in the nature of a review. In this chapter especially
we do not elaborate significantly. We introduce concepts and definitions that are

important for later discussion and present some essential mathematical appara-
tus. In subsequent chapters the mathematical techniques are developed and
applied.

One point of physics should be mentioned. Historically, electrostatics devel-
oped as a science of macroscopic phenomena. Asindicated at the end of the
Introduction, such idealizations as point chargesorelectric fields at a point must
be viewed as mathematical constructs that permit a description of the phenomena

at the macroscopic level, but that may fail to have meaning microscopically.

1.1 Coulomb’s Law

All of electrostatics stems from the quantitative statement of Coulomb’s law
concerning the force acting between charged bodiesat rest with respect to each

other. Coulomb, in an impressive series of experiments, showed experimentally
that the force between two small charged bodies separated in air a distance large
comparedto their dimensions

varies directly as the magnitude of each charge,

varies inversely as the square of the distance between them,

is directed along the line joining the charges, and

is attractive if the bodies are oppositely charged and repulsive if the bodies have
the same type of charge.

Furthermore it was shown experimentally that the total force produced on one

small charged body by a numberof the other small charged bodies placed around

it is the vector sum ofthe individual two-body forces of Coulomb.Strictly speak-
ing, Coulomb’s conclusions apply to charges in vacuum orin media of negligible
susceptibility. We defer consideration of charges in dielectrics to Chapter4.

1.2. Electric Field

Although the thing that eventually gets measuredis a force, it is useful to intro-
duce a concept one step removedfrom the forces, the concept of an electric field
due to some array of charged bodies. At the moment, the electric field can be

24
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defined as the force per unit charge acting at a given point. It is a vector function
of position, denoted by E. One must be careful in its definition, however.It is
not necessarily the force that one would observe by placing one unit of charge
on a pith ball and placing it in position. The reason is that one unit of charge
may beso large that its presence alters appreciably the field configuration of the
array. Consequently one must use a limiting process whereby the ratio of the
force on the small test body to the charge onit is measured for smaller and smaller

amounts of charge.* Experimentally, this ratio and the direction of the force will
becomeconstant as the amountof test charge is made smaller and smaller. These

limiting values of magnitude and direction define the magnitudeand direction of
the electric field E at the point in question. In symbols we may write

F = gE (1.1)

whereF is the force, E the electric field, and g the charge. In this equationit is

assumed that the charge q is located at a point, and the force and theelectric
field are evaluated at that point.

Coulomb’s law can be written down similarly. If F is the force on a point
charge q;, located at x,, due to another point charge q», located at x,, then

Coulomb’s law is

Xi; — X2
F = kqiq2 (1.2)

x; — X,/°

Note that qg, and q> are algebraic quantities, which can bepositive or negative.
The constant of proportionality k depends on the system of units used.

The electric field at the point x due to a point charge q, at the point x, can

be obtained directly:

xX — X,

E(x) = ka, (1.3)
Ix — x,/?

as indicated in Fig. 1.1. The constant k differs in different systems of units.’ In
electrostatic units (esu), k = 1 and unit charge is chosenas that charge that exerts
a force of one dyne on an equal point charge located one centimeter away. The

esu unit of charge is called the statcoulomb, and the electric field is measured in

statvolts per centimeter. In the SI system, which we employ here, k = (47€))~' =
10~’c*, where €) ~ 8.854 X 107’ farad per meter (F/m)is called the permittivity
of free space. The SI unit of charge is the coulomb (C), and the electric field is
measuredin volts per meter (V/m). One coulomb (1 C) producesanelectric field

 

Figure 1.1

*The discreteness of electric charge (see Section I.1) means that this mathematicallimit is impossible

to realize physically. This is an example of a mathematical idealization in macroscopic electrostatics.

'The question of units is discussed in detail in the Appendix.
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of approximately 8.9874 x 10° V/m (8.9874 GV/m) at a distance of 1 meter. One
electron (q ~ 1.602 X 107” C) producesa field of approximately 1.44 x 107°
V/m (1.44 nV/m) at 1 meter.

The experimentally observed linear superposition of forces due to many
charges means that we may write the electric field at x due to a system of point

charges q;, located at x,, i = 1, 2,...,n, as the vector sum:

E(x) = ime — x,xP (1.4)

If the charges are so small and so numerous that they can be described by a

charge density p(x’) [if Aq is the charge in a small volume Ax Ay Az at the point
x’, then Ag = p(x’) Ax Ay Az], the sum is replaced by an integral:

B(x) == | pte’) SS ae’ (1.5)x’ |?

where d*x’ = dx' dy’ dz' is a three-dimensional volume elementat x’.

Atthis pointit is worthwhile to introduce the Dirac delta function. In one dimension,
the delta function, written 6(x —a), is a mathematically improper function having the
properties:

1. 6(« — a) = Ofor x # a, and

2. J (x — a) dx = if the region of integration includes x = a, and is zero otherwise.

The delta function can be given an intuitive, but nonrigorous, meaning as the limit of a

peaked curve such as a Gaussian that becomes narrower and narrower, but higher and
higher, in such a way that the area underthe curveis always constant. L. Schwartz’s theory
of distributions is a comprehensive rigorous mathematical approachto delta functions and
their manipulations.*

From the definitions aboveit is evident that, for an arbitrary function f(x),

3. Jf f(x) 6— a) dx = f(a).

The integral of f(x) times the derivative of a delta function is simply understoodif the
delta function is thought of as a well-behaved, but sharply peaked, function. Thus the
definition is

4. J f(x) 6'(x — a) dx = —f'(a)
where a prime denotes differentiation with respect to the argument.

If the delta function has as argument a function f(x) of the independentvariable «x,
it can be transformed accordingto therule,

5. (fx) = > x)
df
“ ai)

where f(x) is assumedto have only simple zeros, located at x = x;.
In more than one dimension, we merely take products of delta functions in each

dimension. In three dimensions, for example, with Cartesian coordinates,

6. 6(x —_ X) = 5(x4 —_ X;) 5(Xx2 _ X>) 6(x3 —_ X3)

*A useful, rigorous account of the Dirac delta function is given by Lighthill. See also Dennery and
Krzywicki (Section II.13). (Full references for itemscited in the text or footnotes byitalicized author
only will be found in the Bibliography.)
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is a function that vanishes everywhere except at x = X,andis such that

1 if AV contains x = X_ 3)
}. Jn d(x X) dx {6 if AV does not contain x = X

Note that a delta function has the dimensions of an inverse volume in whatever number

of dimensionsthe space has.
A discrete set of point charges can be described with a charge density by meansof

delta functions. For example,

p(x) = 2 a (x ~ x;) (1.6)

represents a distribution of 1 point charges q,, located at the points x;. Substitution of this
charge density (1.6) into (1.5) and integration, using the properties of the delta function,
yields the discrete sum (1.4).

1.3 Gauss’s Law

The integral (1.5) is not always the most suitable form for the evaluation of
electric fields. There is another integral result, called Gauss’s law, which is some-

times more useful and furthermore leads to a differential equation for E(x). To

obtain Gauss’s law wefirst consider a point charge q and a closed surface S, as
shown in Fig. 1.2. Let r be the distance from the chargeto a point on the surface,

n be the outwardly directed unit normal to the surface at that point, da be an

Ss n

 
E n q outside S

q inside S

Figure 1.2 Gauss’s law. The normal componentofelectric field is integrated over the
closed surface S. If the charge is inside (outside) S, the total solid angle subtendedat
the charge by the innerside of the surface is 47 (zero).
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element of surface area. If the electric field E at the point on the surface due to
the charge q makes an angle 6 with the unit normal, then the normal component

of E times the area elementis:

q cosé
2E-nda=   1.7

4 Tre, r ( )

Since E is directed along the line from the surface element to the charge gq,

cos 0 da = r* dQ, where dQ is the element of solid angle subtended by daat

the position of the charge. Therefore

 E-nda =—- ao (1.8)
4 Tre,

If we now integrate the normal componentof E over the whole surface,it is easy
to see that

¢ Enda = q/€o i q lies inside S (1.9)

s 0 if g lies outside S

This result is Gauss’s law for a single point charge. For a discrete set of charges,
it is immediately apparentthat

1
6 E-nda=+ Sq (1.10)
S Ey i

where the sum is over only those charges inside the surface S. For a continuous

charge density p(x), Gauss’s law becomes:

> E -nda= - i p(x) d°x (1.11)

where V is the volume enclosed by S.
Equation (1.11) is one of the basic equations of electrostatics. Note thatit

depends upon

the inverse square law for the force between charges,

the central nature of the force, and

the linear superposition of the effects of different charges.

Clearly, then, Gauss’s law holds for Newtonian gravitational force fields, with

matter density replacing charge density.

It is interesting to note that, even before the experiments of Cavendish and
Coulomb,Priestley, taking up an observation of Franklin that charge seemedto
reside on the outside, but not the inside, of a metal cup, reasoned by analogy

with Newton’s law of universal gravitation that the electrostatic force must obey
an inverse square law with distance. The present status of the inverse square law

is discussed in Section I.2.

1.4 Differential Form of Gauss’s Law

Gauss’s law can be thought of as being an integral formulation of the law of
electrostatics. We can obtain a differential form (i.e., a differential equation) by
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using the divergence theorem. The divergence theorem states that for any well-
behaved vector field A(x) defined within a volume V surrounded by the closed
surface S the relation

 A-nda =| V-Ad*x
S V

holds between the volumeintegral of the divergence of A and the surface integral
of the outwardly directed normal component of A. The equation in fact can be
used as the definition of the divergence (see Stratton, p. 4).

To apply the divergence theorem weconsidertheintegral relation expressed
in Gauss’s theorem:

1
} E-nda =~ | p(x) d°x
S €9 7V

Nowthe divergence theorem allows us to write this as

| (V-E — ple) d’x = 0 (1.12)
V

for an arbitrary volume V. Wecan, in the usual way, put the integrand equal to

zero to obtain

V -E= ple (1.13)

whichis the differential form of Gauss’s law of electrostatics. This equation can

itself be used to solve problemsin electrostatics. However,it is often simpler to
deal with scalar rather then vector functions of position, and then to derive the

vector quantities at the end if necessary (see below).

1.5 Another Equation ofElectrostatics and the Scalar Potential

The single equation (1.13) is not enough to specify completely the three com-
ponents of the electric field E(x). Perhaps some readers knowthat a vectorfield
can be specified almost* completely if its divergence and curl are given every-
where in space. Thus we look for an equation specifying curl E as a function of
position. Such an equation, namely,

Vx E=0 (1.14)

follows directly from our generalized Coulomb’s law (1.5):

1 | x — x’E — ' d° '
(x) Ame, p(x’) x — x’? x

The vector factor in the integrand, viewed as a function of x, is the negative
gradient of the scalar 1/|x — x’|:

X7X) __yf/_!
Ix — x’[? Ix — x'|

*Up to the gradient of a scalar function that satisfies the Laplace equation. See Section 1.9 on

uniqueness.
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Since the gradient operation involvesx, but not the integration variable x’, it can

be taken outside the integral sign. Then the field can be written

 E(x) = iy | PIX) ay (1.15)
A Tr€, Ix — x’ |

Since the curl of the gradient of any well-behaved scalar function of position
vanishes (V X Vw = 0,for all w), (1.14) follows immediately from (1.15).

Note that V x E = 0 depends on the central nature of the force between
charges, and on thefact that the force is a function of relative distancesonly, but

does not depend on the inverse square nature.
In (1.15) the electric field (a vector) is derived from a scalar by the gradient

operation. Since one function of position is easier to deal with than three,it is
worthwhile concentrating on the scalar function and giving it a name. Conse-
quently we define the scalar potential ®(x) by the equation:

 

E = -V® (1.16)

Then (1.15) shows that the scalar potential is given in terms of the charge density

by
1 /

(x) = PO) By! (1.17)

where the integration is over all charges in the universe, and © is arbitrary only
to the extent that a constant can be added to the right-hand side of (1.17).

The scalar potential has a physical interpretation when weconsider the work
done on a test charge q in transporting it from one point (A) to another point
(B) in the presence ofan electric field E(x), as shownin Fig. 1.3. The force acting
on the charge at any pointis

F = gE

so that the work done in moving the charge from A to B is

B B

w=-| F-dl=—q| E - dl (1.18)
A A

The minus sign appears because weare calculating the work done on the charge
against the action of the field. With definition (1.16) the work can be written

B B

w=a| vo-di=q | d® = g(®z — ®,) (1.19)
A A

B

E

dl.m

F
A

Figure 1.3
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which showsthat g® can beinterpreted as the potential energy of the test charge

in the electrostatic field.
From (1.18) and (1.19) it can be seen thatthe line integral of the electric field

between twopoints is independentof the path andis the negative of the potential
difference between the points:

[ E- dl = —(®, — ®,) (1.20)

This follows directly, of course, from definition (1.16). If the path is closed, the
line integral is zero,

¢ E-dl=0 (1.21)

a result that can also be obtained directly from Coulomb’s law. Then application
of Stokes’s theorem [if A(x) is a well-behaved vectorfield, S is an arbitrary open
surface, and C is the closed curve bounding S,

p A-di= |(Vx A)- nda

wheredl is a line element of C, n is the normal to S, and the path C is traversed
in a right-handscrewsenserelative to n| leads immediately back to V x E = 0.

1.6 Surface Distributions of Charges and Dipoles and
Discontinuities in the Electric Field and Potential

One of the common problemsin electrostatics is the determination of electric

field or potential due to a given surface distribution of charges. Gauss’s law (1.11)
allows us to write down partial result directly. If a surface S, with a unit normal
n directed from side 1 to side 2 of the surface, has a surface-charge density of
a(x) (measured in coulombs per square meter) andelectric fields E, and E, on
either side of the surface, as shownin Fig. 1.4, then Gauss’s law tells us imme-

diately that

(E, — E,)-n= ole (1.22)

This does not determine E, and E; unless there are no other sources offield and

the geometry and form of o are especially simple. All that (1.22) says is that there

Side 2

Figure 1.4 Discontinuity in the normal
componentof electric field across a surface
layer of charge.
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is a discontinuity of o/€, in the normal componentofelectric field in crossing a
surface with a surface-charge density o, the crossing being madein the direction
of n.

The tangential componentof electric field can be shown to be continuous

across a boundary surface by using (1.21) for the line integral of E around a
closed path. It is only necessary to take a rectangular path with negligible ends
and oneside on either side of the boundary.

An expression for the potential (hence the field, by differentiation) at any
point in space (notjust at the surface) can be obtained from (1.17) by replacing
p d°x by ada:

a(x)

P(x) = al, Ix—x’| | 4 (1.23)

For volumeor surface distributions of charge, the potential. is everywhere con-
tinuous, even within the charge distribution. This can be shown from (1.23) or
from the fact that E is bounded, even though discontinuous across a surface

distribution of charge. With pointorline charges, or dipole layers, the potential
is no longer continuous,as will be seen immediately.

Another problem ofinterest is the potential due to a dipole-layer distribution
on a surface S. A dipole layer can be imagined as being formed byletting the
surface S have a surface-charge density o(x) on it, and another surface S’, lying
close to S, have an equal and opposite surface-charge density on it at neighboring

points, as shown in Fig. 1.5. The dipole-layer distribution of strength D(x) is
formed byletting S’ approachinfinitesimally close to S while the surface-charge

density a(x) becomesinfinite in such a mannerthat the product of o(x) and the
local separation d(x) of S and S’ approachesthe limit D(x):

lim o(x) d(x) = D(x)
d(x)—0

The direction of the dipole momentof the layer is normal to the surface S and
in the direction going from negative to positive charge.

To find the potential due to a dipole layer we can considera single dipole
and then superpose a surface density of them, or we can obtain the sameresult

by performing mathematically the limiting process described in words above on
the surface-density expression (1.23). The first way is perhaps simpler, but the
second gives useful practice in vector calculus. Consequently we proceed with

  g Figure 15 Limiting process involved in
S’ creating a dipole layer.
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Figure 1.6 Dipole-layer geometry.

the limiting process. With n, the unit normalto the surface S, directed away from
S’, as shown in Fig. 1.6, the potential due to the two close surfacesis

a(x’) 1 a(x’)
d "

ine s|x — x’ a4 Ane, Js’ |x — x’ + nd| °
  P(x) =

For small d we can expand |x — x’ + nd|~'. Consider the general expression
Ix + al~', where jal < |x|. We write a Taylor series expansion in three
dimensions:

1 1 1
———— = -+a,- V — + ...

Ixt+al x (4)

In this way we find that as d — 0 the potential becomes

P(x) = ne I D(x')n - v(+—) da’ (1.24)

In passing we notethat the integrand in (1.24) is the potential of a point dipole
with dipole moment p = n D da’. Thepotential at x caused by a dipole p at x’ is

 1 px) (1.25)
Amey |x — x’?P(x) =

Equation (1.24) has a simple geometrical interpretation. We note that

n-v(— dat = £039.44" _ ag
x — x’ | Ix — x’/?

where dQ) is the elementof solid angle subtended at the observation point by the
area element da’, as indicated in Fig. 1.7. Note that dO has a positive sign if 6 is

Figure 1.7 The potential at P due to the
dipole layer D on the area element da’ is just
the negative product of D and the solid angle
element dQ, subtended by da’ atP.
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an acute angle (i.e., when the observation point views the ‘“‘inner’’ side of the

dipole layer). The potential can be written:

@(x) = — in I D(x’) dO (1.26)

For a constant surface-dipole-momentdensity D, the potential is just the product

of the momentdivided by 47re, and the solid angle subtendedat the observation
point by the surface, regardless of its shape.

There is a discontinuity in potential in crossing a double layer. This can be
seen by letting the observation point come infinitesimally close to the double
layer. The double layer is now imaginedto consist of two parts, one being a small
disc directly under the observation point. The disc is sufficiently small thatit is
sensibly flat and has constant surface-dipole-moment density D. Evidently the
total potential can be obtained by linear superposition of the potential of the disc
and that of the remainder. From (1.26) it is clear that the potential of the disc
alone has a discontinuity of D/e, in crossing from the inner to the outerside,
being —D/2€) on the inner side and +D/2e, on the outer. The potential of the
remainder alone, with its hole where the disc fits in, is continuous across

the plane of the hole. Consequently the total potential jump in crossing the sur-
faceis:

®, — D, = D/e (1.27)

This result is analogousto (1.22) for the discontinuity of electric field in crossing
a surface-charge density. Equation (1.27) can be interpreted ‘‘physically” as a
potential drop occurring “inside” the dipole layer; it can be calculated as the
productof the field between the two layers of surface charge times the separation
before the limit is taken.

1.7 Poisson and Laplace Equations

In Sections 1.4 and 1.5 it was shown that the behavior of an electrostatic field

can be described by the two differential equations:

V-E = p/eé (1.13)

and

VxE=0 (1.14)

the latter equation being equivalent to the statement that E is the gradient of a

scalar function, the scalar potential ®:

E = -—V® (1.16)

Equations (1.13) and (1.16) can be combinedinto onepartial differential
equation for the single function P(x):

V’® = —ple, (1.28)

This equationis called the Poisson equation. In regionsof space that lack a charge

density, the scalar potential satisfies the Laplace equation:

Vb = 0 (1.29)
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Wealready have a solution for the scalar potential in expression (1.17):

= |2d3x' (1.17) 
Ae,

To verify directly that this does indeed satisfy the Poisson equation (1.28), we
operate with the Laplacian on both sides. Because it turns out that the resulting
integrand is singular, we invoke a limiting procedure. Define the ‘‘a-potential’’

®,(x) by

1 p(x’)P(x) = d°x'
(x) 47@) JVix —x’P +a

Theactual potential (1.17) is then the limit of the ‘‘a-potential” as a > 0. Taking
the Laplacian of the ‘“‘a-potential”’ gives

V’@,(x) = -=| p(x"(sts ax’ (1.30)

_ 1 | , 3a* 3.7

= Am€, p(x I + =| d°x

where r = |x — x’|. The square-bracketed expression is the negative Laplacian

of 1/Vr* + a’. It is well-behaved everywhere for nonvanishing a, but as a tends
to zero it becomesinfinite at r = O and vanishesfor r # 0. It has a volumeintegral

equal to 47 for arbitrary a. For the purposesof integration, divide space into two
regions by a sphere of fixed radius R centered on x. Choose P such that p(x’)
changeslittle over the interior of the sphere, and imagine a much smaller than

R and tending towardzero.If p(x’) is such that (1.17) exists, the contribution to
the integral (1.30) from the exterior of the sphere will vanish like a* as a > 0.
We thus need consider only the contribution from inside the sphere. With a
Taylor series expansion of the well-behaved p(x’) around x’ = x, onefinds

  

 

5 1 f* 3a rr _. 5 5
V°®,(x) = oF+e” p(x) +E Vip to r‘dr + O(a‘)

Direct integration vields

1
V(x) = —— p(x) (1 + O(@IR?)) + O, a’log a) Vp + +++

Eo

In the limit a — 0, we obtain the Poisson equation (1.28).
The singular nature of the Laplacian of 1/r can be exhibited formally in terms

of a Dirac delta function. Since V’(1/r) = 0 for r # 0 and its volumeintegralis
—47, we can write the formal equation, V*(1/r) = —476(x) or, more generally,

r(o) = —4778(x — x’) (1.31)
Ix — x

1.8 Green’s Theorem

If electrostatic problems always involved localized discrete or continuousdistri-
butions of charge with no boundary surfaces, the general solution (1.17) would
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be the most convenient and straightforward solution to any problem. There
would be no need of the Poisson or Laplace equation. In actual fact, of course,
many,if not most, of the problems of electrostatics involve finite regions of space,

with or without charge inside, and with prescribed boundary conditions on the
bounding surfaces. These boundary conditions may be simulated by an appro-

priate distribution of charges outside the region of interest (perhapsat infinity),
but (1.17) becomes inconvenient as a meansof calculating the potential, except
in simple cases (e.g., method of images).

To handle the boundary conditionsit is necessary to develop some new math-
ematical tools, namely, the identities or theorems due to George Green (1824).

These follow as simple applications of the divergence theorem. The divergence
theorem:

| VeAdx = A-nda
V S

applies to any well-behaved vector field A defined in the volume V bounded by
the closed surface S. Let A = ¢ Vu, where ¢ and w are arbitrary scalarfields.

Now

V- (PV) = 6 Vet Vb- Vp (1.32)
and

bdVyp-n = oot (1.33)
on

where 0/dn is the normalderivative at the surface S (directed outward from inside
the volume V). When (1.32) and (1.33) are substituted into the divergence the-
orem, there results Green’s first identity:

I (db Ve + Vb> Vw) d’x = > b ~ da (1.34)

If we write down (1.34) again with @ and w interchanged, and then subtractit
from (1.34), the V@- Vy terms cancel, and we obtain Green’s secondidentity or
Green’s theorem:

| (p Vir — # Vd)d*x = ¢ 6 oe | da (1.35)
V Ss on on

The Poisson differential equation for the potential can be converted into an

integral equation if we choosea particular y, namely 1/R = 1/|x — x’|, where x

is the observation point and x’ is the integration variable. Further, we put ¢ = ©,

the scalar potential, and make use of V’® = —p/eo. From (1.31) we knowthat
V*(1/R) = —4776(x — x’), so that (1.35) becomes

’ __ ' 2 ’ 3y.7 _ <— i _ loa ’I |ann’) 68 x) + TR Pu )} « => jo 2 (=) +2 da

If the point x lies within the volume V, we obtain:

1 | p(x’) 1 1 o® a /1
M(x) = — ——d*x' + — —-— — © — — ’ (1.

(x) 47e, Jv R * 47 Js F on' on’ (+) da’ (1.36)
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If x lies outside the surface S, the left-hand side of (1.36) is zero.* [Note thatthis
is consistent with the interpretation of the surface integral as being the potential

due to a surface-charge density 0 = €) 0®/dn' and a dipole layer D = —e,)®. The
discontinuities in electric field and potential (1.22) and (1.27) across the surface
then lead to zero field and zero potential outside the volume V.]

Two remarks are in order aboutresult (1.36). First, if the surface S goes to
infinity and theelectric field on S falls off faster than R~', then the surface integral
vanishes and (1.36) reduces to the familiar result (1.17). Second, for a charge-
free volume,the potential anywhere inside the volume(a solution of the Laplace
equation) is expressedin (1.36) in termsof the potential and its normal derivative
only on the surface of the volume. This rather surprising result is not a solution
to a boundary-value problem, but only an integral statement, since the arbitrary
specification of both ® and d®/dn (Cauchy boundary conditions) is an overspe-
cification of the problem. This is discussed in detail in the next sections, where
techniquesyielding solutions for appropriate boundary conditions are developed

using Green’s theorem (1.35).

1.9 Uniqueness of the Solution with Dirichlet
or Neumann Boundary Conditions

What boundary conditions are appropriate for the Poisson (or Laplace) equation
to ensure that a unique and well-behaved(i.e., physically reasonable) solution
will exist inside the bounded region? Physical experienceleadsus to believe that
specification of the potential on a closed surface (e.g., a system of conductors
held at different potentials) defines a unique potential problem. This is called a
Dirichlet problem, or Dirichlet boundary conditions. Similarly it is plausible that
specification of the electric field (normal derivative of the potential) everywhere
on the surface (corresponding to a given surface-charge density) also defines a
unique problem. Specification of the normal derivative is known as the Neumann
boundary condition. We now proceed to prove these expectations by means of
Green’sfirst identity (1.34).

We want to show the uniqueness of the solution of the Poisson equation,

V’® = —p/e, inside a volume V subjectto either Dirichlet or Neumann boundary

conditions on the closed bounding surface S. We suppose,to the contrary, that
there exist two solutions ®, and ®, satisfying the same boundary conditions. Let

U= 0, - o, (1.37)

Then V7U = 0 inside V, and U = 0 or 0U/on = 0 0n S for Dirichlet and Neumann

boundary conditions, respectively. From Green’sfirst identity (1.34), with @ = &
= U, wefind

aU
(U VU+ VU: VU) ax = U — da (1.38)

V S on

*The reader may complain that (1.36) has been obtainedin an illegal fashion since 1/|x — x’| is not
well-behaved inside the volume V. Rigor can be restored by using a limiting process, as in the pre-
ceding section, or by excluding a small sphere around the offending point, x = x’. The result isstill
(1.36).
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With the specified properties of U, this reduces (for both types of boundary
condition) to:

| |VU)? d’x =0
V

which implies VU = 0. Consequently, inside V, U is constant. For Dirichlet
boundary conditions, U = 0 on S so that, inside V, ®, = ®, andthe solution is

unique. Similarly, for Neumann boundary conditions, the solution is unique,

apart from an unimportant arbitrary additive constant.
From the right-hand side of (1.38) it is evident that there is also a unique

solution to a problem with mixed boundary conditions(i.e., Dirichlet over part

of the surface S$, and Neumann over the remainingpart).
It should be clear that a solution to the Poisson equation with both ® and

d@/on specified arbitrarily on a closed boundary (Cauchy boundary conditions)
does not exist, since there are unique solutions for Dirichlet and Neumanncon-

ditions separately and these will in general not be consistent. This can be verified

with (1.36). With arbitrary values of ® and d®/dn inserted on the right-handside,
it can be shownthat the values of P(x) and V®(x) as x approachesthe surface
are in general inconsistent with the assumed boundary values. The question of
whether Cauchy boundary conditions on an open surface define a uniqueelec-
trostatic problem requires more discussion than is warranted here. The reader

may refer to Morse and Feshbach (Section 6.2, pp. 692-706) or to Sommerfeld
(Partial Differential Equations in Physics, Chapter II) for a detailed discussion
of these questions. The conclusion is that electrostatic problems are specified
only by Dirichlet or Neumann boundary conditions on a closed surface (part or
all of which maybeat infinity, of course).

1.10 Formal Solution of Electrostatic Boundary- Value
Problem with Green Function

The solution of the Poisson or Laplace equation in a finite volume V with either
Dirichlet or Neumann boundary conditions on the bounding surface S can be
obtained by means of Green’s theorem (1.35) and so-called Green functions.

In obtaining result (1.36)—not a solution—we chose the function y to be
1/|x — x’|, it being the potential of a unit point source,satisfying the equation:

v>(_4—) = —4776(x — x’) (1.31)

The function 1/|x — x’| is only one of a class of functions depending on the
variables x and x’, and called Green functions, which satisfy (1.31). In general,

V’*G(x, x’) = —476(x — x’) (1.39)

where

_t
Ix — x’|

G(x, x’) = + F(x, x’) (1.40)

with the function F satisfying the Laplace equation inside the volume V:

V’*F(x, x’) = 0 (1.41)
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In facing the problem of satisfying the prescribed boundary conditions on ®
or d®/dn, we can find the key by considering result (1.36). As has been pointed
out already, this is not a solution satisfying the correct type of boundary condi-

tions because both ® and 0®/dn appear in the surface integral. It is at best an
integral relation for ®. With the generalized concept of a Green function andits
additional freedom [via the function F(x, x’)], there arises the possibility that we
can use Green’s theorem with y = G(x, x’) and choose F(x, x’) to eliminate one
or the other of the two surface integrals, obtaining a result that involves only
Dirichlet or Neumann boundary conditions. Of course,if the necessary G(x, x’)
depended in detail on the exact form of the boundary conditions, the method
would havelittle generality. As will be seen immediately, this is not required,
and G(x, x’) satisfies rather simple boundary conditionson S.

With Green’s theorem (1.35), @ = ®, & = G(x, x’), and the specified prop-
erties of G (1.39), it is simple to obtain the generalization of (1.36):

1
O(x) =| p(x')G(x, x’) d°x'

4Te, JV

1 a® aG(x, x’) (1.42)x, X
+. _ ~~ @D m 7Xe? '

4a Js Gtx x) on’ (x) on’ | da

The freedom available in the definition of G (1.40) means that we can make the
surface integral depend only on the chosen type of boundary conditions. Thus,
for Dirichlet boundary conditions we demand:

Gp(x, x’) = 0 for x’ on S (1.43)

Then the first term in the surface integral in (1.42) vanishes and the solutionis

1 | 1 ¢ dGp
P(x) = —— ') d°x' — —D @(x') — da’ 1.44(%) ==J, PRVGo(x, x") Px’ FP D(x’) SP da’ (1.44)

For Neumann boundary conditions we must be more careful. The obvious

choice of boundary condition on G(x, x’) seems to be

dGy

on'

 (x, x’) = 0 for x’ on S

since that makes the second term in the surface integral in (1.42) vanish,as de-

sired. But an application of Gauss’s theorem to (1.39) showsthat

Consequently the simplest allowable boundary condition on Gy is

0Gn

on'

 
4

(x, x') = -< for x’ on S (1.45)

where S is the total area of the boundary surface. Then the solution is

1 1 aD
P(x) = @® +] , x’) d’x' + — — ' (1.4(x) (®D), tne, Iv p(x')Gyn(x, x’) d°x An Jean’ Gy da' (1.46)

where (®), is the average value of the potential over the whole surface. The

customary Neumannproblemis the so-called exterior problem in which the vol-
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ume V is bounded by two surfaces, one closed and finite, the other at infinity.
Then the surface area S is infinite; the boundary condition (1.45) becomes ho-
mogeneous; the average value (®), vanishes.

Wenote that the Green functionssatisfy simple boundary conditions (1.43)
or (1.45) which do not dependonthe detailed form of the Dirichlet (or Neumann)
boundary values. Even so,it is often rather involved (if not impossible) to de-
termine G(x, x’) because of its dependence on the shape of the surface S. We
will encounter such problems in Chapters 2 and3.

The mathematical symmetry property G(x, x’) = G(x’, x) can be provedfor
the Green functionssatisfying the Dirichlet boundary condition (1.43) by means
of Green’s theorem with ¢ = G(x, y) and y = G(x’, y), wherey is the integration
variable. Since the Green function, as a function of one of its variables, is a

potential due to a unit point source, the symmetry merely represents the physical
interchangeability of the source and the observation points. For Neumann
boundary conditions the symmetry is not automatic, but can be imposed as a
separate requirement.*

Asa final, important remark we note the physical meaning of F(x, x')/47r.
It is a solution of the Laplace equation inside V and so represents the potential
of a system of charges external to the volume V. It can be thought of as the

potential due to an external distribution of charges chosen to satisfy the homo-
geneous boundary conditions of zero potential (or zero normal derivative) on
the surface S when combined with the potential of a point charge at the source
point x’. Since the potential at a point x on the surface due to the point charge

dependson the position of the source point, the external distribution of charge
F(x, x’) must also depend on the “parameter” x’. From this point of view,
we see that the method of images (to be discussed in Chapter 2) is a physical
equivalent of the determination of the appropriate F(x, x’) to satisfy the bound-
ary conditions (1.43) or (1.45). For the Dirichlet problem with conductors,
F(x, x')/47r€y can also be interpreted as the potential due to the surface-charge
distribution induced on the conductors by the presence of a point charge at the

source point x’.

1.11 Electrostatic Potential Energy
and Energy Density; Capacitance

In Section 1.5 it was shownthat the product of the scalar potential and the charge
of a point object could be interpreted as potential energy. Moreprecisely,if a
point charge q; is brought from infinity to a point x; in a region oflocalized electric
fields described by the scalar potential ® (which vanishesat infinity), the work
done on the charge (and henceits potential energy) is given by

W; = Gi®(x;) (1.47)
The potential ® can be viewed as produced by an array of (n — 1) charges
qj(j = 1,2,..., — 1) at positions x;. Then

(x,) =>4) (1.48)
ATE j=l |x; — x;|

*See K.-J. Kim andJ. D. Jackson, Am. J. Phys. 61, (12) 1144-1146 (1993).



Sect. 1.11 Electrostatic Potential Energy and Energy Density; Capacitance 41

so that the potential energy of the charge gq;is

n—-1

qi qjW, = _—
' Amey j=|x; — x;

(1.49)

The total potential energy ofall the charges dueto all the forces acting between
them is:

1 < ijW = y (1.50)
AT€ i=1 jai |x; x;|

 

as can be seen most easily by adding each charge in succession. A more symmetric
form can be written by summing over / and j unrestricted, and then dividing by2:

1 Sy qiqj (1.51)

STE, 1 J |x; ~~ x;|

 We=

It is understood that i = j terms(infinite ‘‘self-energy”’ terms) are omitted in the
double sum.

For a continuous charge distribution [or, in general, using the Dirac delta

functions (1.6)] the potential energy takes the form:

- =+ | | PX)AX') 3 aay) (1.52)
x —x'] “

Another expression, equivalent to (1.52), can be obtained by noting that one of
the integrals in (1.52) is just the scalar potential (1.17). Therefore

We = | p(x)®(x) d°x (1.53)

Equations(1.51), (1.52), and (1.53) express the electrostatic potential energy
in termsof the positions of the charges and so emphasizethe interactions between

charges via Coulomb forces. An alternative, and very fruitful, approach is to
emphasize the electric field and to interpret the energy as being stored in the
electric field surrounding the charges. To obtain this latter form, we make use of
the Poisson equation to eliminate the charge density from (1.53):

w=—> | ® VO d?x

Integration by parts leads to the result:

W=-©| Ivop d°x ==| \pp d°x (1.54)

where the integration is overall space. In (1.54) all explicit reference to charges
has gone,and the energy is expressed as an integral of the square of the electric
field over all space. This leads naturally to the identification of the integrand as
an energy density w:

w= 5 |E |’ (1.55)

This expression for energy density is intuitively reasonable, since regions of high
fields ‘“must’’ contain considerable energy.

There is perhaps one puzzling thing about (1.55). The energy density is pos-
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itive definite. Consequently its volume integral is necessarily nonnegative. This
seems to contradict our impression from (1.51) that the potential energy of two
charges of opposite sign is negative. The reason for this apparent contradiction
is that (1.54) and (1.55) contain ‘‘self-energy” contributionsto the energy density,
whereas the double sum in (1.51) does not. To illustrate this, consider two point
charges q, and q> locatedat x, and x, as in Fig. 1.8. The electric field at the point

P with coordinate is

E = lL qi(x — Xi) 1 qo(x — X)

Ame, |x — x, P 4i€y |x — X/

so that the energy density (1.55)is

2
qi q2 49

Ix —x,|* |x — x,|* Ix — x,| |x — x
 

Gig2(X — X1) + (K — X) (1.56)3277’eow = 5
2|

Clearly the first two termsare “‘self-energy” contributions. To show thatthe third
term gives the properresult for the interaction potential energy we integrate over

all space:

Wiant —
 q142 | (X — X%i)+(K— %) 5,

1.
l6m*e,J |x —x,P |x — xP ax (157)

A changeof integration variable to p = (x — x,)/|x,; — X>| yields

 Wim = —— EB yx tf ere tm (1.58)
Amey |x, — X.| 47J/ p? |p + nh

where n is a unit vector in the direction (x, — x,). Using the fact that (p + n)/
lp + nf = —V,(1/|p + n|), the dimensionless integral can easily be shown to
have the value 47, so that the interaction energy reduces to the expected value.

Forces acting between charged bodies can be obtained by calculating the
changein the total electrostatic energy of the system under small virtual displace-
ments. Examples of this are discussed in the problems. Care must be taken to
exhibit the energy in a form showing clearly the factors that vary with a change
in configuration and those that are kept constant.

As a simple illustration we calculate the force per unit area on the surface
of a conductor with a surface-charge density o(x). In the immediate neighbor-
hood of the surface the energy density is

w = 5 IEP = 0/2, (1.59)

If we now imagine a small outward displacement Ax of an elemental area Aa of
the conducting surface, the electrostatic energy decreases by an amountthatis
the product of energy density w and the excluded volume Ax Aa:

AW = —o° Aa Ax/2€ (1.60)

° iP

qi

Xj q2

x2
O Figure 1.8
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This meansthat there is an outward force per unit area equal to o7/2€ = at
the surface of the conductor. This result is normally derived by taking the product
of the surface-charge density and theelectric field, with care taken to eliminate
the electric field due to the elementof surface-charge density itself.

For a system of 1 conductors, each with potential V; and total charge

O; (i = 1, 2,..., ) in otherwise empty space, the electrostatic potential energy
can be expressed in termsof the potentials alone and certain geometrical quan-
tities called coefficients of capacity. For a given configuration of the conductors,
the linear functional dependence of the potential on the charge density implies
that the potential of the ith conductor can be written as

Vi= 2 PiyQ; (= 1,2,...,n)
j=

wherethe p,, depend on the geometry of the conductors. These n equations can
be inverted to yield the charge on the ith conductorin termsofall the potentials:

j=1

The coefficients C;; are called capacities or capacitances while the C;,, i # j, are
called coefficients of induction. The capacitance of a conductoris therefore the

total charge on the conductor when it is maintained at unit potential, all other

conductors being held at zero potential. Sometimes the capacitance of a system

of conductors is also defined. For example, the capacitance of two conductors
carrying equal and opposite charges in the presence of other grounded conduc-
tors is defined as the ratio of the charge on one conductor to the potential dif-
ference between them. The equations (1.61) can be used to express this capaci-
tance in terms of the coefficients C;.

The potential energy (1.53) for the system of conductorsis

We= : > QV; = ! > >» CiViV; (1.62)
2 j=1 2 i=1 j=1

The expression of the energy in termsof the potentials V; and the C;,, or in terms
of the charges Q; and the coefficients p;;, permits the application of variational
methods to obtain approximate values of capacitances. It can be shown, based
on the technique of the next section (see Problems 1.17 and 1.18), that there are
variational principles giving upper and lower boundson C;;. The principles permit
estimation with known error of the capacitances of relatively involved configu-
rations of conductors. High-speed computational techniques permit the use of
elaborate trial functions involving several parameters. It must be remarked, how-
ever, that the need for a Green function satisfying Dirichlet boundary conditions
in the lower bound makesthe error estimate nontrivial. Further consideration of
this technique for calculating capacitancesis left to the problemsat the end of
this and subsequent chapters.

1.12. Variational Approach to the Solution of the Laplace

and Poisson Equations

Variational methodsplay prominentroles in manyareasofclassical and quantum
physics. They provide formal techniques for the derivation of ‘‘equations of mo-
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tion”’ and also practical methods for obtaining approximate, but often accurate,

solutions to problems not amenable to other approaches. Estimates of resonant
frequencies of acoustic resonators and energy eigenvalues of atomic systems
comereadily to mind.

The far-reaching conceptthat physical systems in equilibrium have minimal
energy content is generalized to the consideration of energy-like functionals. As

an example, consider the functional

1
[ys] = 5 I Vw- Vw d°x — I gw dx (1.63)

where the function w(x) is well-behaved inside the volume V and onits surface
S (which may consist of several separate surfaces), and g(x) is a specified
“source” function without singularities within V. We now examinethefirst-order
change in the functional when we change w > yw + dW, where the modification

dys(x) is infinitesimal within V. The difference 67 = I[y + dy] — I[y] is

él = i Vw + V(dw) d°x — I gdp d’x + --- (1.64)

The neglected term is semipositive definite and is second order in dy. Use of

Green’sfirst identity with @ = dy and ww = w yields

_ row, 3 ow )SI = I [-V-u g] du d?x + > yyda (1.65)

Provided 6 = 0 on the boundary surface S (so that the surface integral vanishes),
the first-order change in /[y] vanishesif (x) satisfies

Vy = —g (1.66)

Recalling that the neglected term in (1.64) is semipositive definite, we see that
I[] is a stationary minimum if yw satisfies a Poisson-like equation within the
volume V and the departures 6 vanish on the boundary. With y—> ®andg— .
p/€, the minimization of the functional yields the ‘‘equation of motion” of the
electrostatic potential in the presence of a charge density and Dirichlet boundary
conditions (® given on S and so 6® = 0 there).

The derivation of the Poisson equation from the variational functionalis the
formal aspect. Equally important, the stationary nature of the extremum ofJ[y]
permits a practical approach to an approximatesolution for w(x). We choose a
flexible ‘‘trial” function (x) = AW(x, a, B,...) that depends on a normalization
constant A and some numberof other parameters, a, B,..., and is constructed

to satisfy the given boundary conditions on the surface S. The function VY may
be a sum of terms with the parameters as coefficients, or a single function of
several parameters; it should be chosen with some eye toward the expected form

of the solution. (Intuition plays a role here!) Calculation of I[w] gives the func-
tion, [(A, a, B, .. .). We now vary the parameters to locate the extremum (actually
a minimum) of /(A, a, B,...). With the optimum parameters, the trial solution
is the best possible approximation to the true solution with the particular func-
tional form chosen. For the Laplace equation, the normalization constantis de-
termined by the Dirichlet boundary values of ws. For the Poisson equation,it is
determined by the source strength g(x), as well as the boundary valueson S.

A different functional is necessary for Neumann boundary conditions. Sup-
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pose that the boundary conditions on yw are specified by dy/dn|; = f(s), where s
locates a point on the surface S. The appropriate functional is

I[p] = - I Vis» Vu d’x — | ewd’x — > fs da (1.67)

The samesteps as before with & — w+ 6lead to the first-order difference in

functionals,

0
él = | [—V* — g] 6 d*x + ¢ (2 — ‘(9) dw da (1.68)

V s \on

The requirement that 6/7 vanish independent of dy implies

Vy = —g within V and = f(s) on S$ (1.69)

Again the functionalis a stationary minimumfor satisfying (1.69). Approximate
solutions can be found by the use of trial functions that satisfy the Neumann
boundary conditions, just as described above for Dirichlet boundary conditions.

As a simple application to the Poisson equation, consider the two-dimen-

sional problem of a hollow circular cylinder of unit radius centered onthe z-axis,
with an interior source density g(x) = g(p), azimuthally symmetric and inde-
pendent of z. The potential vanishes at p = 1. The “‘equation of motion’’ for

yw (a function of p alone) in polar coordinatesis

1a oa
— (>4 = —8(p) (1.70)
pop op

Fortrial functions we considerfinite polynomials in powers of (1 — p) and p. A
three-parameter function of thefirst type is

V, = a(1 — p) + Bi — py’ + wi— py (1.71)

This choice might seem natural becauseit automatically builds in the boundary
condition at p = 1, but it contains a flaw that makesit a less accurate represen-
tation of y than the powerseries in p. The reasonis that, if the source density g
is well behaved andfinite at the origin, Gauss’s law shows that # has a maximum
or minimum there with vanishing slope. The requirements at both the origin and
p = 1 are metby a three-parametertrial function in powersof p:

WV, = ap’ + Bo’ + yp* — (a+ B+ ¥) (1.72)

We expect this trial function in general to be a better approximation to w than
WV, for the same numberofvariational parameters. [Wecould, of course, impose
the constraint, a, + 28, + 3y; = 0 on (1.71) to get the proper behavior at the
origin, but that would reduce the number of parameters from three to two.]

The functional integral (1.63) for VW, is easily shown to be

1 1 6 4 3
— I[¥,] = |= a +2aB+-ay+— p’ag (Ml ie 5 3 art gk

10 (1.73)

+By + | — [exa + e38 + egy]

where e,, = fo g(p)(p” — 1) p dp.
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The integral for VW, has the same form as (1.73), but different coefficients.
As described above, we seek an extremum of (1.73) by setting the partial deriv-
atives with respect to the parameters a, 8, and y equal to zero. The three coupled
algebraic linear equationsyield the “‘best”’ values,

a = 225e, — 420e, + 210e,

2450

441
y = 210e, — 420e3 + > C4

These values can beinserted into (1.73) to give J[Vs]nin aS a not very illuminating
function of the e,. One would then find that the ‘“‘kinetic’’ (first) bracket was
equal to half the “‘potential’’ (second) bracket and opposite in sign, a character-
istic of the extremum.

To go further we must specify g(p). The results for the best trial functions
WV, and WV, are shown in Fig. 1.9 for the source density,

g(p) = —S(1 — p) + 10*p°(1 — py (1.75)
The choice of sourceis arbitrary andis chosento give a potential that is not quite
featureless. The “‘best’’ parameters for V, are a = 2.915, B = —7.031, and y =

3.642. The variational integral has the value, J[Wo]min = —1.5817, compared to

T[Wlexact = —1.6017. The fractional error is 1.3%.

Note that the trial function WV, fails rather badly for p < 0.3 because it does
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Figure 1.9 Comparison of the exact solution y(p) (solid curve) with two variational
approximations for the potential, ’, (dotted curve) and V, (dashed curve). The charge
density (1.75) is indicated by the dash-dot curve (arbitrary scale).



Sect. 1.13 Relaxation Method for Two-Dimensional Electrostatic Problems 47

not respect the vanishing slope at p = 0. Nonetheless,it gives J[W,]min = —1.5136,
which is somewhat, but not greatly, worse than WV, (5.5%error). The insensitivity
of J[W] to errors in the trial function illustrates both a strength and a weakness

of the variational method.If the principle is used to estimate eigenvalues (related
to the value of J[W]), it does well. Used as a method of estimating a solution
w ~ WV, it can fail badly, at least in parts of the configuration space.

The reader will recognize from (1.70) that a polynomial source density leads
to an exact polynomial solution for yw, but the idea here is to illustrate the vari-
ational method, not to demonstrate a class of explicit solutions. Furtherillustra-
tion is left to the problemsat the end of this and later chapters.

1.13 Relaxation Methodfor Two-Dimensional
Electrostatic Problems

The relaxation method is an iterative numerical scheme (sometimescalled iter-

ative finite difference method)for the solution of the Laplace or Poisson equation
in two dimensions. Here we presentonly its basic ideas and its connection with
the variational method. First we consider the Laplace equation with Dirichlet
boundary conditions within a two-dimensional region S with a boundary contour
C. We imagine the region S$ spanned by a square lattice with lattice spacing h
(and the boundary contour C approximated by step-like boundary linkinglat-
tice sites along C). The independentvariables are the integers(i, /) specifying
the sites; the dependent variables are the trial values of the potential w(i, j) at

each site. The potential values on the boundarysites are assumed given.
To establish the variational nature of the method and to specify the iterative

scheme, we imagine the functional integral /[y] over S as a sum over small do-

mains of area h’, as shownin Fig. 1.10a. We consider the neighboringtrial values
of the potential as fixed, while the value at the center of the subareais a varia-
tional quantity to be optimized. The spacing is small enough to permit us to

approximate the derivatives in, say, the northeast quarter of the subarea by

wy) 1) (aw) Ll(m4)= hte Wo): (a4) “(x Yo)

and similarly for the other three quarters. The functional integral over the north-
east quarteris

1 r" r aw 2 up 2

INE = = d. dy} {—]}] + |{—
NE 2 Jo * Jo ¥ Ox oy

1 (1.76)

~ 8 [Cho — Wr)” + (Wo - he)”

The complete integral over the whole (shaded) subareais evidently

1
[~ A [(Wo — Yr)” + (ho — We)” + (Yo — Ws)” + (ho — Yw)*] (1.77)

Minimizing this integral with respect to Ww gives the optimum value,

1
(Wo)optimum — 4 CN + Wr + Ws + Ww) (1.78)
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Figure 1.10 (a) Enlargement of one of the subareasin the functional integral (shaded).
Thetrial values of the potential at the neighboring sites are labeled Wy, ls, We, and Ww,

while the value at the center of the subarea is w%. (b) One possible iteration is to
replace the trial values at the lattice sites (©) with the average of the valuesat the
surrounding sites (x).

The integral is minimized if W%is equal to the average of the valuesat the “‘cross”’
points.

Nowconsider the whole functional integral, that is, the sum of the integrals
over all the subareas. We guessa set of w(i, /) initially and approximate the
functional integral J[] by the sum of terms of the form of (1.77). Then we go
overthe lattice and replace half the values, indicated bythecircles in Fig. 1.105,
by the average of the points (crosses) around them. The newsetoftrial values

w(i, j) will evidently minimize J[i] more than the original set of values; the new
set will be closer to the correct solution. Actually, there is no need to do the
averaging for only half the points—that was just a replication for half of the
subareas of the process for Fig. 1.10a.

There are many improvements that can be made. Onesignificant one con-

cerns the type of averaging. We could have taken the average of the values at
the corners of the large square in Fig. 1.10a instead of the ‘“‘cross’’ values. Or we
could take some linear combination of the two. It can be shown (see Problem

1.22) by Taylor series expansion of any well-behaved function F(x, y) that a
particular weighted average,

1(FGx, y))) = 2 (F). + = AP (1.79)
where the ‘‘cross”’ and “‘square’”’ averagesare

(F(x, Yc = - [F(xth, y) + F(x, yth) + F(x-h, y) + F(x, y-h)] (1.80a)

(Fle, ye = FL
+ F(x—-h, yt+h) + F(x—-h, y—h)]

F(xt+h, yth) + F(xt+h, y—h)

(1.80b)

yields

(F(x, y))) = F(x, y) + = h? VF + ah V7(V2F) + O(n) (1.81)
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In (1.81) the Laplacians of F are evaluatedat(x,y). If F(x, y) is a solution of the
Laplace equation, the weighted averaging overthe eight adjacentlattice sites in
(1.79) gives F at the center with corrections only of order h°. Instead of (1.78),
which is the same as (1.80a), a better iteration scheme uses .,,(i, /) = (wi, J)))
+ O(h°). With either the “cross” or ‘‘square” averaging separately, theerroris
O(h*). The increase in accuracy with (()) is at the expense of twice as much

computation for each lattice site, but for the same accuracy, far fewerlattice sites

are needed: ((N)) = O((N)*”), where ((N)) is the number of sites needed with
((y)) and (N) is the corresponding numberwith the ‘“‘cross”’ or ‘“‘square”’ average.

Equation (1.81) has an added advantagein application to the Poisson equa-

tion, V*ys = —g. The terms of order h’ and h* can be expressed directly in terms
of the specified charge density and the simplest approximationfor its Laplacian.
It is easy to show that the new valueofthe trial function at (i, j) is generated by

2 h?

Urowlts i) = (WG) + © gli.) + = lgDre + OW) (1.82)
where(g), is the ‘“‘cross’’ average of g, according to (1.80a).

A basic procedure for the iterative numerical solution of the Laplace or
Poisson equation in two dimensions with Dirichlet boundary conditions is as

follows:

1. A square lattice spacing h is chosen andthelattice sites, including the sites
on the boundary,are labeled in some manner[which we denote hereas(i, j)].

2. The values of the potential at the boundarysites are enteredin a table of the
potential at all sites.

3. A guess is madeforthe values, called ®,),4(i, /), at all interior sites. A constant

value everywhere is easiest. These are addedto the table or array of “‘start-
ing’’ values.

4. Thefirst iteration cycle begins by systematically going over the latticesites,
one by one, and computing ((®(i, /))) with (1.79) or one of the averages in
(1.80). This quantity (or (1.82) for the Poisson equation) is entered as
®,,.(i, j) in a table of “‘new’’ values of the potential at each site. Note that

the sites next to the boundary benefit from the known boundaryvalues, and
so their ((®)) values are likely initially to be closer to the ultimate values of

the potential than those for sites deep in the interior. With each iteration,
the accuracy works its way from the boundariesinto the interior.

5. Onceall interior sites have been processed, the set of ®,)4(i, j) is replaced
by the set of ®,.,,(i, /), and the iteration cycle begins again.

6. Iterations continue until some desired level of accuracy is achieved. For ex-

ample, one might continue iterations until the absolute value of the differ-
ence of old and new values is less than some preassigned value at every

interiorsite.

The scheme just outlined is called Jacobian iteration. It requires two arrays
of values of the potential at the lattice sites during each iteration. A better
scheme, called Gauss—Seidel iteration, employs a trivial change: one replaces
Da(i, /) with ®,..,(7, 7) as soon as the latter is determined. This meansthat during
an iteration one benefits immediately from the improvedvalues. Typically, at any
given site, ((®)) is made up half of old values and half of new ones, depending
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on the path over the lattice. There are many other improvements possible—
consult Press et al., Numerical Recipes, or some of the referencescited at the end

of the chapter. The relaxation methodis also applicable to magnetic field prob-
lems, as described briefly in Section 5.14.
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Problems

1.1 Use Gauss’s theorem [and (1.21) if necessary] to prove the following:

(a) Any excess charge placed on a conductor mustlie entirely on its surface. (A
conductor by definition contains charges capable of moving freely under the
action of applied electric fields.)
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(b) A closed, hollow conductorshields its interior from fields due to charges out-

side, but does not shield its exterior from the fields due to charges placed
insideit.

(c) The electric field at the surface of a conductor is normal to the surface and

has a magnitude o/e), where o is the charge density per unit area on the
Surface.

The Dirac delta function in three dimensions can be taken as the improperlimit as
a — 0 of the Gaussian function

1
D(a; x, y, z) = (20) *?a? exp| “53 (x? + y? + |

a

Consider a general orthogonal coordinate system specified by the surfaces u =

constant, v = constant, w = constant, with length elements du/U, dv/V, dw/W in

the three perpendicular directions. Show that

d(x — x’) = d(u — u') d(v — v') 6(w — w')- UVW

by considering the limit of the Gaussian above. Note that as a — 0 only the infin-
itesimal length element need be used for the distance between the points in the
exponent.

Using Dirac delta functions in the appropriate coordinates, express the following
charge distributions as three-dimensional charge densities p(x).

(a) In spherical coordinates, a charge Q uniformly distributed over a spherical

Shell of radius R.

(b) In cylindrical coordinates, a charge A per unit length uniformly distributed
over a cylindrical surface of radius b.

(c) In cylindrical coordinates, a charge Q spread uniformly over a flat circular

disc of negligible thickness andradius R.

(d) The sameas part (c), but using spherical coordinates.

Each of three charged spheres of radius a, one conducting, one having a uniform
charge density within its volume, and one having a spherically symmetric charge
density that varies radially as r” (n > —3), has a total charge Q. Use Gauss’s theorem
to obtain the electric fields both inside and outside each sphere. Sketch the behavior
of the fields as a function of radius for the first two spheres, and for the third with
n= —2, +2.

The time-averaged potential of a neutral hydrogen atom is given by

qe” ar
© = 1+

die) 1 ( 2

where q is the magnitude of the electronic charge, and a| = aj/2, dy being the

Bohrradius. Find the distribution of charge (both continuousanddiscrete) that will
give this potential and interpret your result physically.

  

A simple capacitor is a device formed by two insulated conductors adjacent to each
other. If equal and opposite charges are placed on the conductors, there will be a
certain difference of potential between them. The ratio of the magnitude of the
charge on one conductor to the magnitude of the potential difference is called the
capacitance (in SI units it is measured in farads). Using Gauss’s law, calculate the
capacitance of

(a) two large, flat, conducting sheets of area A, separated by a small distance d;

(b) two concentric conducting spheres with radii a, b (b > a);

(c) two concentric conducting cylinders of length L, large compared to their radii

a,b(b> a).
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(d) What is the inner diameter of the outer conductorin anair-filled coaxial cable

whose center conductor is a cylindrical wire of diameter 1 mm and whose
capacitance is 3 X 10°~'' F/m? 3 X 107% F/m?

Twolong, cylindrical conductors of radii a, and a, are parallel and separated by a
distance d, which is large compared with either radius. Show that the capacitance
per unit length is given approximately by

(mz)= TT€E9 Inv

where a is the geometrical mean of the tworadii.
Approximately what gauge wire (state diameter in millimeters) would be nec-

essary to make a two-wire transmission line with a capacitance of 1.2 x 107"! F/m
if the separation of the wires was 0.5 cm? 1.5 cm? 5.0 cm?

(a) For the three capacitor geometries in Problem 1.6 calculate the total electro-

static energy and express it alternatively in terms of the equal and opposite

charges Q and —Q placed on the conductors and the potential difference
between them.

(b) Sketch the energy density of the electrostatic field in each case as a function
of the appropriate linear coordinate.

Calculate the attractive force between conductors in the parallel plate capacitor

(Problem 1.6a) and the parallel cylinder capacitor (Problem 1.7) for

(a) fixed charges on each conductor;

(b) fixed potential difference between conductors.

Prove the mean value theorem: For charge-free space the value of the electrostatic
potential at any point is equal to the average of the potential over the surface of
any sphere centered on that point.

Use Gauss’s theorem to prove that at the surface of a curved charged conductor,
the normal derivative of the electric field is given by

LE (1d
E on R, Ry

where R, and R; are the principal radii of curvature of the surface.

Prove Green’s reciprocation theorem: If ® is the potential due to a volume-charge
density p within a volume V and a surface-charge density o on the conducting
surface S bounding the volume V, while ®’ is the potential due to another charge
distribution p’ and o’, then

[po x + | a®' da = | pio ax + | o'® da
Vv s Vv s

Two infinite groundedparallel conducting planes are separated by a distance d. A
point charge qg is placed between the planes. Use the reciprocation theorem of
Green to prove that the total induced charge on one of the planesis equal to (—q)
times the fractional perpendicular distance of the point charge from the otherplane.
(Hint: As your comparisonelectrostatic problem with the same surfaces choose one

whose charge densities and potential are known andsimple.)

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and
Neumann boundary conditions on the surface § bounding the volume V. Apply
Green’s theorem (1.35) with integration variable y and ¢ = G(x, y), w = G(x’, y),
with V*, G(z, y) = —476(y — z). Find an expression for the difference [G(x, x’) —
G(x’, x)]| in terms of an integral over the boundary surface S.

(a) For Dirichlet boundary conditions on the potential and the associated bound-
ary condition on the Green function, show that Gp(x, x’ must be symmetric
in x and x’.
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(b) For Neumann boundary conditions, use the boundary condition (1.45) for
G(x, x’) to show that Gy(x, x’) is not symmetric in general, but that Gy(x,

x’) — F(x) is symmetric in x and x’, where

F(x) = = G(x, y) da,
(c) Show that the addition of F(x) to the Green function does not affect the po-

tential B(x). See problem 3.26 for an example of the Neumann Greenfunction.

Prove Thomson’s theorem: If a numberof surfacesare fixed in position and a given
total charge is placed on each surface, then the electrostatic energy in the region
bounded by the surfaces is an absolute minimum whenthechargesare placed so
that every surface is an equipotential, as happens whenthey are conductors.

Prove the following theorem: If a number of conducting surfaces are fixed in po-
sition with a given total charge on each, the introduction of an uncharged,insulated
conductor into the region boundedby the surfaces lowers the electrostatic energy.

A volume V in vacuum is bounded by a surface S§ consisting of several separate
conducting surfaces S;. One conductor is held at unit potential and all the other
conductors at zero potential.

(a) Show that the capacitance of the one conductoris given by

C= | \V®?P dex
V

where (x) is the solution for the potential.

(b) Show that the true capacitance C is always less than or equal to the quantity

C[¥] = «| Ww? dbx
V

where W is anytrial function satisfying the boundary conditions on the con-
ductors. This is a variational principle for the capacitance that yields an upper
bound.

Consider the configuration of conductors of Problem 1.17, with all conductors ex-
cept S; held at zero potential.

(a) Show that the potential ®(x) anywhere in the volume V and on any of the
surfaces S; can be written

— 1 é t f f@(x) = Ane, bs, o,(x')G(x, x’) da

where o;(x’) is the surface charge density on S; and G(x, x’) is the Green
function potential for a point charge in the presence of all the surfaces that
are held at zero potential (but with S$, absent). Show also thatthe electrostatic
energy is

 W= : . da 7 da' o;(x)G(x, x')o;(x’)
87TE

where the integrals are only over the surface S$).

(b) Show that the variational expression

p da p da'o(x)G(x, x')o(x')

sel a(x) ial

with an arbitrary integrable function o(x) defined on Sj, is stationary for small
variations of a away from o;. Use Thomson’s theorem to prove that the

 Cfo] =
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reciprocal of C~'[a] gives a lower boundto the true capacitance of the con-
ductor S;.

For the cylindrical capacitor of Problem 1.6c, evaluate the variational upper bound
of Problem 1.17b with the naive trial function, Vi(p) = (b — p)/(b — a). Compare
the variational result with the exact result for b/a = 1.5, 2, 3. Explain the trend of

your results in terms of the functional form of V,. An improved trial function is
treated by Collin (pp. 275-277).

In estimating the capacitance of a given configuration of conductors, comparison
with knowncapacitancesis often helpful. Consider two configurations of n conduc-
tors in which the (7 — 1) conductors held at zero potential are the same, but the
one conductor whose capacitance wewish to know is different. In particular, let the
conductor in one configuration have a closed surface S, and in the other configu-
ration have surface S$}, with S; totally inside S$).

(a) Use the extremum principle of Section 1.12 and the variational principle of
Problem 1.17 to prove that the capacitance C’ of the conductor with surface
S; is less than or equal to the capacitance C of the conductor with surface S,

that encloses Sj.

(b) Set upper and lowerlimits for the capacitance of a conducting cubeofsidea.
Compare your limits and also their average with the numerical value,
C = 0.655(477€9a).

(c) By how muchdo youestimate the capacitance per unit length of the two-wire
system of Problem 1.7 will change (larger? smaller?) if one of the wires is
replaced by a wire of square cross section whose side is equalto its diameter?

A two-dimensional potential problem consists of a unit square area (0 = x = 1,
0 = y = 1) bounded by “surfaces” held at zero potential. Over the entire square
there is a uniform charge density of unit strength (per unit length in z).

(a) Apply the variational principle (1.63) for the Poisson equation with the “‘vari-
ational” trial function V(x, y) = A-x(1 — x)-y(1 — y) to determinethe best
value of the constant A. [I use quotation marks around variational because
there are no parameters to vary except the overall scale.]

(b) The exact (albeit series) solution for this problem is [see Problems 2.15 and
2.16]

 

» sin[(2m + 1)7x] {1 _ cosh[(2m + 1)7( 5 aI]16
47ré,D =FTEgP(x, y) = WH (2m + 17 cosh[(2m + 1)7/2

For y = 0.25 and y = 0.5, plot and comparethe simple variational solution of
part a with the exact solution as functionsof x.

Two-dimensional relaxation calculations commonly usesites on a squarelattice with
spacing Ax = Ay = h, andlabel thesites by (i, j), where i, j are integers and x; =
th + Xo, y; = jh + yo. The value of the potential at (i, 7) can be approximated by

the average of the values at neighboring sites. [Recall the relevant theorem about
harmonic functions.] But what average?

(a) If F(x, y) is a well-behaved function in the neighborhoodof the origin, but

not necessarily harmonic, by explicit Taylor series expansions, show that the
“cross”? sum

S. = F(h, 0) + F(O, h) + F(—h, 0) + F(O, —A)

can be expressed as

h*

S, = 4F(0, 0) + W’°V?F + D (Free + Fyyy,) + O(h*)
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(b) Similarly, show that the ‘‘square”’ sum,

Ss = F(h, h) + F(—h, h) + F(-h, —h) + F(A, —h)

can be expressed as

4
h h*

Ss = 4F(0, 0) + 2h°V7F — 3 (Foe + Fyyyy) + > V7(V°F) + O(h°)

Here F,,,, is the fourth partial derivative of F with respect to x, evaluated at

x = 0,y = 0,etc. If V’F = 0, the averages S,/4 and S,/4 each give the value of

F(0, 0), correct to order h° inclusive. Note that an improvementcan be ob-
tained by formingthe “improved”’ average,

«ro, oy) = 4]s.+3 s|
where

3 h*
(FO, 0))) = F(0, 0) + 10 WN?F + 40 V*(V°F) + O(h*)

If V7F = 0, then S gives F(0, 0), correct to order h° inclusive. For Poisson’s
equation, the charge density and its lowest order Laplacian can be inserted

for the same accuracy.

A transmission line consists of a long straight conductor with a hollow square region
in its interior, with a square conductor of one-quarter the area of the hollow region
centered in the empty space, with edges parallel to the inner sides of outer con-
ductor. If the conductorsare raised to different potentials, the potential and electric

field in the space between them exhibit an eightfold symmetry; the basic unit is
sketched in the accompanying figure. The efficacy of the relaxation method in de-
termining the properties of the transmission line can be illustrated by a simple

calculation.

(a)

(b)

(c)

Using only the four interior points indicated in the figure, write down the
relaxation equation for each point for the ‘“‘cross’’ and the “improved” aver-
aging schemes (defined in Problem 1.22) if the inner conductor has ® = 100
V and the outer has ® = O. By performing either the relaxation iteration
process or solving the set of algebraic equations for each scheme,find esti-
mates for the potential at each of the four points for the two schemes.

From the results of part a make the best estimate (or estimates) you can for
the capacitance per unit length of the transmission line.

(Optional) Using your favorite computational tools, repeat the relaxationcal-
culation with half the lattice spacing (21 interior points) and compare.

Answer: ®, = 48.87 V, ®, = 47.18 V, ®; = 38.34 V, ®, = 19.81 V and C = 10.23
€) F/m [from an accurate numerical calculation].

 

 Problem 1.23
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1.24 Consider solution of the two-dimensional Poisson equation problem of Problem
1.21, a unit square with zero potential on the boundary anda constant unit charge
density in the interior, by the technique of relaxation. Choose h = 0.25so that there
are nine interior sites. Use symmetry to reduce the numberof neededsitesto three,
at (0.25, 0.25), (0.5, 0.25), and (0.5, 0.5). With so few sites, it is easy to do the
iterations with a block of paper and a pocketcalculator, but suit yourself.

(a) Use the “improvedgrid” averaging of Problem 1.22 and the simple (Jacobian)
iteration scheme,starting with 47e,® = 1.0 at all three interior sites. Do at
least six iterations, preferably eight or ten.

(b) Repeat the iteration procedure with the samestarting values, but using Gauss—
Seidel iteration.

(c) Graph the two sets of results of each iteration versus iteration number and

compare with the exact values, 47e,@(0.25, 0.25) = 0.5691, 47re€,(0.5, 0.25)
= 0.7205, 47€>®(0.5, 0.5) = 0.9258. Commenton rate of convergenceandfinal

accuracy.



CHAPTER 2

Boundary-Value Problems

in Electrostatics: I

Manyproblemsin electrostatics involve boundary surfaces on which either the

potential or the surface-charge density is specified. The formal solution of such
problems was presented in Section 1.10, using the method of Green functions.

In practical situations (or even rather idealized approximationsto practical sit-

uations) the discovery of the correct Green function is sometimes easy and some-

times not. Consequently a numberof approachesto electrostatic boundary-value
problems have been developed, some of which are only remotely connected to

the Green function method.In this chapter we will examinethree of these special
techniques: (1) the method of images, whichis closely related to the use of Green
functions; (2) expansion in orthogonal functions, an approach directly through
the differential equation and rather remote from the direct construction of a
Green function; (3) an introduction to finite element analysis (FEA), a broad
class of numerical methods. A major omission is the use of complex-variable
techniques, including conformal mapping, for the treatment of two-dimensional

problems. The topic is important, but lack of space and the existence ofself-
contained discussions elsewhere accounts for its absence. The interested reader
may consult the references cited at the end of the chapter.

2.1 Method ofImages

The method of images concerns itself with the problem of one or more point

charges in the presence of boundary surfaces, for example, conductorseither

groundedorheld at fixed potentials. Under favorable conditionsit is possible to
infer from the geometry of the situation that a small numberofsuitably placed

charges of appropriate magnitudes, external to the region of interest, can simu-

late the required boundary conditions. These charges are called image charges,

and the replacementof the actual problem with boundariesby an enlarged region

with image charges but not boundariesis called the method of images. The image
charges must be external to the volumeofinterest, since their potentials must be

solutions of the Laplace equation inside the volume; the ‘‘particular integral”’

(i.e., solution of the Poisson equation) is provided by the sum of the potentials

of the charges inside the volume.
A simple example is a point charge located in front of an infinite plane con-

ductor at zero potential, as shown in Fig. 2.1. It is clear that this is equivalent to

the problem of the original charge and an equal and opposite charge located at

the mirror-image point behind the plane defined by the position of the conductor.

37
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2.2
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pong
! Figure 2.1 Solution by method of
| images. The original potential problem
: is on the left, the equivalent-image
| problem on theright.

Point Chargein the Presence of a Grounded
Conducting Sphere

Asan illustration of the method of images we consider the problem illustrated
in Fig. 2.2 of a point charge q locatedat y relative to the origin, around whichis

centered a grounded conducting sphere of radius a. We seek the potential ®(x)
such that ®(|x| = a) = 0. By symmetryit is evident that the image charge q'
(assuming that only one image is needed) will lie on the ray from the origin to
the charge q. If we consider the charge q outside the sphere, the image position
y’ will lie inside the sphere. The potential due to the charges g and q’ is:

 

_ glare, 1 q'l47

Ix—y| |x—y’|

Wenow musttry to choose q' and |y’| such that this potential vanishesat |x| = a.
If n is a unit vector in the direction x, and n’ a unit vector in the direction y, then

ql47réy q'l47€®(x) = (2.2)
xn — yn’ xn — y'n'y

If x is factored out of the first term and y’ out of the second, the potential at
x = a becomes:

ql47r€o 1 q'l47éq

n—-~n!
a

  ®(x = a)= (2.3)
a

/

y
/

na

    

  

 

Figure 2.2. Conducting sphere of radius
a, with charge q and image charge q’.
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From the form of (2.3) it will be seen that the choices:

Qq_ G Yy_@
1? !

a y ay
make ®(x = a) = 0,for all possible values of n-n’. Hence the magnitude and
position of the image charge are

a

q’=--q yuu (2.4)
y y

Wenote that, as the charge q is broughtcloser to the sphere, the image charge
grows in magnitude and movesout from the center of the sphere. When is just

outside the surface of the sphere, the image charge is equal and opposite in

magnitude and lies just beneath the surface.
Now that the image charge has been found, we can return to the original

problem of a charge g outside a grounded conducting sphere and consider various
effects. The actual charge density induced on the surface of the sphere can be
calculated from the normal derivative of ® at the surface:

a

I--,
q a y

_ 4n@ (5) ae a ~ 2)
—_ ( 2 — cos 7

y
l+ a>

ab
Ox

  CO = —€&
 

where y is the angle between x andy. This charge density in units of —q/47a* is
shownplottedin Fig. 2.3 as a function of y for two valuesof y/a. The concentra-

 
  

No
]a

f
e

Y—

Figure 2.3. Surface-charge density o induced on the grounded sphere of radius a as a
result of the presence of a point charge g located a distance y away from the center of
the sphere. a is plotted in units of —q/47a? as a function of the angular position y away
from the radius to the charge for y = 2a, 4a. Inset showslines of force for y = 2a.
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dF = (o7/2e9)da

—-ee eg

 

Figure 2.4

tion of charge in the direction of the point charge g is evident, especially for

yla = 2. It is easy to show bydirect integration that the total induced charge on

the sphere is equal to the magnitudeof the imagecharge,as it must be, according

to Gauss’s law.

The force acting on the charge q can becalculated in different ways. One

(the easiest) way is to write down immediately the force between the charge g
and the image charge q’. The distance between them is y — y’ = y(1 — a’/y’).
Hencethe attractive force, according to Coulomb’slaw,is:

3 —2

1 q* [a a’Fi- 7-&(2) (1-5) (2.6)
WTEg a y y

For large separations the force is an inverse cube law, but close to the sphereit

is proportional to the inverse square of the distance away from the surface of the
sphere.

The alternative method for obtaining the force is to calculate the total force
acting on the surface of the sphere. The force on each element of area da is

(07/2) da, where ais given by(2.5), as indicated in Fig. 2.4. But from symmetry
it is clear that only the componentparallel to the radius vector from the center
of the sphere to q contributesto the total force. Hence the total force acting on
the sphere (equal and opposite to the force acting on q) is given by the integral:

q° a\ a\ cos y
F) = ——> [-]/1--< | dQ, 2.7
| 32177€9a° (5) ( ) ( awa ) G7)145 — — cosy

y

 

 

Integration immediately yields (2.6).
The whole discussion has been based on the understanding that the point

charge q is outside the sphere. Actually, the results apply equally for the charge

q inside the sphere. The only change necessary is in the surface-charge density
(2.5), where the normal derivative out of the conductor is now radially inward,

implying a change in sign. The reader maytranscribeall the formulas, remem-
bering that now y = a. The angular distributions of surface charge are similar to

those of Fig. 2.3, but the total induced surface charge is evidently equal to —q,

independentof y.

2.3 Point Charge in the Presence of a Charged, Insulated,
Conducting Sphere

In the preceding section we considered the problem of a point charge qg near a

grounded sphere and saw that a surface-charge density was induced on the
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sphere. This charge was of total amount g’' = —agq/y, and was distributed over
the surface in such a wayas to be in equilibrium underall forces acting.

If we wish to consider the problem of an insulated conducting sphere with
total charge Q in the presence of a point charge qg, we can build upthe solution

for the potential by linear superposition. In an operational sense, we can imagine

that we start with the grounded conducting sphere (with its charge q’ distributed

over its surface). We then disconnect the ground wire and addto the sphere an

amount of charge (Q — q’). This brings the total charge on the sphere up to Q.
To find the potential we merely note that the added charge (Q — q’) will dis-
tribute itself uniformly over the surface, since the electrostatic forces due to the

point charge g are already balanced by the charge q’. Hence the potential due
to the added charge (Q — gq’) will be the sameasif a point charge of that mag-
nitude wereat the origin, at least for points outside the sphere.

The potential is the superposition of (2.1) and the potential of a point charge

(Q — q') at the origin:

  

a

1 q aq eryP(x) = — + (2.8)
4irey |x — y| a Ix

x — y y

 
The force acting on the charge g can be written downdirectly from Coulomb’s

law. It is directed along the radius vector to q and has the magnitude:

3 2 2

F= “. Lo _# vy 2 y (2.9)4m€y yy - ay fy
In the limit of y >> a, the force reduces to the usual Coulomb’s law for two small

charged bodies. But close to the sphere the force is modified because of the
induced charge distribution on the surface of the sphere. Figure 2.5 shows the
force as a function of distance for various ratios of Q/q. The force is expressed

in units of g7/47ey’; positive (negative) values correspondto a repulsion (at-
traction). If the sphere is charged oppositely to q, or is uncharged, the force is
attractive at all distances. Even if the charge Q is the samesign as qg, however,
the force becomesattractive at very close distances. In the limit of Q >> q,the
point of zero force (unstable equilibrium point) is very close to the sphere,
namely, at y = a(1 + $Vq/Q). Note that the asymptotic value of the force is
attained as soon as the charge g is more than a few radii away from the sphere.

This example exhibits a general property that explains why an excess of

charge on the surface does not immediately leave the surface because of mutual

repulsion of the individual charges. As soon as an element of charge is removed
from the surface, the image force tends to attract it back. If sufficient work is
done, of course, charge can be removed from the surface to infinity. The work
function of a metal is in large part just the work done against the attractive image

force to removeanelectron from the surface.

 

2.4 Point Charge Near a Conducting Sphere at Fixed Potential

Another problem that can be discussed easily is that of a point charge near a
conducting sphere held at a fixed potential V. The potential is the same as for
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Figure 2.5 The force on a point charge q due to an insulated, conducting sphere of
radius a carrying a total charge Q. Positive values mean a repulsion, negative an
attraction. The asymptotic dependence of the force has been divided out. 47re,)Fy7/q" is
plotted versus y/a for Q/q = —1, 0, 1, 3. Regardless of the value of Q, the forceis
always attractive at close distances because of the induced surface charge.

the charged sphere, except that the charge (Q — q’) at the centeris replaced by
a charge (Va). This can be seen from (2.8), since at |x| = a the first two terms
cancel and the last term will be equal to V as required. Thusthe potentialis

 (x) - q____4@q_sO] , ‘Va (2.10)
Ame |x — y| a Ix

yx ay
 

The force on the charge q due to the sphereat fixed potential is

q 1 qay’_tyF =— Va - = 2.11
° © Atte) (— =| y en)

For corresponding values of 47re,Va/q and Q/q this force is very similar to that

of the charged sphere, shownin Fig. 2.5, although the approach to the asymptotic
value (Vaq/y*) is more gradual. For Va >> q, the unstable equilibrium point has
the equivalent location y ~ a(1 + $V q/47e,Va).

 

2.5 Conducting Sphere in a Uniform Electric Field
by Method ofImages

Asa final example of the method of images we consider a conducting sphere of
radius a in a uniform electric field Ey. A uniform field can be thoughtof as being
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produced by appropriate positive and negative chargesat infinity. For example,

if there are two charges +Q,located at positions z = +R, as shownin Fig. 2.6a,
then in a region nearthe origin whose dimensionsare very small compared to R

there is an approximately constantelectric field Ey ~ 2Q/47e)R’ parallel to the

z axis. In the limit as R, OQ > ~, with Q/R? constant, this approximation becomes

exact.

If now a conducting sphere of radius a is placed at the origin, the potential
will be that due to the charges +Q at +R and their images +Qa/R at z =
+a7/R:

  

  

  

p = O/47€5 _ O/47re

(r? + R? + 2rR cos 6)? (r? + R? — 2rR cos 6)'” (2.12)

aQ/4ire aQ/4reo
— 4 5 2 7 4 5 1/2

Rr? ++cos 6 R24 ~~ cos 6
R? R R? R

where ® has been expressed in terms of the spherical coordinates of the obser-
vation point. In the first two terms R is muchlarger than r by assumption. Hence
we can expand the radicals after factoring out R*. Similarly, in the third and

fourth terms, we can factor out r? and then expand.Theresultis:

1 2 20 a
o-| Cr cosa + 2% cosa] (2.13)

4TTE, «RR?

where the omitted terms vanish in the limit R — ©. In that limit 20/47e)R?
becomesthe applied uniform field, so that the potential is

a

P = Fal — “| cos 6 (2.14)

Thefirst term (—Ez) is, of course, just the potential of a uniform field EF, which
could have been written down directly instead of the first two terms in (2.12).
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Figure 2.6 Conducting sphere in a uniform electric field by the method of images.
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The second is the potential due to the induced surface-charge density or, equiv-
alently, the image charges. Note that the image charges form a dipole of strength

D = QalR X 2a’/R = 47) Ena’. The induced surface-charge density is

a®
op = 3€)Ep cos 0 (2.15)

r r=a

O = —€)

Wenote that the surface integral of this charge density vanishes, so that thereis
no difference between a grounded and an insulated sphere.

\

2.6 Green Functionfor the Sphere; General Solution
for the Potential

In preceding sections the problem of a conducting sphere in the presence of a
point charge was discussed by the method of images. As mentioned in Section
1.10, the potential due to a unit source andits image (or images), chosento satisfy

homogeneous boundaryconditions, is just the Green function (1.43 or 1.45) ap-
propriate for Dirichlet or Neumann boundaryconditions. In G(x, x’) the variable
x’ refers to the location P’ of the unit source, while the variable x is the point P
at which the potential is being evaluated. These coordinates and the sphere are
shownin Fig. 2.7. For Dirichlet boundary conditions on the sphere of radius a
the Green function defined via (1.39) for a unit source and its imageis given by

(2.1) with q — 47andrelations (2.4). Transforming variables appropriately,
we obtain the Green function:

1 _ a

Ix — x’|
 G(x, x’) = (2.16)

 

  

 
 

 
Figure 2.7
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In terms of spherical coordinates this can be written:

1 1
7 1/2

(x? + x’? — 2xx' cos y)'” x22 ;
57 + a’ — 2xx' cosy

a

  G(x, x’) = (2.17)

 

where y is the angle between x and x’. The symmetryin the variables x and x’

is obvious in the form (2.17), as is the condition that G = 0 if either x or x’ is on
the surface of the sphere.

For solution (1.44) of the Poisson equation we need not only G, but also
dG/dn'. Remembering that n’ is the unit normal outward from the volume of
interest (i.e., inward along x’ towardthe origin), we have

aG (x? — a’)

an' a(x* + a? — 2ax cos y
  (2.18)

 
3wea ) /2

[Note that this is essentially the induced surface-charge density (2.5).] Hence the
solution of the Laplace equation outside a sphere with the potential specified on
its surface is, according to (1.44),

a(x* — a’)

(x? + a? — 2ax cos y)*”
 P(x) = + | P(a, 0’, o') dQ, (2.19)

Ar

where dQ)’ is the element of solid angle at the point (a, 6’, @’) and cosy =
cos 8 cos 6’ + sin @ sin 6’ cos(¢@ — ¢'). For the interior problem, the normal
derivative is radially outward, so that the sign of dG/dn’ is opposite to (2.18).
This is equivalent to replacing the factor (x* — a’) by (a? — x”) in (2.19). For a
problem with a charge distribution, we must addto (2.19) the appropriate integral
in (1.44), with the Green function (2.17).

2.7 Conducting Sphere with Hemispheres at Different Potentials

As an example of the solution (2.19) for the potential outside a sphere with
prescribed values of potential on its surface, we consider the conducting sphere
of radius a made up of two hemispherical shells separated by a small insulating
ring. The hemispheresare kept at different potentials. It will suffice to consider
the potentials as +V, since arbitrary potentials can be handled by superposition
of the solution for a sphere at fixed potential over its whole surface. The insu-
lating ring lies in the z = 0 plane, as shown in Fig. 2.8, with the upper (lower)
hemisphereat potential + V (—V).

 

 

Figure 2.8
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From (2.19) the solution for ®(x, 0, @) is given by the integral:

V 21 1

P(x, 6, d) = Y | io’| d(cos 0’)
Aq JO 0

0 > 2 (2.20)

— [, d(cos 0 ale a) 
a’ + x? — 2ax cos y)*”

By a suitable change of variables in the second integral (0' > 7 — 6’, 6’ >

g@' + a), this can be cast in the form:

2

(x, 6, 6) Ae «) |° dd’ |. d(cos 6')[(a2 + x2 2ax cosy)3?X, U, i _

4a 0 0 ” (2.21)

—(a* + x? + 2ax cos y) *7]

Because of the complicated dependenceof cos y on the angles (6', 6’) and (6, ),

equation (2.21) cannot in general be integrated in closed form.
As a special case we consider the potential on the positive z axis. Then

cos y = cos 6’, since 6 = 0. Theintegration is elementary, and the potential can

be shownto be

(2 = @) |O(z) = Vii = OSS 2.22(2) = (2.22)

At z = a, this reduces to ® = V as required, while at large distances it goes

asymptotically as ® ~ 3Va‘/2z’.
In the absence of a closed expression for the integrals in (2.21), we can ex-

pand the denominatorin powerseries and integrate term by term. Factoring out

(a* + x”) from each denominator, we obtain

Va(x* _ a’) 27 1 |
;

4n(x* + a’y** Jo dd j d(cos 6')[(1 — 2acos y)~*”

— (1 + 2acos y)~*7|

 D(x, 0, db) = 023)

where a = ax/(a’ + x”). We observe that in the expansion of the radicals only
odd powers of acos y will appear:

[(1 — 2acos y)~*? — (1 + 2acos y)*”] = 6acos y + 350° cos*y +--+ (2.24)

It is now necessary to integrate odd powers of cos y over dd‘ d(cos 6’):

27 1

I dd' I d(cos 6’) cos y = mcos 6

27 1 T (2.25)

i dd' I d(cos 6') cosy = 4 098 6(3 — cos’)

If (2.24) and (2.25) are inserted into (2.23), the potential becomes

3Vaz (x(x? — & 22

D(x, 6, b) = a (* (x | cos 1 +2_#* 3 — cos?) 4 os 
2x* \(x?2 + a@y? 24 (a? + x’)

(2.26)
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Wenote that only odd powers of cos 6 appear, as required by the symmetry of

the problem.If the expansion parameteris (a’/x”), rather than a”, the series takes
on the form:

  
2 2

D(x, 0, d) = —" co 6 — a (; cos*@ — = cos | + os (2.27)

Forlarge values of x/a this expansion convergesrapidly and sois a useful rep-

resentation for the potential. Even for x/a = 5, the second term in theseriesis
only of the order of 2%. It is easily verified that, for cos 6 = 1, expression (2.27)
agrees with the expansion of (2.22) for the potential on the axis. [The particular
choice of angular factors in (2.27) is dictated by the definitions of the Legendre
polynomials. The twofactors are, in fact, P;(cos @) and P3(cos @), and the expan-
sion of the potential is one in Legendre polynomials of odd order. We establish
this in a systematic fashion in Section 3.3.] Further consideration of both the
exterior and interior problem of the two hemispheresis found in Problem 2.22.

2.8 Orthogonal Functions and Expansions

The representation of solutions of potential problems (or any mathematical phys-
ics problem) by expansionsin orthogonal functions forms a powerful technique

that can be usedin a large class of problems. The particular orthogonalset chosen
depends on the symmetries or near symmetries involved. To recall the general
properties of orthogonal functions and expansionsin terms of them, we consider

an interval (a, b) in a variable € with a set of real or complex functions U,,(€&),
n=1,2,..., Square integrable and orthogonal on the interval (a, b). The ortho-
gonality condition on the functions U,,(€) is expressed by

[ U*(2)U,,(€) d€=0, m#n (2.28)

If n = m, the integral is nonzero. We assumethat the functions are normalized
so that the integral is unity. Then the functions are said to be orthonormal, and
they satisfy

|, UXQUE) dé = bin (2.29)
Anarbitrary function f(€), square integrable on the interval (a, b), can be

expandedin a series of the orthonormal functions U,,(€). If the number of terms
in the seriesis finite (say NV),

foa a,U,(E) (2.30)

then we can askforthe ‘‘best’’ choice of coefficients a, so that we get the “‘best”’
representation of the function f(&). If ‘“‘best”’ is defined as minimizing the mean

b

N |

a

f() - a a,U,(é)| dé (2.31)
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it is easy to showthat the coefficients are given by

a, = | MOLE ae (2.32)
where the orthonormality condition (2.29) has been used. This is the standard
result for the coefficients in an orthonormal function expansion.

If the numberof terms N in series (2.30) is taken larger and larger, we in-
tuitively expect that our series representation of f(€) is ‘‘better’’ and “‘better.”’
Ourintuition will be correct provided the set of orthonormal functions is com-
plete, completeness being defined by the requirement that there exist a finite
number No such that for N > No, the mean square error M,, can be made smaller

than any arbitrarily small positive quantity. Then the series representation

> a,U,(é) = f( (2.33)
with a, given by (2.32) is said to converge in the meanto f(&). Physicists generally
leave the difficult job of proving completeness of a given set of functions to the
mathematicians. All orthonormal sets of functions normally occurring in math-
ematical physics have been proven to be complete.

Series (2.33) can be rewritten with the explicit form (2.32) for the coef-
ficients a,,:

ple) = | {> veU6| fle") de (2.34)
Since this represents any function f(€) on the interval (a, b), it is clear that the

sum of bilinear terms U*(é')U,(€) must exist only in the neighborhood of
&’ = &In fact, it must be true that

DUREAE) = HE’ = 8 (2.35)
This is the so-called completeness or closure relation. It is analogous to the or-
thonormality condition (2.29), except that the roles of the continuous variable
and the discrete index n have been interchanged.

The most famous orthogonal functions are the sines and cosines, an expan-

sion in terms of them being a Fourier series. If the interval in x is (—a/2, a/2), the
orthonormal functionsare

if (P=) if (22)
— sin — cos
a a a a

where m is a non-negative integer and for m = 0 the cosine function is 1/Va.
The series equivalent to (2.33) is customarily written in the form:

f(x) = 4Aq + > A, cos(222) + By, sin(222") (2.36)
a

  

where

 

(2.37)
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If the interval spanned by the orthonormalset has more than one dimension,
formulas (2.28)—(2.33) have obvious generalizations. Suppose that the space is
two-dimensional, and the variable € ranges over the interval (a, b) while the
variable 7 has the interval (c, d). The orthonormal functions in each dimension
are U,(é) and V,,,(m). Then the expansion of an arbitrary function f(& 7) 1s

fEn = 2 2 OnmUn(E)Vin(1) (2.38)

where

tam = | aé f anuOVEAE (2.39)
If the interval (a, b) becomesinfinite, the set of orthogonal functions U,,(&)

may becomea continuum of functions, rather than a denumerableset. Then the
Kronecker delta symbol in (2.29) becomesa Dirac delta function. An important
example is the Fourier integral. Start with the orthonormal set of complex
exponentials,

 

 

1
U x) = — ell(2amxia) 2.40(x) = (2.40)

m = 0, +1, #2,..., on the intervalos a/2), with the expansion:

f(x) = = > Anemmela) (2.41)

where

A. = + | e12mmx'ia)f(x!) dx' (2 42)

” Va —al2

Then let the interval becomeinfinite (a — ©), at the same time transforming

)27m sk

a

yo dma| dk (2.43)
m — 277 J—«

2
Am — |— A(k)

}

The resulting expansion, equivalent to (2.41), is the Fourier integral,

1 |” |
x) = A(k)e"* dk 2.44fx) =} AW (2.44)

where

A(k) | [ e™**F(x) d (2.45)= x) dx ,
V 27 J-@

The orthogonality condition is

1 {f° «Lp
— eb&KOX dx = 6(k — k') (2.46)
277 J—x
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while the completenessrelation is
1

Qa Js
These last integrals serve as convenient representations of a delta function. We

note in (2.44)-(2.47) the complete equivalence of the two continuousvariables
x and k.

eX) dk = &(x — x’) (2.47)

2.9 Separation of Variables; Laplace Equation
in Rectangular Coordinates

The partial differential equations of mathematical physics are often solved con-
veniently by a method called separation of variables. In the process, one often

generates orthogonal sets of functions that are useful in their own right. Equa-

tions involving the three-dimensional Laplacian operator are knownto besep-
arable in eleven different coordinate systems (see Morse and Feshbach, pp. 509,
655). We discuss only three of these in any detail—rectangular, spherical, and
cylindrical—beginning with the simplest, rectangular coordinates.

The Laplace equation in rectangular coordinates1s

rb Fb IF
az tat = 0 (2.48)

Ox oy OZ

A solution of this partial differential equation can be found in terms of three
ordinary differential equations,all of the same form, by the assumption that the
potential can be represented by a product of three functions, one for each

coordinate:

D(x, y, Z) = X(x)Y(y)Z(z) (2.49)

Substitution into (2.48) and division of the result by (2.49) yields

1aex 1ey1ee
X(x) dx? Y(y) dy? Z(z) dz’

where total derivatives have replacedpartial derivatives, since each term involves
a function of one variable only. If (2.50) is to hold for arbitrary values of the
independent coordinates, each of the three terms must be separately constant:

(2.50)

 

 

1 d’x >
Kd? ©

1 d’°Y
Yar —B*> (2.51)

1aZ ,
772Z dz’ J

where

ar 4 Bb? _ y

If we arbitrarily choose a” and f” to be positive, then the solutions of the three
ordinary differential equations (2.51) are e~'**, e='”, e~ “+. The potential
(2.49) can thus be built up from the preductsolutions:

@D _ etlexot iBy9+ a2+ B2z (2.52)
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At this stage a and B are completely arbitrary. Consequently (2.52), by linear

superposition, represents a very large class of solutions to the Laplace equation.

To determine a and £ it is necessary to impose specific boundary conditions

on the potential. As an example, consider a rectangular box, located as shown
in Fig. 2.9, with dimensions(a, b, c) in the (x, y, z) directions. All surfaces of the

box are kept at zero potential, except the surface z = c, whichis at a potential

V(x, y). It is required to find the potential everywhere inside the box. Starting

with the requirement that ® = 0 for x = 0, y = 0, z = 0, it is easy to see that the
required forms of X, Y, Z are

X = sin ax

Y = sin By (2.53)

Z = sinh(Va+ B’z)

To have ® = 0 at x = a and y = b, we must have aa = nz and Bb = mz. With

the definitions,

 

nT
Ay =

a

mor

nm
Yam = 7 @ + B,

we can write the partial potential ®,,,,, satisfying all the boundary conditions

except one,

Om = sin(a@,x) sin(B,,y) sinh(yZ) (2.55)

The potential can be expanded in terms of these ®,,,, with initially arbitrary

coefficients (to be chosento satisfy the final boundary condition):

P(x, y, Z) = > Anm Sin(a@,X) SIN(B,Y) SINDYmZ) (2.56)
nym=1

There remains only the boundary condition ® = V(x, y) at z =:

 

 

Vix,y) = Dd Anm Sin(a,x) sin(B,,Y) sinh(YamC) (2.57)
nym=1

Z

= V(x,y)

z=c [

y

¢=0-—~. >» tgP= 0

y=b y   
   {_4x=a

" Figure 2.9 Hollow, rectangular box
= 0 with five sides at zero potential, while

the sixth (z = c) has the specified
x potential ® = V(x, y).
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This is just a double Fourier series for the function V(x, y). Consequently the

coefficients A,,,, are given by:

nm - Samco h ax | dy V(x, y) sin(a@,x) sin(Bny) (2.58)

If the rectangular box has potentials different from zero onall six sides, the
required solution for the potential inside the box can be obtained by a linear

superposition of six solutions, one for each side, equivalent to (2.56) and (2.58).
The problem of the solution of the Poisson equation, that is, the potential inside
the box with a charge distribution inside, as well as prescribed boundary condi-
tions on the surface, requires the construction of the appropriate Green function,
according to (1.43) and (1.44). Discussion of this topic will be deferred until we
have treated the Laplace equation in spherical and cylindrical coordinates. For
the moment, we merely note that the solution given by (2.56) and (2.58) is equiv-
alent to the surface integral in the Green function solution (1.44).

2.10 A Two-Dimensional Potential Problem;
Summation of a Fourier Series

Wenowconsider briefly the solution by separation of variables of the two-
dimensional Laplace equation in Cartesian coordinates. By two-dimensional

problems we meanthose in which the potential can be assumed to be indepen-
dent of one of the coordinates, say, z. This is usually only an approximation, but
may hold true to high accuracy, as in a long uniform transmission line. If the
potential is independentof z, the basic solutions of the previous section reduce
to the products

e 1Xpray

where a is any real or complex constant. The imposition of boundary conditions
on the potential will determine what values of a are permitted and the form of
the linear superposition of different solutions required.

A simple problem that can be used to demonstrate the separation of variables
technique and also to establish connection with the use of complex variablesis

indicated in Fig. 2.10. The potential in the region, 0 S x < a, y S 0,is desired,

subject to the boundary conditions that ® = 0 at x = 0 and x = a, while ® = V

at y = 0 for 0 = x =a and ® — forlarge y. Inspection of the basic solutions
shows that a is real and that, to have the potential vanish at x = 0 and x = a
for all y and as y > ©, the proper linear combinations are e~~”sin(ax) with
a = na/a. The linear combination of solutions satisfying the boundary conditions
on three of the four boundary surfacesis thus

D(x, y) = >) A, exp(—nzy/a) sin(n7x/a) (2.59)
n=1

The coefficients A, are determined by the requirement that © = V for y = 0,
Q = x <a. Asdiscussed in Section 2.8, the Fourier coefficients are

2 a

== | P(x, 0) sin(n7x/a) dx (2.60)0



Sect. 2.10 A Two-Dimensional Potential Problem; Summation of a Fourier Series 73

 
Figure 2.10 Two-dimensional potential problem.

With ®(x, 0) = V, one finds

"an \0 for n even

_ 4V \ for n odd

The potential P(x, y) is therefore determined to be

AV 1
O(x, y) =— > — exp(—nzy/a) sin(nx/a) (2.61)

WT nodd Nl

For small values of y many termsin the series are necessary to give an accurate

approximation, but for y = a/7mit is evident that only the first few terms are
appreciable. The potential rapidly approachesits asymptotic form given by the
first term,

4
P(x, y) > “v exp(—ry/a) sin(7x/a) (2.62)

T

Parenthetically, we remark that this general behavior is characteristic of all

boundary-value problems of this type, independently of whether D(x, 0) is a
constant, providedthefirst term in the series is nonvanishing. The coefficient A,
(2.60) will be different, but the smooth behavior in x of the asymptotic solution
sets in for y = a, regardless of the complexities of P(x, 0). This is shown quan-
titatively for the present example in Fig. 2.11 where the potential along the two
dashedlines, y/a = 0.1, 0.5, of Fig. 2.10 is plotted. The solid curves are the exact

potential, the dotted, the first term (2.62). Close to the boundary (y/a = 0.1) the
curves differ appreciably, but for y/a = 0.5 the asymptotic form is already an
excellent approximation.
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1.0 —

@ (x, y)

 
  

x/a

Figure 2.11 Potentials at y/a = 0.1, 0.5 (along the dashedlines of Fig. 2.10) as

functions of x/a. The solid curves are the exact solution; the dashed curvesarethefirst

term in the series solution (2.61).

There are many Fourier series that can be summed to give an answerin

closed form. Theseriesin (2.61) is one of them. Weproceedas follows. Observing

that sin 6 = Im/(e’”), where Im stands for the imaginary part, we see that (2.61)

can be written as

AV 1. |
D(x, y) = a Im S _ elinmla)(x+iy)

n odd 1

With the definition,

Z= elinla)(x+iy) (2.63)

this can be put in the suggestive form,

AV Zz”
P(x, y)=——Im 2, —

T n odd ft

At this point we can perhapsrecall the expansion,*

In(l + Z) = Z-42? +422 -GZ* +:

«Alternatively, we observe that (d/dZ)(2%_,Z"/n) = Zya0oZ" = 1/1 — Z). Integration then gives

~e_1Z"n = —In(i — Z).
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Evidently,

Ss Z" 1 in 1+ Z

nodd 2 1-Z

and

2V 1+ Z
P(x, y) = — Im] In (2.64)

7 1-Z

Since the imaginarypart of a logarithm is equal to the phase of its argument, we

consider

1+Z (1+ Z)\1-Z*) 1-|ZP+2iImz
1-Z 1 — ZP 1 — ZP

The phase of the argument of the logarithm is thus tan7'[2 Im Z/(1 — |Z|?)].
With the explicit form (2.63) of Z substituted, it is found that the potential
becomes

  

. TWX
sin. —

a
 

2
P(x, y) = — tan7! (2.65)

sinh ay
a

The branch of the tangent curve corresponds to the angle lying between 0 and

7/2. The infinite series (2.61) has been transformedinto the explicit closed form
(2.65). The reader may verify that the boundary conditionsare satisfied and that
the asymptotic form (2.62) emerges in a simple manner.

The potential (2.64) with Z given by (2.63) is obviously related to functions
of a complex variable. This connection is a direct consequence of the fact that
the real or the imaginary part of an analytic function satisfies the Laplace equa-

tion in two dimensions asa result of the Cauchy—Riemann equations. As men-

tioned at the beginning of the chapter, we omit discussion of the complex-variable
technique, not because it is unimportant but for lack of space and because
completely adequate discussions exist elsewhere. Someof these sourcesarelisted

at the end of the chapter. The methods of summation of Fourier series, with
many examples, are described in Collin (Appendix A.6).

2.11 Fields and Charge Densities in Two-Dimensional
Corners and Along Edges

In manypractical situations conducting surfaces come togetherin a waythat can
be approximated, on the small scale at least, as the intersection of two planes.
The edges of the box shown in Fig. 2.9 are one example, the corners at x = 0,
y = O and x =a, y = 0 in Fig. 2.10 another. It is useful therefore to have an

understanding of how the potential fields, and the surface-charge densities be-
have in the neighborhood of such sharp “‘corners”’ or edges. To be able to look
at them closely enough to have the behaviorofthe fields determinedin functional
form solely by the properties of the “corner” and notby the details of the overall

configuration, we assumethat the ‘“‘corners”’ are infinitely sharp.
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The generalsituation in two dimensionsis shownin Fig. 2.12. Two conducting

planes intersect at an angle B. The planes are assumedto be held at potential V.

Remote from the origin and not shown in the figure are other conductors or

possibly configurations of charges that specify the potential problem uniquely.

Since we are interested in the functional behavior of the fields, etc. near the

origin, but not in the absolute magnitudes, we leave the ‘‘far away” behavior

unspecified as much as possible.
The geometry of Fig. 2.12 suggests use of polar rather than Cartesian coor-

dinates. In terms of the polar coordinates (p, ¢), the Laplace equation in two

dimensionsis

10 a® 1 ab

pop dp p° db

Using the separation of variables approach, we substitute

P(p, 6) = R(py¥()
This leads, upon multiplication by p*/®, to

 

 

pd dR 1 a’V

R dp ( in) Vv dg? G87)

Since the two terms are separately functions of p and ¢ respectively, each one

must be constant:

pad dR 1 d’y
Pri, )\)=aYr — —- 2.68
R dp ( in) de 2-88)

The solutions to these equations are

R(p) = ap” + bp”
W(d) = A cos(vd) + B anos)

(2.69)

For the special circumstance of v = Q, the solutions are

R(p) = a + bo In °} (2.70)

V(dh) = Ao + Bod

 
Figure 2.12 Intersection of two conducting planes defining a corner in two dimensions

with opening angle £.
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These are the building blocks with which we construct the potential by linear
superposition.

Although not central to our present purpose, we note the general solution

of the Laplace equation in two dimensions whenthe full azimuthal rangeis per-
mitted as, for example, for the potential between two cylindrical surfaces, p = a

and p = b, on which the potential is given as a function of @. If there is no
restriction on @,it is necessary that v be a positive or negative integer or zero to
ensure that the potential is single-valued. Furthermore, for v = 0, the constant

Bo in (2.70) must vanish for the same reason. The general solution is therefore
of the form,

O(p, 6) =a) + bo np + > a,p" sin(nd + a,)
n=10° (2.71)

+ >) bp” sin(nd + Bn)
n=1

If the origin is included in the volume in whichthere is no charge,all the b, are

zero. Only a constant and positive powers of p appear. If the origin is excluded,

the b,, can be different from zero. In particular, the logarithmic term is equivalent

to a line charge on the axis with charge density per unit length A = —27€bo, as
is well Known.

For the situation of Fig. 2.12 the azimuthal angle is restricted to the range

0 = ¢& 8B. The boundary conditions are that ® = forall p = 0 when ¢ = 0

and = £B. This requires that b) = By = 0 in (2.70) and b = 0 and A = 0 in
(2.69). Furthermore, it requires that v be chosen to makesin(vB) = 0. Hence

INT

and the general solution becomes

co

O(p, 6) =V+ > ap” sin(m7¢/B) (2.72)
m=1

Thestill undetermined coefficients a,, depend on the potential remote from the
corner at p = 0.Sincethe series involves positive powersof p”’”, for small enough
p only the first term in the series will be important.* Thus, near p = 0, the po-

tential is approximately

D(p, 6) = V + ap”® sin(7d/B) (2.73)

The electric field components are

E,(o, 6) = —2— = —™ p(®sin(adiB)
°P P (2.74)

E4(p, 6) =22 = —™ pocospip)&\Ps 0 ad B p

*Here we make a necessary assumption about the remote boundary conditions, namely, that they
are such that the coefficient a, is not zero. Ordinarily this is of no concern, but special symmetries
might make a;, or even a», etc., vanish. These unusual examples mustbe treated separately.
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The surface-charge densities at @ = 0 and ¢ = B are equal and are approximately

Ey 7A _
a(p) = &E4(p, 0) =5por (2.75)

The components of the field and the surface-charge density near p = 0 all vary

with distance as p‘”’®!. This dependence on p is shown for some special cases

in Fig. 2.13. For a very deep corner (small 8) the power of p becomesverylarge.

Essentially no charge accumulates in such a corner. For 8 = 7 (aflat surface),

the field quantities become independentof p, as is intuitively obvious. When

B > a, the two-dimensional corner becomes an edge andthefield and the surface-

charge density becomesingular as p > 0. For B = 27 (the edge ofa thin sheet)

the singularity is as p”. Thisis still integrable so that the charge within a finite

distance from the edgeis finite, but it implies that field strengths become very

large at the edges of conducting sheets(or, in fact, for any configuration where

B> 7).
The preceding two-dimensional electrostatic considerations apply to many

three-dimensionalsituations, even with time-varyingfields. If the edge is a sharp

edge of finite length, as the edge of a cube away from a corner,then sufficiently

close to the edge the variation of the potential along the edge can be ignored.

The two-dimensional considerations apply, although the coefficient a, in (2.75)

may vary with distance along the edge. Similarly, the electrostatic arguments are

valid even for time-varying fields. The point here is that with time dependence

another length enters, namely, the wavelength. Provided one is concerned with

distances away from the edge that are small compared to a wavelength, as well

as other relevant distances, the behavior of the fields reduces to electrostatic or

magnetostatic behavior. In the diffraction of microwaves by a hole in a thin

conducting sheet, for example, the fields are singular as p“* as p > 0, where p

is the distance from the boundary of the hole, and this fact must be taken into

account in any exact solution of the diffraction problem.
The singular behavior of the fields near sharp edges is the reason for the

effectiveness of lightning rods. In the idealized situation discussed herethefield

strength increases withoutlimit as p — 0, but for a thin sheet of thickness d with
a smoothly rounded edgeit can be inferred that the field strength at the surface

will be proportional to d~'’. For small enough d this can be very large. In ab-

solute vacuum suchfield strengths are possible; in air, however, electrical break-

down and a discharge will occur if the field strength exceeds a certain value
(depending on the exact shape of the electrode, its proximity to the other elec-

-1/2

 

Figure 2.13 Variation of the surface-charge density (and the electric field) with
distance p from the “‘corner’’ or edge for opening angles B = 7/4, 7/2, a, 37/2, and 27.



Sect. 2.12 Introduction to Finite Element Analysis for Electrostatics 79

trodes, etc., but greater than about 2.5 x 10° V/m for air at normal temperature
and pressure (NTP), sometimes by a factor of 4). In thunderstorms, with large
potential differences between the ground and the thunderclouds, a grounded

sharp conducting edge,or better, a point (see Section 3.4), will have breakdown
occur aroundit first and will then provide one endof the jagged conducting path

through the air along which the lightning dischargetravels.

2.12 Introduction to Finite Element Analysisfor Electrostatics

Finite element analysis (FEA) encompasses a variety of numerical approaches
for the solution of boundary-value problems in physics and engineering. Here
we sketch only an introduction to the essential ideas, using Galerkin’s method

for two-dimensional electrostatics as an illustration. The generalization to three
dimensions is mentioned briefly at the end. The reader who wishes a deeper
introduction may consult Binns, Lawrenson, and Trowbridge, Ida and Bastos,

Sadiku, Strang, or Zhou.

Consider the Poisson equation, V*y = —g in a two-dimensional region R,
with Dirichlet boundary conditions on the boundary curve C. We construct the
vanishing integral,

I [bp Ve + gd] dx dy = 0 (2.76)

where (x, y) is a test function specified for the moment only as piecewise con-

tinuous in R and vanishing on C. Use of Green’s first identity on the first term

above leads to

I [Vp- Vy — gp] dx dy = 0 (2.77)

The surface integral vanishes because ¢@ vanishes on C. Galerkin’s method con-
sists first of approximating the desired solution w(x, y) by a finite expansion in

termsof a set of localized, linearly independentfunctions, ¢,(x, y), with support
only in a finite neighborhood of x = x;, y = y,. For definiteness, we imagine the

region R spannedby a squarelattice with lattice spacing h. Then a possible choice

for di(x, y)is,
Pix, y) = (1 — [x — x[/A)— |y — yi|/h) (2.78)

for |x — x;| =h,|y — y,| Sh; otherwise, (x, y) = 0. The sum of all the ¢,; over
the square lattice is unity. Other choices of the localized functions are possible,
of course. Whateverthe choice,if the numberoflattice sites, including the bound-

ary, is No, the expansion of w(x, y) takes the form

(No)

(x, y) = >» Wridbilx, y) (2.79)
kl

Apart from the knownvaluesat sites on the boundary, the constantcoefficients
W,, may be thoughtof as the approximate valuesof W(x,, y,). If the lattice spacing

h is small enough, the expansion (2.79) will be a reasonable approximateto the
true w, provided the coefficients are chosen properly.

The second step in Galerkin’s method is to choose the test function @ in
(2.77) to be the (i, j)" function on the expansion set, with i and j running suc-
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cessively overall N internalsites of the lattice. The typical equation derived from

(2.77) is

(No)

Ya|Vbule,¥)+ Vbude, ») dx dy = glxs yp J, dle,y)dedy 2.80)
While the integrals are indicated as being over the whole region R, ¢;; has support
only in a small region aroundthesite (x;, y;). In (2.80) it is assumed that g(x,y)
varies slowly enough on the scale of the cell size to be approximated in the
integral on the right by its value at the lattice site. Once the integrals have been
performed, (2.80) becomes one of N coupled inhomogeneouslinear algebraic

equations for the N unknowns, V;,,. The coupling among the W;, is confined to a
small numberof sites near (x;, y;), as indicated in Fig. 2.14 for the localized

function (2.78). It is left as a problem to show that the neededintegrals for the
functions (2.78) are

|. dye, yd dy = 8 2.k=i,  1=j 281)

[ way( ) Voblx, y)dx d yn fe k=itll=j(X,Y) ° x, y)ax = or a
rv! " ** 1-18 k=i, l=j#l

k=it1l=j2+1
Whenthesite (i, /) is adjacent to the boundary, there are three or more terms
on the left-hand side of (2.80) that are (—1/3) times known boundary valuesof

 
 

(k, 1)
 

(7, J)
 

 

      
Figure 2.14 Sketch of the ¢,(x, y) in (2.78). The sites marked with a dotin thelattice
(bottom) are those coupled by the integrals on the left in (2.80) for the localized

function (2.78).
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ws. These can be movedto the right-hand side as part of the inhomogeneity.If
we write (2.80) in matrix form, KW = G, with K an N X N square matrix and
W and G N-columnvectors, the matrix K is a “‘sparse’’ matrix, with only a few
nonvanishing elements in any row or column. The solution of the matrix operator
equation by inversion of such a sparse matrix can be accomplished rapidly by
special numerical techniques (see Press et al.). Concrete illustration of this ap-
proachis left to the problemsat the end of the chapter.

A square lattice is not optimal in many problems because the solution may

change morerapidly in someparts of the domain of interest than in otherparts.
In such regions onewishesto have a finer mesh. An FEA methodwith a standard
generic shape, but permitting different sizes, will be more flexible and therefore
superior. We describe the populartriangle as the basic unit in two dimensions.

The triangular element is assumed to be small enoughthat the field variable
changes little over the element and may be approximated by a linear form in
each direction. Thebasic triangular element e(1, 2,3) is shown in Fig. 2.15. Within
this region, we approximate the field variable (x, y) ~ u(x, y) = A + Bx +
Cy. The three values (y, ym, 3) at the nodes or vertices determine the coeffi-

cients (A, B, C). It is useful, however, to systematize the procedure for numerical
computation by defining three shape functions N‘°(x, y), one for each vertex,

such that NV‘? = 1 when x = x, y = y, and N‘= 0 atthe other vertices. The
shape functions for the element e vanish outside that triangular domain.

Consider N§? = a, + b,x + cy. Demand that

a, + bx, + Gy, = 1

a, + byx2. + Cyy2 = 0

a, + byx3 + Cyy3 = O

The determinant D of the coefficients on the left is

1x1 1

D = {1 x2 yo} = (2 — X1)(¥3 — Yt) — (%3 — X1)(V2 — V1)

1 x3 y3

The determinant D is invariant underrotations of the triangle; in fact, D = 2S., where S,

is the area of the triangle. The coefficients (a,, 5, c,) are

ay (Xo¥3 — X32)
_1

28.
1

b, = 3s. (y2 — ys)

= 25, (x2 — X3)Cy

(x3, ¥3)

2

(x9, ¥9)

Figure 2.15 Basic triangular element
1 e(1, 2, 3) with area S, for FEA in two

(x4, 93) dimensions.
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The other N‘&®can be written down by cyclic permutation of indices. The N; and their

coefficients obey the following relations:

3 3 3 3

S NOx, y= 1, Sa =1,

4

b= 0; dX & = 0;
i=l i=1 =1 i=1

1
aj + dix. + GYe = 3 (j = 1, 2, 3)

Here X, = (x; + xX. + x3)/3 and y. = (yi + y2 + y3)/3 are the coordinates of the center of

gravity of the triangular elemente.

The shape functions for the triangular elements spanning the region R can

be used in the Galerkin methodas the localized linearly independent expansion

set. The field variable w(x, y) has the expansion,

w(x, y) ~ >) VONMG,Y) (2.82)
f.J

where the sum goesoverall the triangles f and over the vertices of each triangle.

The constants VW“are the desired values of the field at the vertices. (Thereis

redundantlabeling here because adjacenttriangles have some vertices in com-

mon.) It is worth noting that despite the shift from oneset of shape functions to

another as the point (x, y) crosses from one triangle to one adjacent to it, the

function defined by the right-hand side of (2.82) is continuous. Because of the

linearity of the shape functions, the value of (2.82) along the common side of

the two triangles from either representation is the same weighted average of the

values at each end,with no contributions from the shape functionsfor the vertices

not in common.
Wereturn to the Poisson equation with Dirichlet boundary conditions and

the vanishing integral (2.77). With the expansion (2.82) for w(x, y), we choose

the test function d(x, y) = N{(x, y) for some particular element e and vertex 1

(only avoiding vertices on the boundary because we require @ = 0 on C). The

choice reduces the integral [and the sum in (2.82)] to one over the particular

element chosen, just as did the choice of the localized function in (2.80). The

integral, with the inhomogeneity transferred to the right-hand side,1s

3

x ple | VN. VNdx dy = | gN\ dx dy (2.83)
j= e e

If g(x, y) changes very little over the elemente, it can be approximated byits

value g. = g(X., y-) at the center of gravity of the triangle and factored out of

the right-handintegral. The remaining integral1s

| N©®dx dy = Sa; + biXe + ce) = 3Se (2.84)

For the left-hand integral in (2.83), the linearity of the shape functions means

that the integrand is a constant. We note that dN{/dx = b;, aN(/ay = c;, and

define

ko = S(b;ib; + C;C;) (2.85)

The coefficients kK‘form an array of dimensionless coupling coefficients for the

triangle e. It is straightforward to show that they depend on the shape of the
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Figure 2.16 Examplesof the triangular coupling coefficients. The “‘diagonal”’
coefficients are at the corners (vertices) and the ‘“‘off-diagonal’’ coefficients along the
sides, between vertices.

triangle, but not its orientation or size. Two examples are shown in Fig. 2.16,
where the diagonal elements k{are located at the correspondingvertices(i) and
the off-diagonal elements k‘along the line connecting vertex i with vertex j.

With the definition (2.85) of the coupling coefficients, (2.83) becomes
3

Se
DPW= see = 1,2,3) (2.86)
J>-

For each element e there are three algebraic equations, except whentheside(s)
of the triangle form part of the boundary. The three coupled equations can be
written in matrix form, kOw® = G,

The result for one element must now be generalized to includeall the tri-
angular elements spanning R. Let the numberof interior vertices or nodes be N
and the total numberofvertices, including the boundary, be No. Label the inter-

nal nodes with j = 1, 2, 3,..., N, and the boundary nodes by j = N + 1,

N + 2,..., No. Now enlarge and rearrange the matrix k‘ — K, whereK is an

N X N matrix with rows and columnslabeled by the nodeindex. Similarly, define
the N-column vectors, W and G. For each triangular element in turn, add the

elementsof k{ and S.g,/3 to the appropriate rows and columnsof K and G. The
end result is the matrix equation

KW =G (2.87)

where

K=(k,;)  withk;=>)k and ky => kO, iF j
, . Ni, © (2.88)

Gi=5>S.g.- Dd kw
3 T j=No+1

The summation over 7 means overall the triangles connected to the internal

node i; the summation over F means a sum overall the triangles with a side from
internal node i to internal node j. The final sum in G; contains, for nodes con-

nected directly to the boundary nodes, the known boundary values of yw there

and the corresponding k‘*values (not present in the matrix K). The reader may
ponderFig. 2.17 to be convinced ofthe correctnessof (2.88). Just as for the square

lattice, the N X N matrix K is a symmetric sparse matrix, with positive diagonal
elements. As mentionedearlier, there are special efficient methods of inverting
such matrices, even if very large.
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Figure 2.17 A part of the array of
104 triangular elements spanning the region R,

Boundary 103 assumed to have 100 internal nodes.
 

The obvious generalization of the triangle to three-dimensional FEAis to

add another vertex out of the plane to makea tetrahedron the basic element of

volume. Now four shape functions, N‘(x, y, z), are used to give an approxima-

tion to the field variable within the tetrahedron. The algebra is more involved,

but the concept is the same.
Ourdiscussionis a bare introduction to finite element analysis. Manyvariants

exist in every branch of physics and engineering. National laboratories and com-

mercial companies have “canned” FEA packages: POISSONis one such pack-

age, developed at the Lawrence Berkeley National Laboratory jointly with

Livermore National Laboratory; TOSCA and CARMENare two developed at

the Rutherford—Appleton Laboratory in Britain.

References and Suggested Reading

The method of images and the related technique of inversion are treated in many

books; among the better or more extensive discussions are those by

Jeans, Chapter VIII
Maxwell, Vol. 1, Chapter XI

Smythe, Chapters IV and V

Theclassic use of inversion by Lord Kelvin in 1847 to obtain the charge distribution on

the inside and outside surfaces of a thin, charged, conducting spherical bowlis discussed

in
Kelvin, p. 186
Jeans, pp. 250-251

A truly encyclopedic source of examples of all sorts with numerous diagramsis the book

by Durand,especially Chapters III and IV. Durand discusses inversion on pp. 107-114.

Complex variables and conformal mapping techniques for the solution of two-

dimensional potential problems are discussed by
Durand, Chapter X
Jeans, Chapter VIII, Sections 306-337

Maxwell, Vol. I, Chapter XII

Morse and Feshbach,pp. 443-453, 1215-1252

Smythe, Chapter IV, Sections 4.09-4.31

Thomson, Chapter 3
A usefullittle mathematics book on conformal mappingis

Bieberbach
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There are, in addition, many engineering books devoted to the subject,e.g.,
Gibbs
Rothe, Ollendorff, and Polhausen

Elementary, but clear, discussions of the mathematical theory of Fourier series and
integrals, and orthogonal expansions, can be found in

Churchill
Hildebrand, Chapter 5

A somewhat old-fashioned treatment of Fourier series and integrals, but with many ex-
amples and problems,is given by

Byerly

The literature on numerical methodsis vast and growing. A good guidepostto per-
tinentliteratureis

Paul L. DeVries, Resource Letter CP-1: Computational Physics, Am. J. Phys.
64, 364-368 (1996)

In addition to the bookscited at the beginning of Section 2.12, two others are
P. HammondandJ. K. Sykulski, Engineering Electromagnetism, Physical Pro-
cesses and Computation, Oxford University Press, New York (1994).
C. W. Steele, Numerical Computation of Electric and Magnetic Fields, Van

Nostrand, New York (1987).
Thefirst of these has a brief but clear discussion of FEA in Chapter 7; the secondtreats
FEAandrelated topics in greater depth.

Problems

2.1 A point charge q is broughtto a position a distance d away from aninfinite plane
conductor held at zero potential. Using the method of images, find:

(a) the surface-charge density induced on the plane, and plotit;

(b) the force between the plane and the charge by using Coulomb’s law for the
force between the charge and its image;

(c) the total force acting on the plane by integrating o7/2€) over the whole plane;

(d) the work necessary to remove the charge q from its position to infinity;

(e) the potential energy between the charge g andits image [compare the answer
to part d and discuss].

(f) Find the answerto part d in electron volts for an electron originally one ang-
strom from the surface.

2.2 Using the methodof images,discuss the problem of a point charge q inside a hollow,
grounded, conducting sphereof inner radius a. Find

(a) the potential inside the sphere;

(b) the induced surface-charge density;

(c) the magnitude and direction of the force acting on q.

(d) Is there any changein the solutionif the sphereis kept at a fixed potential V?
If the sphere has a total charge Q on its inner and outer surfaces?

2.3 A straight-line charge with constantlinear charge density A is located perpendicular
to the x-y plane in the first quadrant at (xo, yo). The intersecting planes x = 0,
y 2 0 and y = 0, x = 0 are conducting boundary surfaces held at zero potential.
Consider the potential, fields, and surface chargesin the first quadrant.
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2.4

2.5

2.6

(a) The well-knownpotential for an isolated line charge at (Xo, Yo) 1s P(x, y) =

(A/47re9)In(R?/r?), where r? = (x — Xo)? + (y — Yo)” and R is a constant. De-

termine the expressionfor the potential of the line charge in the presenceof

the intersecting planes. Verify explicitly that the potential and the tangential

electric field vanish on the boundarysurfaces.

(b) Determine the surface charge density o on the plane y = 0, x = 0. Plot o/A

versus x for (Xo = 2, Yo = 1), (Xo = 1, Yo = 1), and (Xo = 1, Yo = 2).

(c) Showthat the total charge (per unit length in z) on the plane y = 0,x = 0 is

QO, = _2 rv an'(®)
7 Yo

Whatis the total charge on the plane x = 0?

V(x? + y*) and(d) Show that far from the origin [p>>pp, where p =

Po = V (xd + yo)] the leading term in the potentialis

@ > Dasym _— AN (XaYo)Y)

TTEQ p

Interpret.

A point chargeis placed a distance d > R from the center of an equally charged,

isolated, conducting sphere of radius R.

(a) Inside of what distance from the surface of the sphere is the point charge

attracted rather than repelled by the charged sphere?

(b) Whatis the limiting value of the force of attraction when the point charge is

located a distance a (= d — R) from the surface of the sphere, ifa< R?

(c) What are the results for parts a and b if the charge on the sphereis twice

(half) as large as the point charge, butstill the same sign’?

[Answers: (a) d/R — 1 = 0.6178, (b) F = —q’/(167r€9a’), i.e., image force, (c) for

QO = 2q, d/R — 1 = 0.4276; for Q = q/2, d/R — 1 = 0.8823. The answerfor part b

is the same.]

(a) Show that the work done to remove the charge q from a distance r > a to

infinity against the force, Eq. (2.6), of a grounded conducting sphere 1s

___a
8ie(r* — a’)

Relate this result to the electrostatic potential, Eq. (2.3), and the energy dis-

cussion of Section 1.11.

(b) Repeat the calculation of the work done to remove the charge qg against the

force, Eq. (2.9), of an isolated charged conducting sphere. Show that the work

doneis

W= 
1 q’a fe _ 90

4TTE9 2(r? — a’) 2r* r

Relate the work to the electrostatic potential, Eq. (2.8), and the energy dis-

cussion of Section 1.11.

The electrostatic problem of a point charge q outside an isolated, charged con-

ducting sphere is equivalent to that of three charges, the original and two others,

one located at the center of the sphere and another (“the image charge’) inside

the now imaginary sphere, onthe line joining the center and the original charge.
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If the point charge and sphere are replaced by two conducting spheresofradii
r, and r,, carrying total charges Q, and Q,, respectively, with centers separated by
a distance d > r, + ry, there is an equivalence with an infinite set of charges within
each sphere, oneat the center and set of images alongthe line joining the centers.

The chargesandtheir locations can be determinediteratively, starting with a charge

ga(1) at the center of the first sphere and q,(1) correspondingly for the second
sphere. The charge q,(1) has its image q,(2) within the first sphere and vice versa.
Then the image charge within the first sphere induces another image within the
second sphere, and so on. The sum ofall the charges within each sphere must be
scaled to be equal to Q, or Q,.

The electrostatic potential outside the spheres, the force between the spheres,
etc. can be found by summing the contributions from all the charges.

(a) Show that the charges and their positions are determinediteratively by the
relations,

qa(J) — ado(J 7 1)/d,(j 7 1), Xa(J) — rald,(j 7 1), d,(j) =d— Xa(J)

qv(J) — —1pGalJ 7 1)/da(j 7 1), X»(J) — rd(j 7 1), d,(j) =d— x,(j)

for; = 2,3,4,..., with d,(1) = d,(1) = d, and x,(1) = x,(1) = 0.

(b) Find the image charges and their locations as well as the potentials on the
spheres and force between them by meansof a suitable computer program.

[In computing the potential on each sphere, evaluateit in different places: e.g.,
in the equatorial plane and at the pole opposite the other sphere. This permits
a check on the equipotential of the conductor and on the accuracy of
computation.|

(c) As an example, show that for two equally charged spheres of the same radius

R, the force between them when almost in contactis 0.6189 times the value

that would be obtained if all the charge on each sphere were concentrated
at its center. Show numerically and by explicit summation of the series that
the capacitance of two identical conducting spheres in contact is C/47re,)R =
1.3863 --- [= In 4].

Reference: J. A. Soules, Am. J. Phys. 58, 1195 (1990).

Consider a potential problem in the half-space defined by z = 0, with Dirichlet
boundary conditions on the plane z = 0 (andat infinity).

(a) Write down the appropriate Green function G(x,x’).

(b) Ifthe potential on the plane z = 0 is specified to be ® = inside circle of
radius a centered at the origin, and ® = 0 outside thatcircle, find an integral

expression for the potential at the point P specified in terms of cylindrical
coordinates(p, ¢, z).

(c) Show that, along the axis of the circle (p = 0), the potential is given by

z
© = V1 - —_}

( wee)

(d) Show thatat large distances (p* + z* >> a’) the potential can be expandedin
a powerSeries in (p* + z*)', and that the leading terms are

6 = Va* z 1 3.a* 5(3p’a* + a’)
2 (p* + 2)? A(p? - z°) 8(p” + 2’)

Verify that the results of parts c and d are consistent with each other in
their commonrangeof validity.
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A two-dimensional potential problem is defined by twostraight parallel line charges
separated by a distance R with equal and opposite linear charge densities A

and —A.

(a) Show bydirect construction that the surface of constant potential V is a cir-

cular cylinder (circle in the transverse dimensions) and find the coordinates
of the axis of the cylinder andits radius in termsof R, A, and V.

(b) Use theresults of part a to show that the capacitance per unit length C of two
right-circular cylindrical conductors, with radii a and b, separated by a distance

d>a+tb,is

2 TTE9

ka — A2 __ b2

cosh)

 C=

2ab

(c) Verify that the result for C agrees with the answer in Problem 1.7 in the

appropriate limit and determine the next nonvanishing order correction in

powersof a/d and b/d.

(d) Repeat the calculation of the capacitance per unit length for two cylinders
inside each other (d < |b — al). Check the result for concentric cylinders

(d = 0).

An insulated, spherical, conducting shell of radius a is in a uniform electricfield Eo.

If the sphere is cut into two hemispheres by a plane perpendiculartothe field,find
the force required to prevent the hemispheres from separating

(a) if the shell is uncharged;

(b) if the total charge on the shell is Q.

A large parallel plate capacitor is made up of two plane conducting sheets with
separation D, one of which has a small hemispherical boss of radius a onits inner
surface (D >> a). The conductor with the boss is kept at zero potential, and the
other conductoris at a potential such that far from the bossthe electric field between

the plates is Eo.

(a) Calculate the surface-charge densities at an arbitrary point on the plane and
on the boss, and sketch their behavior as a function of distance (or angle).

(b) Show that the total charge on the boss has the magnitude 37e)Eoa’.

(c) If, instead of the other conducting sheetat a different potential, a point charge
q is placed directly above the hemisphericalboss at a distance d fromits center,

show that the charge induced on the bossis

d” _ a

q' = —q| 1 ~ 7a|dVd- +a

A line charge with linear charge density 7 is placed parallel to, and a distance R
away from, the axis of a conducting cylinder of radius b held at fixed voltage such

that the potential vanishesat infinity. Find

(a) the magnitude and position of the image charge(s);

(b) the potential at any point (expressed in polar coordinates with the origin at
the axis of the cylinder and the direction from the origin to the line charge as
the x axis), including the asymptotic form far from the cylinder;

(c) the induced surface-charge density, and plot it as a function of angle for

R/b = 2, 4 in units of 7/27);

(d) the force per unit length on the line charge.
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Starting with the series solution (2.71) for the two-dimensional potential problem
with the potential specified on the surface of a cylinder of radius b, evaluate the
coefficients formally, substitute them into the series, and sum it to obtain the po-
tential inside the cylinder in the form of Poisson’s integral:

b*? — p°
+ p* — 2bp cos(¢' = 6)“

What modification is necessary if the potential is desired in the region of space
boundedbythe cylinder andinfinity?

'
 

1 27

P(p, i) — ~| D(5, p') b?

(a) Two halves of a long hollow conducting cylinder of inner radius b are sepa-
rated by small lengthwise gaps on each side, and are keptat different poten-
tials V; and V,. Show that the potential inside is given by

+ Y, — V. 2bp
D(p, ¢) =— 4; ———- = tan"(—s cos 6]

where ¢ is measured from a plane perpendicular to the plane throughthe gap.

(b) Calculate the surface-charge density on each half of the cylinder.

A variant of the preceding two-dimensional problem is a long hollow conducting
cylinder of radius b that is divided into equal quarters, alternate segments being
held at potential +V and —V.

(a) Solve by meansof the series solution (2.71) and show that the potential inside
the cylinderis

®(p. d) = v Ss (2 sin[(4n + 2)d]
n=O 2n + ]

(b) Sum the series and show that

®(p, 6) = 2 “(28 sin -#)
bt — p!

(c) Sketch the field lines and equipotentials.

(a) Show that the Green function G(x, y; x’, y’) appropriate for Dirichlet bound-
ary conditions for a square two-dimensional region,O <x =<1,0=y <1, has
an expansion

G(x, yx’, y’) =2 > g,(y, y') sin(n7x) sin(n7x’)
n=1

where g,(y, y’) satisfies

(= - rea Ely, y') = —47d(y’ — y) and g,(y, 0) = gn(y, 1) = 0

(b) Taking for g,(y, y’) appropriate linear combinations of sinh(nmzy’) and
cosh(n7ry’) in the two regions, y’ < y and y’ > y, in accord with the boundary
conditions and the discontinuity in slope required by the sourcedelta function,
show that the explicit form of G is

G(x, y; x’, y’)

Jon sinh(rm) I7*)Sin(nzx') sinh(n7y-) sinh[n7(1 — y-)]

where y_(y.) is the smaller (larger) of y and y’.
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2.16 A two-dimensional potential exists on a unit square area (OS xX =1,0S y <1)
bounded by ‘“‘surfaces” held at zero potential. Over the entire square there is a
uniform charge density of unit strength (per unit length in z). Using the Green
function of Problem 2.15, show that the solution can be written as

2.17 (a)

(b)

(c)

2.18 (a)

(b)

 

B(x, y) = + S sin[(2m + 1] , _ cosh[(2m + 1) ay = al]
Ej mao (2m +1) cosh[(2m + 1) 7/2]

Construct the free-space Green function G(x, y; x’, y’) for two-dimensional
electrostatics by integrating 1/R with respect to (z' — z) between the limits
+Z, where Z is taken to be very large. Show that apart from an inessential
constant, the Green function can be written alternately as

G(x, y; x’, y’) — —In{(x 7 x')? + (y _ y’)*]

—In[p* + p’* — 2pp’ cos(¢ — ¢$')]

Show explicitly by separation of variables in polar coordinates that the Green
function can be expressed as a Fourier series in the azimuthal coordinate,

in,
G => >» eO~o onlP, p’)

27 =

wherethe radial Green functionssatisfy

1 oa O2m d(p — p'
ral a) — ob = 4P= PD
p op dp p p

Note thatg,,(p, p’) for fixed pis a different linear combination of the solutions
of the homogeneousradial equation (2.68) for p’ < p and for p’ > p, witha
discontinuity of slope at p’ = p determined by the source delta function.

Complete the solution and show that the free-space Green function has the
expansion

>

OO 1 - m

G(p, #; p’, ’) = —In(p2) + 2 x ml (2) - cos[m(¢ — ¢$')]

where p_(p.) is the smaller (larger) of p and p’.

By finding appropriate solutions of the radial equation in part b of Problem

2.17, find the Green function for the interior Dirichlet problem of a cylinder
of radius b [g,,(p, p’ = b) = 0. See (1.40)]. First find the series expansion akin
to the free-space Green function of Problem 2.17. Then show that it can be
written in closed form as

_ 0|SE + b* — 2pp'b* cos(¢ — 6
b*(p* + p’? — 2pp' cos(p — $'))

or

b2 _ 2 b2 — 212 + b? _ 1|2c= in|! p')(b" = p'*) + b? |p ef)
b* |p — p’|

Show that the solution of the Laplace equation with the potential given as
®(b, @) on the cylinder can be expressed as Poisson’s integral of Problem 2.12.

What changes are necessary for the Green function for the exterior problem
(b < p< ©), for both the Fourier expansion and the closed form? [Note that
the exterior Green functionis not rigorously correct because it does not vanish
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for p or p’ > ©. Forsituations in which the potential falls off fast enough as
p — ©, no mistake is madeinits use.]

Show that the two-dimensional Green function for Dirichlet boundary conditions
for the annular region, b = p = c (concentric cylinders) has the expansion

In(p2/b*) In(c?/p2) a) Sy cos[m(¢ — $')]

In(c’/b’) mai m1 — (bic)”"]

Two-dimensional electric quadrupole focusing fields for particle accelerators can
be modeled by a set of four symmetrically placed line charges, with linear charge
densities +A, as shownin the left-hand figure (the right-hand figure showsthe elec-
tric field lines).

C= (0% — BipZy(lipz — plc”) 

Problem 2.20

The charge density in two dimensions can be expressed as

r 3

o(p, 6) = 2 (-1)" &(o ~ a) 8b ~ ne!2)

(a) Using the Green function expansion from Problem 2.17c, show that the elec-

trostatic potentialis

 Dip, 6) = =Y (2) cos[(4k + 2) 6]
(b) Relate the solution of part a to the real part of the complex function

_ 2A_, & = ia)(Z + ia)
w(z) = nm n| (z — a)(z + a)

where z = x + iy = pe’®. Commenton the connection to Problem 2.3.

(c) Find expressions for the Cartesian components of the electric field near the

Origin, expressed in terms of x and y. Keep the k = 0 and k = 1 termsin the
expansion. For y = 0 whatis the relative magnitude of the k = 1 (2°-pole)
contribution to E, compared to the k = 0 (27-pole or quadrupole) term?

Use Cauchy’s theorem to derive the Poisson integral solution. Cauchy’s theorem
states that if F(z) is analytic in a region R bounded bya closed curve C, then

1 F(z') dz' F(z) _ inside
=, SO if z is .
271 JC z'— z 0 outside

Hint: You may wish to add an integral that vanishes (associated with the image
point) to the integral for the point inside thecircle.
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2.22 (a) For the example of oppositely charged conducting hemispherical shells sepa-

2.23

2.24

2.25

(b)

(c)

rated by a tiny gap, as shownin Figure 2.8, show that the interior potential
(r < a) on the z axis is

_ a _ (a’ _ z°)

PinlZ) = "3 E ered

Find the first few terms of the expansion in powers of z and show that they
agree with (2.27) with the appropriate substitutions.

From theresult of part a and (2.22), show that the radial electric field on the
positive z axis is

Va’ a’
E,(z) = (2 1 a’)? (: + “)

for z > a, and

__V]_3+ zy _ a
E,(Z) = a Fr 4 (zla)?)> “|

for |z| < a. Show that the second form is well behaved at the origin, with the
value, E,(0) = —3V/2a. Show that at z = a (north pole inside) it has the value
—(V2 — 1)V/a. Show that the radial field at the north pole outside has the
value V2 Via.

Make a sketchofthe electric field lines, both inside and outside the conducting
hemispheres, with directions indicated. Make a plot of the radial electric field
along the z axis from z = —2a to z = +2a.

A hollow cube has conducting walls defined by six planes x = 0, y = 0, z = 0, and

x =a,y =a, z =a. The walls z = 0 and z = a are held at a constant potential V.

The other four sides are at zero potential.

(a)

(b)

(c)

Find the potential B(x, y, z) at any point inside the cube.

Evaluate the potential at the center of the cube numerically, accurate to three
significant figures. How many terms in the series is it necessary to keep in
order to attain this accuracy? Compare your numerical result with the average
value of the potential on the walls. See Problem 2.28.

Find the surface-charge density on the surface z = a.

In the two-dimensional region shownin Fig. 2.12, the angular functions appropriate
for Dirichlet boundary conditions at @ = 0 and ¢ = Bare P(d¢) = A,, sin(m7¢/B).
Show that the completeness relation for these functionsis

d(¢ — ¢') = - > sin(m7rd/B) sin(m7rd'/B) for0<¢,¢6'< B

Two conducting planes at zero potential meet along the z axis, making an angle B
between them, as in Fig. 2.12. A unit line charge parallel to the z axis is located
between the planesat position (p’, ¢’).

(a) Show that (47,) times the potential in the space between the planes,thatis,
the Dirichlet Green function G(p, ¢; p’, 6’), is given by the infinite series

~ 1
G(p, ¢; p’, 6’) = 4 d - pZ7Po=™'® sin(mid/B) sin(m7d'/B)
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(b) By means of complex-variable techniques or other means, show that the series
can be summedto give a closed form,

(py? + (p')°7"* — 2(pp')™ cos[a( + oA
(pyr? + (p'VP" — 2(pp')”"” cos[a( — $'/6]

(c) Verify that you obtain the familiar results when B = 7 and B = 7/2.

G(p, &; p’, ¢') = nf

The two-dimensional region, p = a, 0 = @ S B, is bounded by conducting surfaces
at @ = 0, p = a, and ¢ = B held at zero potential, as indicated in the sketch. At
large p the potential is determined by some configuration of charges and/or con-
ductorsat fixed potentials.

 Problem 2.26

(a) Write down a solution for the potential ®(p, @) that satisfies the boundary
conditionsforfinite p.

(b) Keeping only the lowest nonvanishing terms, calculate the electric field com-
ponents £, and E, and also the surface-charge densities a(p, 0), o(p, 8), and
a(a, @) on the three boundary surfaces.

(c) Consider 6 = zw (a plane conductor with a half-cylinder of radius a on it).
Show that far from the half-cylinder the lowest order termsof part b give a
uniform electric field normal to the plane. Sketch the charge density on and
in the neighborhood of the half-cylinder. For fixed electric field strength far
from the plane, showthat the total charge on the half-cylinder (actually charge
per unit length in the z direction) is twice as large as would reside ona strip
of width 2a in its absence. Show that the extra portion is drawn from regions
of the plane nearby,so that the total charge on strip of width large compared
to a is the same whetherthe half-cylinder is there or not.

Consider the two-dimensional wedge-shaped region of Problem 2.26, with B = 27.
This corresponds to a semi-infinite thin sheet of conductor on the positive x axis
from x = a to infinity with a conducting cylinder of radius a fastenedto its edge.

(a) Sketch the surface-charge densities on the cylinder and on the top and bottom
of the sheet, using the lowest order solution.

(b) Calculate the total charge on the cylinder and compare with the total defi-
ciency of charge on the sheet nearthe cylinder, that is, the total difference in
charge for a finite compared with a = 0, assuming that the charge density far
from the cylinderis the same.
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2.28

2.29

2.30

é
A closed volumeis bounded by conducting surfaces that are the n sides of a regular
polyhedron (n = 4, 6, 8, 12, 20). The nm surfaces are at different potentials V;
i= 1,2,...,n. Prove in the simplest way you can that the potential at the center
of the polyhedronis the average of the potential on the n sides. This problem bears
on Problem 2.23b, and has an interesting similarity to the result of Problem 1.10.

For the Galerkin method on a two-dimensional square lattice with lattice spacing
h, verify the relations (2.81) for the localized ‘‘pyramid”basis functions, @,(x, y)
= (1 — [x|/hA)(1 — |y|/h), |x| < h, |y| < h, where x and y are measured from the
site (i, j). In particular,

8
dx |dy ¢;,(x, y) =h’: dx |dy Vd;;°-Vd;; ==;

oJ oJ ot 3

!
1

1
[ ax | dy Vdistj+1 ° Vd;; = 3

Using the results of Problem 2.29, apply the Galerkin methodto the integral equiv-
alent of the Poisson equation with zero potential on the boundary,

[, dx dy[V¢;,; +> Vb — 4ip¢,,j)| = 0 with o(x, y) = >
, 7
ij

/ WirDiri (X, y)

for the lattice of Problem 1.24, with its three independentlattice sites. Show that
you get three coupled equationsfor the #,; values (YW, W2, Ww) and solve to find the

“Galerkin” approximations for the potential at these sites. Compare with the exact
values and the results of the various iterations of Problem 1.24c. Comment.

[ye = 47re,®].



CHAPTER 3

Boundary-Value Problems
in Electrostatics: I

In this chapter the discussion of boundary-value problemsis continued. Spherical
and cylindrical geometriesare first considered, and solutions of the Laplace equa-
tion are represented by expansionsin series of the appropriate orthonormal func-
tions. Only an outline is given of the solution of the various ordinarydifferential
equations obtained from the Laplace equation by separationof variables, but the
properties of the different functions are summarized.

The problem of construction of Green functions in terms of orthonormal
functions arises naturally in the attempt to solve the Poisson equation in the
various geometries. Explicit examples of Green functions are obtained and ap-
plied to specific problems, and the equivalence of the various approaches to
potential problems is discussed.

3.1 Laplace Equation in Spherical Coordinates

In spherical coordinates(7, 6, &), shown in Fig. 3.1, the Laplace equation can be
written in the form:

2

 0 (3.1) 
(rb) + 1 a noe ,—1 ar@=~ (y —{ in — ofr e

r or? r? sin 6 00 00 r? sin? 6 0g?

If a product form for the potential is assumed, then it can be written:

pW)
r

P(O)Q(4) (3.2)

Whenthis is substituted into (3.1), there results the equation:

a@uU UO 4d (s * UP dO
———— — sin 6 ++ ——.

dé r? sin? 0 dd”
= 0

dr” r* sin 9 d@
   PQ

If we multiply by r* sin* 6/UPQ,we obtain:

1 au |, 1 d sin9 + 1 d’Q
—_ > —_———— ] _ —__ =

U dr? Pr’? sin 6 dé dé O dd’

The @ dependence of the equation has now beenisolated in the last term. Con-
sequently that term must be a constant which wecall (—m7’):

 r? sin? | 0 (3.3)

1d°Q _ 4
O dé? m (3.4) 
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This has solutions

Q=-e"™ (3.5)

For Q to be single valued, m must be an integer if the full azimuthal range is
allowed. By similar considerations we find separate equations for P(@) and U(r):

1 d dP m—“ (snp =) 4+ | +1) -——- IP = 3.6sin 6 dd (sino) c a ° (3-6)
d’*u- I(l+1)
——— —+ = 3.ar= (3.7)

where /(/ + 1) is another real constant.
From the form of the radial equation it is apparent that a single powerof r

(rather than a powerseries) will satisfy it. The solution is found to be:

U = Ar’) + Bro! (3.8)

but / is as yet undetermined.

3.2 Legendre Equation and Legendre Polynomials

The @ equation for P(@) is customarily expressed in terms of x = cos 6, instead
of 6 itself. Then it takes the form:

 d ,, aP me _flay Z] + fasy-s[P-o (3.9)

This equation is called the generalized Legendre equation,andits solutions are
the associated Legendre functions. Before considering (3.9) we outline the
solution by powerseries of the ordinary Legendre differential equation with
m = 0;

d dP—|d—x7)—]+10+ P= |£\a ag (1 1)P 0 (3.10)

Weassumethat the whole range of cos 9, including the north and southpoles,is

in the region of interest. The desired solution should then besingle valued,finite,
and continuous on the interval —1 = x = 1 in orderthat it represent a physical
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potential. The solution will be assumed to be represented by a powerseries of
the form:

P(x) = x* > a;x! (3.11)

where a is a parameter to be determined. Whenthis is substituted into (3.10),

there results the series:

Jy (Ca + (a + jf ~ Yar — [Ca + f(@ +f + 1) — IE + Dax} = 0
(3.12)

In this expansion the coefficient of each power of x must vanish separately. For
J = 0, 1 wefind that

 

if dy # 0, then a(a — 1) = 0
(3.13)

if a, # 0, then a(a + 1) = 0

while for a general 7 value

_|(atj(at+jt+1)-ld+ 1)

p42 (a+jt+1)\(a+j+ 2) “7 (3.14)

A moment’s thought showsthat the two relations (3.13) are equivalent and that
it is sufficient to chooseeither dy or a, different from zero, but not both. Making
the former choice, we have a = 0 or a = 1. From (3.14) we see that the power
series has only even powers of x (a = 0) or only odd powersof x (a = 1).

Foreither of the series a = 0 or a = 1 it is possible to prove the following
properties:

the series converges for x* < 1, regardless of the value of/;

the series diverges at x = +1, unless it terminates.

Since we wanta solution thatis finite at x = +1, as well as for x” < 1, we demand

that the series terminate. Since a and j are positive integers or zero, the recur-
rence relation (3.14) will terminate only if / is zero or a positive integer. Even
then only one of the twoseries converges at x = +1. If] is even (odd), then only
the a = 0 (a = 1) series terminates.* The polynomials in each case have x’ as
their highest powerof x, the next highest being x’~*, and so on, down to x°(x)
for / even (odd). By convention these polynomials are normalized to have the
value unity at x = +1 and are called the Legendre polynomials of order 1, P,(x).
The first few Legendre polynomials are:

 

P(x) = 1 )

P(x) =x

P,(x) = 3(3x? - 1) (3.15)

P3(x) = 3(5x° — 3x)
P,(x) = 3(35x* — 30x? + 3))

*For example,if / = 0 the a = 1 series has a general coefficient a, = ao/(j + 1) forj = 0,2,4,....Thus

the series is ao(x + 3x? + 4x° + ---). This is just a) times the power series expansion of a function
Qo(x) = 3In(1 + x)/(1 — x), which clearly diverges at x = +1. For each/ value thereis a similar function
Q,(x) with logarithmsin it as the partner to the well-behaved polynomial solution. See Magnusetal.

(pp. 151 ff). Whittaker and Watson (Chapter XV) give a treatment using analytic functions.
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By manipulation of the powerseries solutions (3.11) and (3. 14) it is possible

to obtain a compact representation of the Legendre polynomials, known as

Rodrigues’ formula:

1 da
P(x) = aN dxio

1)! (3.16)

[See, for example, Arfken.]
The Legendre polynomials form a complete orthogonalset of functions on

the interval —1 < x < 1. To prove the orthogonality we can appeal directly to

the differential equation (3.10). We write downthe differential equationforP;(x),

multiply by P,(x), and then integrate over the interval:

[. P;ay c -a + I(l + ypc} dx = 0 (3.17)

Integrating the first term by parts, we obtain

[= 1) aa + UL + 1)\(PyFo| dx = 0 (3.18)

If we now write down (3.18) with / and /' interchanged and subtractit from (3.18),

the result is the orthogonality condition:

(dd+1)-l'd' + 1] [ P,(x)P,(x) dx = 0 (3.19)

For / # I’, the integral must vanish. For / = /', the integralis finite. To determine

its value it is necessary to use an explicit representation of the Legendre poly-

nomials, e.g., Rodrigues’ formula. Then the integral is explicitly:

1 f d' d!
— 2 — 2 l 2 l

N= ir LP) dx = 27(NN)? J-1 dx’ we) dx’ (eo a

Integration by parts / timesyields the result:

( 1)’ 2 _ — 1/
N, -L2I, (x y=“7,21= (x 1) dx

The differentiation 2/ times of (x? — 1)’ yields the constant (2/)!, so that

(21)! 21
N, =-I, (1 — x*)' dx
 

The remaining integral can be done by brute force, but also by induction. We

write the integrand as

Q-x/=(1-x)1-xy't=A-%*xgii424— xy
21 dx

Thus we have

21-1 (21-1)! 2»
n= (242] Jia 4 NP _ *¥a{d — xy’)
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Integration by parts in the last integral yields

Or

(21 + 1)N, = (21 — DN,-1 (3.20)

This shows that (2/ + 1)N, is independentof/. For / = 0, with Po(x) = 1, we have
No = 2. Thus N, = 2/(2/ + 1) and the orthogonality condition can be written:

1
2

[ Py(x)P(x) dx = +1 Or) (3.21)

and the orthonormal functions in the sense of Section 2.8 are

21+ 1

2
 U(x) = P,(x) (3.22)

Since the Legendre polynomials form a complete set of orthogonal functions,
any function f(x) on the interval —1 = x = can be expandedin terms of them.
The Legendreseries representation1s:

 

f(x) = > A,P;(x) (3.23)

where

21+1f'
A, = —, [ f(x)Pi(x) dx (3.24)

As an example, consider the function shown in Fig.3.2:

f(x) = +1 for x > 0

= -1 for x < 0

Then

A; =
 
a1

5 [ P(x) dx — [. P(x) ix|
0

Since P(x) is odd (even) about x = 0 if J is odd (even), only the odd /
coefficients are different from zero. Thus, for / odd,

 

1

A, = (21 + 1) | P(x) dx (3.25)
0

ap
| 1

=1| 0 | 1
1 x—> !

1 | Figure 3.2 
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By means of Rodrigues’ formula the integral can be evaluated,yielding

(22+ 1) — 2)!

I+ 1
2| ——— }!")

where (2n + 1)!! = (Qn + 1)(2n — 1)(2n — 3)--- X 5 X 3 X 1. Thustheseries
for f(x) is:

A; _— (—3)00?
 (3.26)

f(x) = 3Pi(x) — gP3(x) + 7Ps(x) — + (3.27)

Certain recurrence relations among Legendre polynomials of different order
are useful in evaluating integrals, generating higher order polynomials from
lower order ones, etc. From Rodrigues’ formulait is a straightforward matter to
show that

dPivy dP~ = — (21+ 1)P, = 0 (3.28)

This result, combined with differential equation (3.10), can be madeto yield
various recurrence formulas, some of whichare:

(J + 1)Pi4 — (21 + 1)xP; + IP)_4 = 0

dP. dP,
dx x x — ( + 1)P, = 0 (3.29)

dP
(x? — 1)— xP, + IP. = 0

Asanillustration of the use of these recurrence formulas, consider the evaluation

of the integral:

= [ xP,(x)Pp(x) dx (3.30)

From the first of the recurrence formulas (3.29) we obtain an expression for
xP,(x). Therefore (3.30) becomes

 I, = °F ] | Pr(x)[@ + 1)Pii(x) + LP)1(x)] dx
—1

The orthogonality integral (3.21) can now be employed to show that the integral
vanishes unless /’ = / + 1, and that, for those values,

 

 

2(1 + 1)
'=]+1

: (21 + 1)(21 + 3)’
| xP)(x)Pp(x) dx = 9) (3.31)

l'=]-1
(21 — 1)(21 + 1)’
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These are really the same result with the roles of / and /' interchanged. In a
similar mannerit is easy to showthat

2(1 + 1)(2 + 2)

(27 + 1)(21 + 3)(21 + 5)’

2(217 + 21 — 1)

(27 — 1)(21 + 1)(21 + 3)’

'=14+2 

[ x°P,(x)P;(x) dx = (3.32)

[=] 

where it is assumed that 1’ = 1.

Boundary- Value Problems with Azimuthal Symmetry

From the form of the solution of the Laplace equation in spherical coordinates
(3.2), it will be seen that for a problem possessing azimuthal symmetry m = 0 in
(3.5). This means that the general solution for such a problem is:

co

P(r, 0) = > [Ayr' + Bir?]P,(cos 6) (3.33)
l=0

The coefficients A; and B, can be determined from the boundary conditions.

Suppose that the potential is specified to be V(6) on the surface of a sphere of
radius a, and it is required to find the potential inside the sphere.If there are no
charges at the origin, the potential must be finite there. Consequently B,; = 0 for
all 7. The coefficients A, are found by evaluating (3.33) on the surface of the
sphere:

V(0) = >, A,a'P,(cos 8) (3.34)
l=0

This is just a Legendreseries of the form (3.23), so that the coefficients A, are:

21+ 1 [* .
A; = qh | V(0)P,(cos 6) sin 6 dé (3.35)

0

If, for example, V(@) is that of Section 2.7, with two hemispheres at equal and
opposite potentials,

+V, (0=0< qw/2)

M0) = *y (7/2 <0 7)

then the coefficients are proportional to those in (3.27). Thus the potential inside
the sphereis

3 5

P(r, 0) = v3 - P,(cos 0) — (5) P3(cos 0) + a(£) P.(cos 6) -: | (3.36)

To find the potential outside the sphere we merely replace (r/a)’ by (a/r)'*". The
resulting potential can be seen to be the same as (2.27), obtained by another
means.

Series (3.33), with its coefficients determined by the boundary conditions,is
a unique expansion of the potential. This uniqueness provides a means of ob-
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taining the solution of potential problems from a knowledge of the potential in
a limited domain, namely on the symmetry axis. On the symmetry axis (3.33)
becomes (with z = r):

O(z =r) = » [Apr + By“?] (3.37)

valid for positive z. For negative z each term must be multiplied by (—1)’. Sup-
pose that, by some means, wecan evaluate the potential ®(z) on the symmetry
axis. If this potential function can be expanded in a powerseries in z = r of the
form (3.37), with known coefficients, then the solution for the potential at
any point in space is obtained by multiplying each power of r’ and r~“by
P,(cos 8).

Atthe risk of boring the reader, we return to the problem of the hemispheres
at equal and opposite potentials. We have already obtained the series solution
in two different ways, (2.27) and (3.36). The methodjust stated gives a third way.
For a point on the axis we have found the closed form (2.22):

_ 7 _ r—-a

8G SN = vi ee
This can be expanded in powersof a?/r’:

VS, 4 G@-HTG - 4(a\"
Va) ! (2)

Comparison with expansion (3.37) showsthat only odd / values (/ = 2j — 1) enter.
The solution,valid for all points outside the sphere,is consequently:

P(r, 6) = => (—-1)""" (2) = i = 2) (<“)P3,_,(cos6)

 P(z =r) =

 

This is the same solution as already obtained, (2.27) and (3.36).
An important expansionis thatof the potential at x due to a unit point charge
/

atx:

—tSepcos ) (3.38)
Ix—x'| rei! ”

where r. (r..) is the smaller (larger) of |x| and |x’|, and y is the angle between x
and x’, as shownin Fig. 3.3. This can be proved by rotating axes so that x’ lies

Z

 
 

 

Figure 3.3
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along the z axis. Then the potential satisfies the Laplace equation, possesses
azimuthal symmetry, and can be expanded accordingto (3.33), exceptat the point
x =x’:

=» (A,r’ + Bir“*?)P,(cos Y)
=— xX—x’| 1=0

If the point x is on the z axis. the right-hand side reducesto (3.37), whilethe left-
hand side becomes:

ft I ,i
Ix—x’| (+r? -2rr' cosy)? |r—-r'|
 

Expanding, wefind, for x on axis,

l

1 lo fr

w-r2)
For points off the axis it is only necessary, according to (3.33) and (3.37), to
multiply each term by P,(cos y). This proves the generalresult (3.38).

Another example is the potential due to a total charge q uniformly distrib-
uted around circular ring of radius a, located as shownin Fig. 3.4, with its axis
the z axis and its center at z = b. The potential at a point P on the axis of
symmetry with z = r is just q/47e, divided by the distance AP:

1 q
Am€ (r? + c? — 2cr cos a)"
 P(z =r) =

where c* = a? + b? and a = tan' (a/b). The inverse distance AP can be expanded
using (3.38). Thus, for r > c,

ow

q
y=Tt~ P,(cos a)O(z =r) = 

For r < c, the corresponding form is:

 O(z =r) = d amm— P,(cos a)
4TE9 i=0

 

 

 

Figure 3.4 Ring of charge of radius a andtotal
x charge g located on the z axis with center at z = D.
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The potential at any point in space is now obtained by multiplying each member
of these series by P,(cos @):

oo l

P(r, 0) = d » _ P,(cos a)P,(cos 6)
4 Tre, i=0 ’

 

where r. (r.) is the smaller (larger) of r and c.

BehaviorofFields in a Conical Hole or Near a Sharp Point

Before turning to more complicated boundary-value problems, we consider one
with azimuthal symmetry, but with only a limited range of 6. This is a three-
dimensional analog of the situation discussed in Section 2.11. Suppose that the
limited angular region, 0 = 6= B,0 = $< 27,is bounded by a conical conducting

surface, as indicated in Fig. 3.5. For B < 7/2, the region can be thought of as a

deep conical hole bored in a conductor. For B > 7/2, the region of space is that
surrounding a pointed conical conductor.

The treatment of Section 3.2 for the Legendre differential equation needs
modification. With the assumption of azimuth symmetry,(3.10) is still applicable,
but we now seeksolutions finite and single-valued on the range of x = cos 6 of
cos B = x = 1. Furthermore, since the conducting surface 6 = is at fixed po-

tential, which we can take to be zero, the solution in cos 6 must vanish at 6 = B

to satisfy the boundary conditions. Since we demand regularity at x = it is

convenient to make a series expansion around x = 1 instead of x = 0, as was
done with (3.11). With the introduction of the variable

g=11 - 2)
the Legendre equation (3.10) becomes

d dP
ae ec — é) -| + vp(v + 1)P=0 (3.39)

z

  
Figure 3.5
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where / has been replaced by v to avoid confusion. The corresponding radial
solutions for U(r)/r in (3.2) are r’ and r~”-'. With a powerseries solution,

P(E) = & D, agg!
j=0

substituted into (3.39), the vanishing of the coefficient of the lowest powerof &
requires a = 0. The recursion relation between successive coefficients in the series

is then

 a1 _ (7 - Wit vt)
a (i + 1p ee)

Choosing a) = 1 to normalize the solution to unity at € = 0 (cos 6 = 1), we have
the series representation

(—v)(v + 1)oe (—v)(-v + 1)(v + 1)(v + 2) PE. (B41)

2! 2!
 P(g) = 1+ E+

Wefirst observe that if v is zero or a positive integer the series terminates. The
reader can verify that for v = 1 = 0, 1, 2,..., the series (3.41) is exactly the
Legendre polynomials (3.15). For v not equal to an integer, (3.41) represents a
generalization andis called a Legendre function of the first kind and order v. The
series (3.41) is an example of a hypergeometric function 5F(a, b; c; z) whose
series expansion is

 
+1 + 1) 2?

oF(a, b; c; Z) — 1 + ab Zz 4 a(a )b(b ) ze

 

c 1! c(c + 1) 2!

Comparison with (3.41) showsthat the Legendre function can be written

1—-x
P(x) = 2h (=n y+ 131; 5 (3.42)

Here we have returned to our customary variable x = cos 6. The properties of
the hypergeometric functions are well known (see Morse and Feshbach, Chapter
5, Dennery and Krzywicki, Sections [V.16-18, Whittaker and Watson, Chapter

XIV). The Legendre function P,(x) is regular at x = 1 andfor |x| < 1, butis
singular at x = —1 unless v is an integer. Depending on the value of », it has a
certain number of zeros on the range |x| < 1. Since the polynomial P,(x) has/
zeros for |x| < 1, we anticipate that for real y more and more zeros occuras v
gets larger and larger. Furthermore, the zeros are distributed more orless uni-

formly on the interval. In particular, the first zero moves closer and closer to
x = 1 as v increases.

The basic solution to the Laplace boundary-value problem of Fig. 3.5 is

Ar’P,(cos 6)

where v > 0 is required for a finite potential at the origin. Since the potential
must vanish at 0 = B forall r, it is necessary that

P,(cos B) = 0 (3.43)

This is an eigenvalue condition on v. From what was just stated about the
zeros of P,, it is evident that (3.43) has an infinite number of solutions, v = 1%
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(kK = 1, 2,...), which we arrange in order of increasing magnitude. For v = 1»,
x = cos PB is the first zero of P,,(x). For v = ~», x = cos ® is the second zero
of P,,(x), and so on. The complete solution for the azimuthally symmetric poten-
tial in the region 0 = 6 B is*

P(r, 0) = » A,r"*P,,(cos 6) (3.44)

In the spirit of Section 2.11 we are interested in the general behaviorof the
potential and fields in the neighborhood of r = 0 and notin thefull solution with
specific boundary conditions imposed at large r. Thus we approximate the be-
havior of the potential near r = 0 bythefirst term in (3.44) and write

®(r, 0) =~ Ar’P,(cos6) (3.45)

where now vis the smallest root of (3.43). The components ofelectric field and
the surface-charge density on the conical conductorare

ab )
E, = ——— = —vAr’"'P,(cos 6)

or

1 0®
Ey = —-~— = Ar’! sin 6P}(cos 6) (3.46)

r 00

—_ 1 A 1 'o(r) = Aa Eslo-p = re sin BP!,(cos p) 
Here the prime on P, denotes differential with respect to its argument. Thefields
and charge density all vary as r’| as r — 0.

The order v for the first zero of P,(cos B) is plotted as a function of B in Fig.
3.6. Obviously, for B <1, v >> 1. An approximate expression for vin this domain
can be obtained from the Bessel function approximation,’

0
P,(cos 6) =1 + 1) sin 5) (3.47)

valid for large v and 6 < 1. Thefirst zero of Jo(x) is at x = 2.405. This gives

p=——-—-p (3.48a)

Since |E| and o vary as r’"' there are evidently very smallfields and verylittle
charge deep in a conical hole as B — 0. For B = 7/2, the conical conductor

becomesa plane. There vy = 1 and ao « 1, as expected. For B > 7/2, the geometry

is that of a conical point. Then v < 1 and the field is singular at r = 0. For
B — a, v — 0, but rather slowly. An approximation for (7 — B) smallis

px 2 in( 4)| (3.48b)

This showsthat for (7 — B) = 10°, v = 0.2 and even for (7 — B) =~ 1°, v= 0.1.
In any event, for a narrow conical point the fields near the point vary as r~'**

 

*The orthogonality of the functions P,(cos 6) on the interval cos B < x < 1 can be shownin the

same way as for Pcos #)—see (3.17)-(3.19). Completeness can also be shown.

‘Bessel functions are discussed in Section 3.7.
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0 90 180

8 (degrees) ——>

Figure 3.6 The order parameter v for the first zero of P,(cos 8) versus 8. The range
0 < B < 90° corresponds to a conical hole, while 90° < B < 180° represents a conical
point. Near r = 0 the fields and surface-charge density are proportional to r’~'. The
dashed curves are the approximate expressions, (3.48a) and (3.48b).

where € << 1. Very high fields exist aroundthe point. The efficacy of such points
in lightning rodsis discussed in Section 2.11.

An extended discussion of potential problems of this general kind by R. N.
Hall [J. Appl. Phys. 20, 925 (1949)] includes graphs for a numberofthe roots 1,
of (3.43) as functionsof B.

3.5. Associated Legendre Functions and the

Spherical Harmonics Y,,,(0, )

So far we have dealt with potential problemspossessing azimuthal symmetry with
solutions of the form (3.33). Unless the range in 0 is restricted, as in Section 3.4,
these involve only ordinary Legendre polynomials. The general potential prob-
lem can, however, have azimuthal variations so that m # 0 in (3.5) and (3.9).
Then we need the generalization of P,(cos 6), namely, the solution of (3.9) with
/ and m both arbitrary. In essentially the same manner as for the ordinary
Legendre functions it can be shownthat to havefinite solutions on the interval

—1 =x <1, the parameter / must be zero or a positive integer and the integer m

can take on only the values —/, —(1 — 1),...,0,..., @ — 1), J. The solution
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having these properties is called an associated Legendre function P7’(x). For
positive m it is defined by the formula’:

q™

Pr(x) = (-1y"( = xy"? 2 P(x) (3.49)
If Rodrigues’ formula is used to represent P,(x), a definition valid for both pos-
itive and negative m is obtained:

(—1)” in qit™

2 (1 7 x*) 2 dx't™

P,’"(x) and P7"(x) are proportional, since the differential equation (3.9) depends
only on m’ and m is an integer. It can be shownthat

mp mi—m)!
P,"(x) = (~1) m)\ P7"(x) (3.51)

Forfixed m the functions P7’(x) form an orthogonal set in the index / on the
interval -1 = x = 1. By the same meansas for the Legendre functions the
orthogonality relation can be obtained:

P?'(x) = (x? — 1) (3.50) 

2 (1+m)!
2i+1(1-—m)! "'

The solution of the Laplace equation was decomposed into a product of
factors for the three variablesr, 6, and ¢. It is convenient to combine the angular
factors and construct orthonormal functions over the unit sphere. We will call
these functions spherical harmonics, although this terminology is often reserved
for solutions of the generalized Legendre equation (3.9). Our spherical harmonics
are sometimes called ‘‘tesseral harmonics” in older books. The functions
O,,(b) = e””"* form a complete set of orthogonal functions in the index m on the
interval 0 = ¢@ = 27. The functions P7"(cos 6) form a similar set in the index /
for each m value on the interval —1 = cos 9 = 1. Therefore their product P;"Q,,

will form a complete orthogonalset on the surface of the unit sphere in the two
indices /, m. From the normalization condition (3.52) it is clear that the suitably
normalized functions, denoted by Y,,,(0, @), are

 [ Pi(x)P7"(x) dx = (3.52)

 

 
— jal+idi-m)! imd

Yim(O, 6) = | in (14m) P7"(cos 0)e (3.53)

From (3.51) it can be seen that

Y,-m(6, ) — (—1)"Y7,.(8, oy) (3.54)

The normalization and orthogonality conditions are

277 1

| dd I sin 6 dé Yim(8, b)Yim(9, p) — 67:10m'm (3.55)

The completeness relation, equivalent to (2.35),is

SD V#,(6', &')¥n(, 6) = 8(b — ')8(cos @ — cos 6’) (3.56)
l=0 m=-—l

*The choice of phase for P7"(x) is that of Magnus et al. and E. U. Condon and G.H.Shortley in
Theory ofAtomic Spectra, Cambridge University Press (1953). For explicit expressions and recursion

formulas, see Magnuset al., Section 4.3.
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For a few small / values and m = 0 the list below showsthe explicit form of the
Yin(0, @). For negative m values (3.54) can be used.

SPHERICAL HARMONICSY,,,(6, d)

sin’ Ae”?

l=2 Jy, =- 3, Sin 8 cos bel

5
Yo = Z— (3c0s"6 — 3)

1 [35 |
Y33 = 4 Aq sin? 6e*'?

1 /105
| Y3. = 4 Z sin’6 cos de”?

3
1 /21

Y3, = --4 Van sin 0 (Scos*6 — 1)e’®

Y39 = A— (3 cos*@ — 3 cos 6)

Yi0(0, 6) = a P,(cos 8) (3.57)

An arbitrary function g(@, @) can be expanded in spherical harmonics:

 
Note that, for m = 0,

2(6, 6) => y AmYin(G, $) (3.58)
l=0 m=-—-

where the coefficients are

_ | dO. ¥*,,(0, b)g(0, $)
A point of interest to us in the next section is the form of the expansion for
6 = 0. With definition (3.57), we find:

[g(9, })]o-0 = > ne Ajo (3.59)



110 Chapter 3 Boundary-Value Problemsin Electrostatics: II—SI

An = [-t-+ | dO. P,(cos 8)g(0, $) (3.60)
Aor

All terms in the series with m # 0 vanish at 6 = 0.
The general solution for a boundary-value problem in spherical coordinates

can be written in termsof spherical harmonics and powersofrin a generalization
of (3.33):

where

 

H(r, 6,6) = SY. [Agr + Byrn6, ) (3.61)
1=0 m=-I

If the potential is specified on a spherical surface, the coefficients can be deter-
mined by evaluating (3.61) on the surface and using (3.58).

3.6 Addition Theorem for Spherical Harmonics

A mathematical result of considerable interest and use is called the addition
theorem for spherical harmonics. Two coordinate vectors x and x’, with spherical
coordinates(7, 0, @) and (r’, 0’, db’), respectively, have an angle y between them,

as shown in Fig. 3.7. The addition theorem expresses a Legendre polynomial of
order /in the angle yin termsof products of the spherical harmonicsof the angles
0, d and 0’, db’:

Aa
Yim(O', &')Yin(O, 3.62TAT Ly, Vin(O'. $V¥in(® ) (3.62)

where cos y = cos 6 cos 0’ + sin @sin 6’ cos(¢ — '). To prove this theorem we
consider the vector x’ as fixed in space. Then P,(cos y) is a function of the angles
6, p, with the angles 0’, @’ as parameters. It may be expandedin series (3.58):

 P,(cos y) =

co

P,(cos y) = >, > Apm(6', &')Yim(0, &) (3.63)
l’=0 m

Comparison with (3.62) shows that only terms with /' = 1 appear. To see why
this is so, note that if coordinate axes are chosen so that x’ is on the z axis, then

y becomes the usual polar angle and P,(cos y) satisfies the equation:

(i + 1)
V’*P,(cos y) +

r
 P,(cos y) = 0 (3.64)

where V”’ is the Laplacian referred to these new axes.If the axes are now rotated
to the position shown in Fig. 3.7, V’* = V* and r is unchanged.* Consequently
P,(cos y) still satisfies an equation of the form (3.64); i.e., it is a spherical harmonic
of order /. This meansthat it is a linear combination of Y,,,’s of that order only:

P,(cos y) = x Am(8', 6')¥im(6, &) (3.65)

The coefficients A,,(6’, 6’) are given by

An(8', 6") = | Y4n(6, 4)P(cos 7) d0 (3.66)
*The proof that V’* = V* underrotations follows most easily from noting that V7 = V- Vw is an

operator scalar product andthat all scalar products are invariant underrotations.
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Figure 3.7

To evaluate this coefficient we note that it may be viewed, according to (3.60),

as the m' = 0 coefficient in an expansion of the function V47/(2/ + 1) Y7,,(0, )
in a series of Y,,,(y, 8) referred to the primed axis of (3.64). From (3.59) it is
then found that, since only one/ value is present, coefficient (3.66) is

{[Yiml (¥, B), (¥ B)]},=0 (3.67) 
An(9, 6)=

In the limit y — 0, the angles (6, @), as functions of (y, 8), go over into (6’, d’).
Thus addition theorem (3.62) is proved. Sometimes the theorem is written in
terms of P7"(cos 6) rather than Y,,,. Then it has the form:

P,(cos y) = P,(cosaiaNn (3.68)

+2 > oeTealom+ P(eos 6)P7"(cos 8') cos[m(¢ — ')]

If the angle y goesto zero, vee results a ‘“‘sum rule”’ for the squaresofY,,,.’s:

,_ 2+1
> Yim(8, #)? = (3.69)

The addition theorem can be used to put expansion (3.38) of the potential
at x due to a unit charge at x’ into its most explicit form. Substituting (3.62) for
P,(cos y) into (3.38), we obtain

l1 21=4rd & ai Vin(8's b')¥in(8 6) (3.70) 

Equation (3.70) gives the potential in a completely factorized form in the coor-
dinates x and x’. This is useful in any integrations over charge densities, etc.,
where one variable is the variable of integration and the otheris the coordinate
of the observation point. The price paid is that there is a double sum rather than
a single term.

3.7. Laplace Equation in Cylindrical Coordinates;
Bessel Functions

In cylindrical coordinates (p, ¢, z), as shown in Fig. 3.8, the Laplace equation

takes the form:

Pd lsd 190 FO
dp> pop p ad? az ( )
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x Figure 3.8

The separation of variables is accomplished by the substitution:

P(p, , Z) = R(p)Q(b)Z(Z) (3.72)
In the usual waythis leads to the three ordinary differential equations:

a°Z
— -—k*Z =0 3.73dz? ( )

d*O
dd? + vO = 0 (3.74)

d*R 1dR y?

dp’ p dp ( =) GP)
The solutions of the first two equations are elementary:

Z(z) =e” (3.76)

Q($) = ev"
For the potential to be single-valued when the full azimuth is allowed, v must be
an integer. But barring some boundary-condition requirementin the z direction,
the parameterk is arbitrary. For the present we assumethatk is real and positive.

The radial equation can be put in a standard form by the change of variable
x = kp. Then it becomes

d*R  1dR yeoe = 24 (1-4~)r =0 3.77
dx* x dx ( =) (3-77)

This is the Bessel equation, and the solutionsare called Bessel functions of order
v. If a powerseries solution of the form

R(x) = x* >) ajx! (3.78)
j=0

is assumed, then it is found that

a=Htp (3.79)

and

1
a5; = (3.80)
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for j = 1,2,3,.... All odd powersof x’ have vanishing coefficients. The recursion

formula can be iterated to obtain

(—1)T(a@ + 1)
ad; = Qj. . Ao

2771 T(j + a+ 1)
 (3.81)

It is conventional to choose the constant a) = [2°T(a@ + 1)]~'. Then the two
solutions are

_ (x) S___(1) x\"
We) = (5) *iTu sed) (5) C82)

“Sty 7
To) = (5) ATG ead) (5) G89)

These solutions are called Bessel functions of the first kind of order +v. The
series convergeforall finite values of x. If v is not an integer, these two solutions
J..,(x) form a pair of linearly independentsolutions to the second-order Bessel
equation. However, if v is an integer, it is well known that the solutions are
linearly dependent. In fact, for vy = m, an integer, 1t can be seen from the series
representation that

 

 

J_m(x) = (-1)J,,(x) (3.84)

Consequently it is necessary to find another linearly independent solution when
v is an integer. It is customary, even if v is not an integer, to replace the pair
J..,(x) by J,(x) and N,(x), the Neumann function (or Bessel function of the sec-
ond kind):

J.A(x) cos var — J_,(x)

SIN V7
N(x) = (3.85)

For v not an integer, N,(x) is clearly linearly independent of J,(x). In the limit
vy — integer, it can be shownthat N,,(x)is still linearly independent of J,(x). As
expected, it involves log x. Its series representation is given in the reference
books.

The Bessel functions of the third kind, called Hankel functions, are defined

as linear combinationsof J,(x) and N,(x).:

HY(x) = J,(x) + ye
H®(x) = J,(x) — iN,(x) (6.80)

The Hankelfunctions form a fundamentalset of solutions to the Bessel equation,

just as do J,(x) and N,(x).
The functions J,, N,, H“, H®all satisfy the recursion formulas

0,104) + O,41(4) = = 0,(x) (3.87)

1,-4(3) ~ Qy(x) = 2) (3.88)

where (),,(x) is any one of the cylinder functions of order v. These may be verified
directly from the series representation (3.82).
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For reference purposes, the limiting forms of the various kinds of Bessel
function are given for small and large values of their argument. For simplicity,
we show only the leading terms:

xK1 Jx)> wr) (=) (3.89)

- (3) + 0.5772 +: | y=0
N(x) > TQ) (») vo (3.90)

IT X

In these formulas v is assumedto be real and nonnegative.

2
x>Iiv T(x) > [— cos(x _ 27 *)

WX 2 4 (3.91)
2 vr oT

N(x) > _/-—s! -— 7
vx) 7X sin( 2 4

The transition from the small x behavior to the large x asymptotic form occurs
in the region of x ~ v.

From the asymptotic forms (3.91) it is clear that each Bessel function has an
infinite number of roots. We will be chiefly concerned with the roots of J,(x):

T(%m)=0 (n= 1,2,3,...) (3.92)

X,», 18 the nth root of J,(x). For the first few integer values of v, the first three

roots are:

v = 0, Xon = 2.405, 5.520, 8.654,...

vy = 1, Xin = 3.832, 7.016, 10.173, ...

v= 2, Xen, = 5.136, 8.417, 11.620,...

For higher roots, the asymptotic formula

1
Xun = na + (Ya) 5

gives adequate accuracy(to at least three figures). Tables of roots are given in

Jahnke, Emde, and Losch (p. 194) and Abramowitz and Stegun (p. 409).
Having foundthe solution of the radial part of the Laplace equation in terms

of Bessel functions, we can now ask in what sense the Bessel functions form an

orthogonal, complete set of functions. We consider only Bessel functions of the
first kind, and we showthat Vp JAx,,p/a), for fixed v= 0,n = 1,2,..., form

an orthogonal set on the interval 0 = p = a. The demonstration starts with the

differential equationsatisfied by J,(x,,,p/a):

| to ") 5 5
Xin ¥ p— p————__] + - 2)(0 ") = 0 3.93

dp dp ( p C9)D
l
e
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If we multiply the equation by pJ,(x,,p/a) and integrate from 0 to a, we obtain

“ d tH )
| 10 °) ap|°dp dp +

[Blasploat)o-e
Integration by parts, combined with the vanishing of (p/,/;,) at p = 0 (for v= 0)
and p = a,leads to the result:

/ tan ) t(a ) lee
-| 0 dp + | (= — “Yam 2)(0 °) dp = 0

a p a a0 dp dp 0

 

  

If we now write down the same expression, with n and n’ interchanged, and
subtract, we obtain the orthogonality condition:

(x5 _ X<n') | ph 2)a( ") dp — 0 (3.94)
0 a a

Adroit use of the differential equation, and the recursion formulas (3.87) and
(3.88) leads to the normalization integral:

a 2

Pp Pp _ 4 20
I pln 2).(00 ) dp 2 (Jp+1n)] 8, n (3.95)

Assumingthat the set of Bessel functions is complete, we can expand an arbitrary
function of p on the interval 0 = p = a in a Fourier—Besselseries:

 

fle) = >“°) (3.96)

where

_ XinP

Ourderivation of (3.96) involved the restriction v = 0. Actually it can be proved
to hold for all vy = —1.

Expansion (3.96) and (3.97) is the conventional Fourier—Besselseries andis
particularly appropriate to functions that vanish at p = a (e.g., homogeneous
Dirichlet boundary conditions on a cylinder; see the following section). Butit
will be noted that an alternative expansion is possible in a series of functions
Vp J,(yrnpla) where y,, is the nth root of the equation [dJ,(x)]/dx = 0. The
reason1s that, in proving the orthogonality of the functions,all that is demanded
is that the quantity [pJ,(kp)(d/dp)J,(k'p) — pJ,(k'p)(d/dp)J,(kp)| vanish at
the end points p = 0 and p = a. The requirement is met by A = x,,/a or A =
Yin/a, where J,(x,,) = 0 and J'(y,,) = 0, or, more generally, by p(d/dp)J,(kp)

+ dJ,(kp) = 0 at the end points, with A a constant independentof k. The expan-
sion in terms of the set Vp J,(y,,,p/a) is especially useful for functions with van-
ishing slope at p = a. (See Problem 3.11.)



116 Chapter 3 Boundary-Value Problems in Electrostatics: II—SI

A Fourier—Besselseries is only one type of expansion involving Bessel func-
tions. Some of the other possibilities are:

oO

Neumannseries: >; Andy+n(Z)
n=0

Kapteyn series: >) a,J,.,((v + n)z)
n=0

Schlémilchseries: >, a,J,(nx)
n=1

The reader may refer to Watson (Chapters XVI-XIX)for a detailed discussion
of the properties of these series. Kapteyn series occur in the discussion of the
Kepler motion of planets and of radiation by rapidly moving charges (see Prob-
lems 14.14 and 14.15).

Before leaving the properties of Bessel functions, we note that if, in the
separation of the Laplace equation, the separation constant k* in (3.73) had been
taken as —k’, then Z(z) would have been sin kz or cos kz and the equation for
R(p) would have been:

d°*R  1dRIe tod” G + “yr =0 (3.98)

With kp = x, this becomes

d’*R 1dR y

Et(144)\e=0 (3.99)
The solutions of this equation are called modified Bessel functions. It is evident

that they are just Bessel functions of pure imaginary argument. The usual choices
of linearly independent solutions are denoted by J,(x) and K,(x). Theyare de-
fined by

I(x) = i-"J,(ix) (3.100)

K,(x) = 5 PHM(ix) (3.101)

and are real functions for real x and v. Their limiting forms for small and large

x are, assuming real v = 0:

 

x<1 1,(x) > wep (=) (3.102)

-}in(2] + 0.5772: | y=0
K,(x) > ro) 2) ey (3.103)

2 \x/?

xv L(x)= eft + 0(2) (3.104)

K(x) > > ei + 0(4)
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3.8 Boundary- Value Problems in Cylindrical Coordinates

The solution of the Laplace equation in cylindrical coordinates is ® =
R(p)Q(¢)Z(z), where the separate factors are given in the previoussection. Con-
sider now the specific boundary-value problem shownin Fig. 3.9. The cylinder
has a radius a and a height L, the top and bottom surfaces being at z = L and
z = 0. The potential on the side and the bottom of the cylinderis zero, while the
top has a potential ® = V(p, ¢). We wantto find the potential at any point inside
the cylinder. In order that ® be single valued and vanish at z = 0,

O(¢) = A sinmd + B cosmd

Z(z) = sinhkz

where v = mis an integer and k is a constant to be determined. Theradial factor
is

R(p) = Ci,,(kp) + DNn(Kp)

If the potentialis finite at p = 0, D = 0. The requirementthat the potential vanish
at p = a meansthat k can take on only those special values:

km = 2 (n = 1,2,3,...)

where x,,, are the roots of Jin(Xmn) = 0.

Combiningall these conditions, we find that the general form of the solution
is

D(p, 6,2) = > > Im(KmnP) StOD(KynZ)(Amn Sin md
m=0 n=1

+ Bryn cosmd)
(3.105a)

At z = L, we are given the potential as V(p, ¢). Therefore we have

Vip, &) = > sinh(KrnL)Jm(KmnP(Amn Sima + Bin COSMO)

Z

 

    
x Figure 3.9
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This is a Fourier series in ¢ and a Fourier—Bessel series in p. The coefficients

are, from (2.37) and (3.97),

2 cosech(KmnnL) |om f |

~ d d Tk
“ TATin(Kn) 0 ? 0 P pV(p, ¢) m( mnP) sin mo

and (3.105b)

_ 2 cosech(ky,L) om

mn TAT441(Kn) 0

 

 dd I dp pV(p, b)Jin(Kmnp) cosmd

with the proviso that, for m = 0, we use $B,,, in the series.
The particular form of expansion (3.105a) is dictated by the requirement that

the potential vanish at z = 0 for arbitrary p and at p = a for arbitrary z. For
different boundary conditions the expansion would take a different form. An
example where the potential is zero on the end faces and equal to V(¢, z) on the
side surface is left as Problem 3.9 for the reader.

The Fourier—Bessel series (3.105) is appropriate for a finite interval in p,
0= pa. Ifa — %®, the series goes over into an integral in a mannerentirely
analogous to the transition from a trigonometric Fourier series to a Fourier in-
tegral. Thus, for example, if the potential in charge-free space is finite for z = 0
and vanishes for z — ©, the general form of the solution for z = 0 must be

oO

P(p, 6, Z) = y 5 dk e"J,,(kp)[A,(k) sinmd + B,,(k) cosmp] (3.106)

If the potential is specified over the whole plane z = 0 to be V(p, ¢) the coeffi-
cients are determined by

V(p, b) = > Idk Im(Kp)[Am(k) sinmd + B,,(k) cosmd]

The variation in ¢ is just a Fourier series. Consequently the coefficients A,,,(k)
and B,,(k) are separately specified by the integral relations:

1 [°” sinmd _ f* | Am(k’)- I Vip, onme| db = I Ty(k nye} dk’ (3.107)

These radial integral equationsof the first kind can be easily solved, since they
are Hankel transforms. For our purposes, the integral relation,

| XDin(kx)J(k'x) dx = - d(k' — k) (3.108)

can be exploited to invert equations (3.107). Multiplying both sides by p/J,,,(kp)
and integrating over p, we find with the help of (3.108) that the coefficients are
determined by integrals over the whole area of the plane z = 0:

A,,(k) mosin (3.109)
Bk) cosm@

= < | dp p [° dd V(p, byIn(ko)}

As usual, for m = 0, we must use 5B,(k)in series (3.106).
While on the subject of expansions in terms of Bessel functions, we observe

that the functions J,(kx) for fixed v, Re(v) > —1, form a complete, orthogonal
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(in k) set of functions on the interval, 0 < x < ©. For each m value (and fixed
¢@ and z), the expansion in k in (3.106) is a special case of the expansion,

A(x) = |. A(k)J,(kx) dk, where A(k) = k | xA(x)J,(kx) dx (3.110)

An important example of these expansions occurs in spherical coordinates, with
spherical Bessel functions,j,(kr), / = 0,1,2,.... For present purposes we merely
note the definition,

, T
WZ) = 92 Ji4112(Z) (3.111)

[Details of spherical Bessel functions may be found in Chapter 9.] The ortho-
sonality relation (3.108) evidently becomes

TT
I ri(kr)j(k'r) dr = 5 6(k — k') (3.112)

The completeness relation has the same form, with r > k, k > r, k' ~ r'. The

Fourier—spherical Bessel expansion for a given / is then

A(r) = | A(k)j(kr) dk, where A(k) = a | r°A(r)j(kr) dr (3.113)

Such expansions are useful for current decay in conducting media or time-
dependent magnetic diffusion for which angular symmetry reduces consideration
to one or a few / values. See Problems 5.35 and 5.36.

3.9 Expansion of Green Functions in Spherical Coordinates

To handle problems involving distributions of charge as well as boundary values
for the potential(i.e., solutions of the Poisson equation), it is necessary to deter-
mine the Green function G(x, x’) that satisfies the appropriate boundary con-
ditions. Often these boundary conditions are specified on surfaces of some sep-
arable coordinate system (e.g., spherical or cylindrical boundaries). Then itis
convenient to express the Green function as a series of products of the functions
appropriate to the coordinates in question. Wefirst illustrate the type of expan-
sion involved by considering spherical coordinates.

For the case of no boundary surfaces, except at infinity, we already havethe
expansion of the Green function, namely (3.70):

o «Co I
1 ay ¥ 1 r

 7= TS VinlO", &'¥n(O,me)

AT

Dyaed pat Vim(O's &)¥in(®, )

Suppose that we wish to obtain a similar expansion for the Green function ap-
propriate for the ‘‘exterior’’ problem with a spherical boundary at r = a. The
result is readily found from the image form of the Green function (2.16). Using
expansion (3.70) for both terms in (2.16), we obtain:

1 rt f(a@\
G ‘\V= — — — — Y*(0', b')Y. 3.11

(x, X ) Air > 2] + 1 ES a (=) | im(O ? p ) im(9, p) ( 4)
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To see clearly the structure of (3.114) andto verify that it satisfies the boundary
conditions, we exhibit the radial factors separately for r <r’ and forr > r’:

1 quit!
—— py? — —_— r<yr’i 1 2\/+1 +1 [ +1 |

>(=) =i7 ’ (3.115)
ro a \rr' 1 quit! 1 Sh

ro 747 r ryiirl yitl ,
 

First of all, we note that for either r or r’ equal to a the radial factor vanishes,
as required. Similarly, as r or r’ — ©, the radial factor vanishes. It is symmetric
inv and r’. Viewed as a functionof r, for fixed r’, the radial factoris just a linear

combination of the solutions r’ and r~“*ofthe radial part (3.7) of the Laplace
equation. It is admittedly a different linear combination for r < r’ and for
r >r'. The reasonfor this, which will become apparent below,is connected with
the fact that the Green functionis a solution of the Poisson equation with a delta
function inhomogeneity.

Now that we have seen the general structure of the expansion of a Green
function in separable coordinates we turn to the systematic construction of such
expansions from first principles. A Green function for a Dirichlet potential prob-
lem satisfies the equation

ViG(x, x') = —478(x — x’) (3.116)

subject to the boundary conditions G(x, x’) = 0 for either x or x’ on the boundary
surface S. For spherical boundary surfaces we desire an expansion of the general
form (3.114). Accordingly we exploit the fact that the delta function can be
written*

d(x — x’) = - d(r — r') 6d — $') S(cos 6 — cos 6’)

and that the completeness relation (3.56) can be used to represent the angular
delta functions:

ax — x)= r— 7’) DD Vin. dnl 6) G17)
l=0 m=-l

Then the Green function, considered as a function of x, can be expanded as

co l

G(x, x') = » Dd Aim(rlr’, 0’, b')Yim(O, ) (3.118)

Substitution of (3.117) and (3.118) into (3.116) leads to the results

Ap(r|r’, 0', b') = gr, r')Yim(O', b’) (3.119)

*To express 5(x — x’) = d(x, — x1) 8(x2 — x3)6(x3 — x4) in termsof the coordinates (&, &, &), related
to (x1, X2, ¥3) via the Jacobian J(x;, &), we note that the meaningful quantity is 5(x — x’) d°x. Hence

, —_— 1 _ ' —_— ' —_— '
d(x — x’) = (a, &)| 6(& &) 6(& &) 6(& &)

See Problem 1.2.
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with

1 d’ i+ 1) 4a
dP (rg(r, r')) — 2 g(r, r') = 2 d(r — r’) (3.120) 

The radial Green function is seen to satisfy the homogeneous radial equation
(3.7) for r # r'. Thus it can be written as

(7) = Ar! + Bro@) forr <r’

BITD atl te BipeD forr>r'

The coefficients A, B, A’, B’ are functions of r’ to be determined by the boundary

conditions, the requirement implied by 6(r — r’) in (3.120), and the symmetry of
g(r, r') in r and r’. Suppose that the boundary surfaces are concentric spheres
at r = a and r = b. The vanishing of G(x, x’) for x on the surface implies the
vanishing of g,(7, r’) for r = a and r = b. Consequently g,(r, r’) becomes

qt}

a(r — CT) r<yr’

g(r, r') = 1 7 (3.121)

B(5 — om) ror

The symmetry inv and r’ requires that the coefficients A(r’) and B’(r’) be such
that g/(r, r’) can be written

qt} 1 re

gir, r') = (x. a=(Fs a rs) (3.122)
< rs

 

where r. (r.) is the smaller (larger) of r and r’. To determine the constant C we
must consider the effect of the delta function in (3.120). If we multiply both sides
of (3.120) by r and integrate over the interval from r = r'’ — e€tor=r' + «,
where € is very small, we obtain

_4aa
{2 [rgi(r, rif 7 {2 [rgi(r, rat — yr! (3.123)

Thus there is a discontinuity in slope at r = r’, as indicated in Fig. 3.10.
Forr=r'+eéer.=r,re-=r'. Hence

d . qt} d 1 pitt

LirtatrOl}= (r= Fes)(Be)|
21+1 21+1

C a r’
=-—|1-[-— 1+ (1+ 1)[—PLC) devon ols) |

 

r
g
i
(
r
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r
’
)
—
—
>

   Figure 3.10 Discontinuity in slope of the
r r——> radial Green function.
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Similarly

Listerele)ola) |
Substituting these derivatives into (3.123), we find:

At
a 21+1

(21 + pf — (%) |

Combination of (3.124), (3.122), (3.119), and (3.118) yields the expansion of the
Green function for a spherical shell bounded by r = a and r = D:

co l * ! ! 21+1 l
YimlO', b')Viml(, &) a 1 rs

G(x, x’) = 47 >» >» re tt +d Bedoe a r- I

(21 + pf — (?) |

For the special cases a > 0, b > ~, and b — ©, we recover the expansions(3.70)

and (3.114), respectively. For the “interior” problem with a sphere of radius 5,
we merely let a — 0. Whereas the expansion for a single sphere is most easily
obtained from the imagesolution, the general result (3.125) for a spherical shell
is rather difficult to obtain by the method of images, since it involves an infinite

set of images.

 C= (3.124)

 

(3.125)

3.10 Solution ofPotential Problems with the
Spherical Green Function Expansion

The general solution to the Poisson equation with specified valuesof the potential
on the boundarysurface is (see Section 1.10):

1 dG
—| , ee \ 'P(x) = Ine, Jv p(x')G(x, x') d An Ss P(x’) on’ da (3.126)

For purposesofillustration let us consider the potential inside a sphere of radius
b. First we will establish the equivalence of the surface integral in (3.126) to the
method of Section 3.5, equations (3.61) and (3.58). With a = 0 in (3.125), the
normal derivative, evaluated at r’ = b, 1s:

aG _ 2G
on' or’

 
—

r'=b b lm b 
Consequently the solution of the Laplace equation inside r = b with ® =

V(0', @’) on the surface is, according to (3.126):

P(x) = > | V(0', b')Yim(8', $') aor |(~) Yin(9, 6) (3.128)

For the case considered, this is the same form of solution as (3.61) with (3.58).
There is a third form of solution for the sphere, the so-called Poisson integral
(2.19). The equivalence of this solution to the Green function expansionsolution
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Figure 3.11 Ring of charge of radius a andtotal
charge Q inside a grounded, conducting sphere
of radius b.

is implied by the fact that both were derived from the general expression (3.126)
and the image Green function. The explicit demonstration of the equivalence of
(2.19) and the series solution (3.61) will be left to the problems.

We nowturnto the solution of problems with charge distributed in the vol-
ume, so that the volumeintegral in (3.126) is involved.It is sufficient to consider
problems in which the potential vanishes on the boundary surfaces. By linear
superposition of a solution of the Laplace equation, the generalsituation can be
obtained. The first illustration is that of a hollow grounded sphere of radius b
with a concentric ring of charge of radius a andtotal charge Q. The ring of charge
is located in the x-y plane, as shown in Fig. 3.11. The charge density of the ring
can be written with the help of delta functions in angle and radius as

              p(x’) = 5 (3.129)

In the volume integral over the Green function only terms in (3.125) with m = 0
will survive because of azimuthal symmetry. Then, using (3.57) and remembering
that a — 0 in (3.125), we find

D(x) = Vo=| p(x')G(x, x’) d?x’

> P,(O)r. (gs+1 - es)Piloo 0)
 
==>

(3.130)

where now r. (r,) is the smaller (larger) of r and a. Using the fact that
Pon41(0) = O and P3,,(0) = [(-1)"(2n — 1)!!]/2"n!, (3.130) can be written as

 w(x) = 2. ys ("en —a 1 yor

ATE n=0 2"n! 2pont Fissi)Pcs 0) (3.131)

In the limit b — ©, it will be seen that (3.130) or (3.131) reduces to the expression
at the end of Section 3.3 for a ring of charge in free space. The present result can
be obtained alternatively by using that result and the imagesfor a sphere.

A second example of charge densities, illustrated in Fig. 3.12, is that of a
hollow grounded sphere with a uniform line charge of total charge Q located on

the z axis between the north and south poles of the sphere. Again with the help
of delta functions, the volume-charge density can be written:

Q
2b 2m
 p(x’) = = [d(cos 6’ — 1) + d(cos 6’ + 1)] (3.132)
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Linear
| density
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Figure 3.12 Uniform line charge of length
2b andtotal charge Q inside a grounded,
conducting sphere of radius b. 

The two delta functions in cos 6 correspond to the two halves of the line charge,
above and below the x-y plane. The factor 27r’* in the denominatorassuresthat

the charge density has a constant linear density Q/2b. With this density in (3.126)
we obtain

r,

®(x) = aD![P,(1) + P(—1)]P,(cos 6) I (as - sis) dr’ (3.133)

The integral nmust be broken up into the intervals 0 = r'’ <randr<sr' =D.

Then wefind

° 1 r! ’ of 4 r!!
— Le rl d roo ‘| ee d r

I (a sm) I par ry (ois sm) r (3.134)

_@+y[,_ (ry
(i + 1) b

For / = 0 this result is indeterminate. Applying L’Hospital’s rule, we have, for
/ = 0 only,

  

 

0 1-30 d 1-0
dl (Z)

This can be verified by direct integration in (3.133) for / = 0. Using the fact that
P,(—1) = (1), the potential (3.133) can be put in the form:

_ @ b\ S +1) [,_ (r\"P(x) = tne, {in(2) + 2d 513 + 1) f (*) |a(cos 0| (3.136)

The presence of the logarithm for / = 0 remindsus that the potential diverges
along the z axis. This is borne out by theseries in (3.136), which diverges for
cos 6 = +1, except at r = b exactly. The peculiarity that the logarithm hasar-
gument(b/r) instead of (b/r sin @) is addressed in Problem 3.8.

The surface-charge density on the grounded sphere1s readily obtained from
(3.136) by differentiation:

dP

or

d[,_(r)
b dl b d b

| = lim = lim |- e! me = | (n °| (3.135)

 

r=b

  

 

[1 +> FD pb,(cos 0 | (3.137)
o(8) = € | (2j + 1 
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The leading term showsthat the total charge induced on the sphere is —Q, the

other terms integrating to zero over the surface of the sphere.

3.11 Expansion of Green Functions in Cylindrical Coordinates

The expansion of the potential of a unit point charge in cylindrical coordinates
affords another useful example of Green function expansions. We present the
initial steps in general enough fashion to permit the procedure to be readily
adapted to finding Green functions for potential problems with cylindrical bound-
ary surfaces. Thestarting point is the equation for the Green function:

V2G(x, x’) = = 8(o — p') (bd — 6’) Hz — 2’) (3.138)

where the delta function has been expressed in cylindrical coordinates. The @

and z delta functions can be written in terms of orthonormalfunctions:

1 [> , 1 [~
d(z — z') = + dk ekG-2) = i} dk cos[k(z — z')]

oT t= os (3.139)
1 - og,6 - o= tS emo

Mm=—c

We expand the Green function in similar fashion:

1 = * ;
G(x, x’) = 53 S I dk e?”“?~®) cos[k(z — z')]gn(k, p, p') (3.140)

TT mon

Then substitution into (3.138) leads to an equation for the radial Green function

Em(k, p, p'):

ld AL mn m- Aa— (> “Sm - G + em = —— 6(p — p’) (3.141)
pdp\ dp p p

For p # p’ this is just equation (3.98) for the modified Bessel functions, [,,(kp)
and K,,(kp). Suppose that w,(kp) is some linear combination ofJ,, and K,,, which
satisfies the correct boundary conditions for p < p’, and that (kp) is a linearly

independent combination that satisfies the proper boundary conditions for

p > p'. Then the symmetry of the Green function in p and p’ requiresthat

Bmlk, p, p') = Wlkp.)Wo(kp.) (3.142)

The normalization of the product ys,is determinedby the discontinuity in slope

implied by the delta function in (3.141):

  

d d 4Bm) _ S8m) = _t (3.143)
dp |, dp |_ p

where|.. means evaluated at p = p’ + e. From (3.142) it is evident that

dL n dL n
ee — <n = Ks — dot) = kWh, we] (3.144)
dp\, dp\_  
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where primes mean differentiation with respect to the argument, and W[y,, |

is the Wronskian of y, and ws. Equation (3.141) is of the Sturm—Liouville type

= pa ®] + giay = 0 (3.145)
and it is well known that the Wronskianof two linearly independentsolutionsof
such an equation is proportional to [1/p(x)]. Hence the possibility of satisfying
(3.143) for all values of p’ is assured. Clearly we must demandthat the normal-
ization of the product yi. be such that the Wronskian hasthe value

AaWhale), #oe)] = -—2 (3.146)

If there are no boundary surfaces, g,,(k, p, p’) must be finite at p = O and

vanish at p — ©. Consequently y(kp) = AlL,,(kp) and w2(kp) = K,,(kp). The
constant A is to be determined from the Wronskian condition (3.146). Since the
Wronskianis proportional to (1/x) for all values of x, it does not matter where

weevaluate it. Using the limiting forms (3.102) and (3.103) for small x [or (3.104)
for large x], we find

WLn(x), Kun(x)] = -- (3.147)

so that A = 47. The expansion of 1/|x — x'| therefore becomes:

 ! —= dk e”™F~) coslk(z — z')\Un(kp)Km(kp.) (3.148)
Ix — x'| T om

This can also be written entirely in terms of real functionsas:

1
[x — x’|

_ 4 | dk cos[k(z — z')] (3.149)

x {tk.)Kotke.) +r y cos[m(o 7 b MnikeKuko-)|
m=1

A numberof useful mathematical results can be obtained from this expan-

sion. If we let x' — 0, only the m = 0 term survives, and we obtain the integral
representation:

1
+

If we replace p* in (3.150) by R* = p* + p'* — 2pp’ cos(¢@ — ¢'), then we have
on the left-hand side the inverse distance |x — x'|~' with z’ = 0, ie., just (3.149)
with z’ = 0. Then comparison of the right-hand sides of (3.149) and (3.150)
(which must hold for all values of z) leads to the identification:

Ko(kVp* + p— 2pp' cos(d — $')) =

In(kp.)Ko(kp.) + 2 > cos[m($ — 6')Uin(kp.)Km(kp-)

2 a]

= — I cos kz Ko(kp) dk (3.150)
T

 

(3.151)
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In this last result we can take the limit k — 0 and obtain an expansion for the

Green function for (two-dimensional) polar coordinates:

 n( 5 5 I =
p- + p’* — 2pp’ cos(d — ¢$')

2n( + 2 >, + (2) cos[m(¢ — ¢')]
> Ps

This representation can be verified by a systematic construction of the two-

dimensional Green function for the Poisson equation alongthe lines leading to

(3.148). See Problem 2.17.

(3.152)

3.12 Eigenfunction Expansionsfor Green Functions

Another technique for obtaining expansions of Green functions is the use of

eigenfunctions for some related problem. This approachis intimately connected

with the methods of Sections 3.9 and 3.11.
To specify what we mean by eigenfunctions, we consider an elliptic differ-

ential equation of the form

V7u(x) + [f(x) + A]W(x) = 0 (3.153)

If the solutions W(x) are required to satisfy homogeneous boundary conditions
on the surface S of the volumeof interest V, then (3.153) will not in general have
well-behaved(e.g., finite and continuous) solutions, except for certain values of

A. These values of A, denoted by 4,,, are called eigenvalues (or characteristic val-
ues) and the solutions w(x) are called eigenfunctions.* The eigenvalue differ-

ential equation is written:

Vn(x) + [f(X) + An]on(x) = 0 (3.154)
By methodssimilar to those used to prove the orthogonality of the Legendre or
Bessel functions, it can be shownthat the eigenfunctions are orthogonal:

| Vin(X)Yn(X) 2°x = Sinn (3.155)

where the eigenfunctions are assumed normalized. The spectrum of eigenvalues

A, may be a discrete set, or a continuum, or both. It will be assumed that the

totality of eigenfunctions forms a completeset.
Suppose now that we wish to find the Green function for the equation:

V2G(x, x’) + [f(x) + A]G(x, x') = —478(x — x’) (3.156)

where A is not equal to one of the eigenvaluesA,, of (3.154). Furthermore, suppose
that the Green function is to have the same boundary conditions as the eigen-

functions of (3.154). Then the Green function can be expandedin seriesof the
eigenfunctions of the form:

G(x, &') = 2) an(&'n(x) (3.157)
rn

*The reader familiar with wave mechanics will recognize (3.153) as equivalent to the Schrdédinger
equation for a particle in a potential.
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Substitution into the differential equation for the Green function leads to the
result:

SS Am(X'MA — Am)Un(X) = —4778(x — x’) (3.158)

If we multiply both sides by W(x) and integrate over the volumeV,the ortho-
gonality condition (3.155) reduces the left-hand side to one term, and wefind:

Vinlx’)') = 4a —— 3.159ay(X!) Ae (3.159)

Consequently the eigenfunction expansion of the Green functionis:

G(x,x')=47 3 eeewe (3.160)

For a continuous spectrum the sum is replaced by an integral.
Specializing the foregoing considerations to the Poisson equation, we place

f(x) = 0 and A = 0 in (3.156). As a first, essentially trivial, illustration welet
(3.154) be the wave equation overall space:

(V? + k*)u,(x) = 0 (3.161)

with the continuum of eigenvalues, k*, and the eigenfunctions:

1 ik-x
W(x) = (22)? € (3.162)

These eigenfunctions have delta function normalization:

| udCun) dx = 5k ~ k’) (3.163)
Then, according to (3.160), the infinite space Green function has the expansion:

  
- elk: (x—x’)

=>|ae (3.164)

This is just the three-dimensional Fourier integral representation of 1/|x — x’|.
As a second example, consider the Green function for a Dirichlet problem

inside a rectangular box defined by the six planes, x = 0, y = 0, z = 0, x =a,

y = b,z =c. The expansionis to be made in termsof eigenfunctions of the wave

equation:

(V? + Kinn)Wimn(% Y, Z) = 0 (3.165)

where the eigenfunctions which vanish onall the boundary surfaces are

_ 8 lax\ . [may\ . [nz
Wimn(X, y, Z) = he sinnf 7 in( b ) sin( -

and (3.166)

[?? m2 2

kion = “(5 + — +

o
N
O

a
5
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The expansion of the Green function is therefore:

 

  

 

32G ry
3.167(x, x") —— (3.167)

_ [lax\ . [lax'\ . [may\ . [miay'\ . (naz\ . (nirz'
>»  sint —— sin sin{| ——— sin{ ———— sin| ——] sin

a a b b Cc Cc
x

Lmn=1 l* m daatpta

To relate expansion (3.167) to the type of expansions obtained in Sections
3.9 and 3.11, namely, (3.125) for spherical coordinates and (3.148) for cylindrical
coordinates, we write down the analogous expansion for the rectangular box.If

the x and y coordinates are treated in the mannerof (0, ¢@) or (@,z) in those
cases, while the z coordinate is singled out for special treatment, we obtain the
Green function:

G(x, x’) = lor s sin mx sin im sin may sin many
ab ima a a b b (3.168)

Y sinh(K,,,zZ—) sinh[K;,,(c — z,)]

Kim sinh(K;,C)

where K,,, = a(I*/a* + m?/b’)"”. If (3.167) and (3.168) are to be equal, it must
be that the sum over 7 in (3.167) is just the Fourier series representation on the
interval (0, c) of the one-dimensional Green function in z in (3.168):

. (nr
sin

Cc _ (nTrz
5 Sino () s na) (3.169)

 

 

 

sinh(KjZ<) sinh|Kpn(c _ z))

Kim sinh(K;j,C)
  

a
n
e

x

n=1

C

The verification that (3.169) is the correct Fourier representation is left as an
exercise for the reader.

Further illustrations of this technique will be found in the problemsat the
end of the chapter.

3.13 Mixed Boundary Conditions; Conducting Piane
with a Circular Hole

The potential problemsdiscussed so far in this chapter have beenof the orthodox

kind in which the boundary conditions are of one type (usually Dirichlet) over
the whole boundary surface. In the uniquenessproof for solutions of the Laplace

or Poisson equation (Section 1.9) it was pointed out, however, that mixed bound-
ary conditions, where the potential is specified over part of the boundaryandits

normal derivative is specified over the remainder, also lead to well-defined,
unique boundary-value problems. Textbooks tend to mention the possibility of
mixed boundary conditions when making the uniqueness proof and to ignore

such problems in subsequentdiscussion. The reason,as weshall see, is that mixed
boundary conditions are much moredifficult to handle than the normaltype.
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To illustrate the difficulties encountered with mixed boundary conditions, we

consider the problem of an infinitely thin, grounded, conducting plane with a
circular hole of radius a cut in it, and with the electric field far from the hole

being normalto the plane, constant in magnitude, and having different values on

either side of the plane. The geometry is sketched in Fig. 3.13. The plane is at
z = 0; the hole is centered on the origin of coordinates; the nonvanishing as-
ymptotic electric field components are E, = —E, for z > 0 and E, = —E,for
z < 0. The problem may seem contrived, but with Ep = 0 or FE, = 0 it has

application for radiation from small holes in the walls of wave guides, where

“small” is defined as small compared to a wavelength so that electrostatic con-

siderations can apply (see Section 9.5).

Since the electric field 1s specified far from the hole, we write the potential
as

be ie +@9  (z> >| 3.170)

If the hole were not there, ©“would be zero. The top surface of the sheet would
have a uniform surface charge density — €,E, and the bottom surface a charge

density €)E,. The potential ®can thus be thoughtofas resulting from a rear-
rangement of surface charge in the neighborhood of the hole. Since this charge
density is located on the plane z = 0, the potential 6can be represented as

a(x’, y’) dx! dy’

4meg) V(x -—x'P t(y- yf t+ 2?
  

BY(x, y, z) _—
 

This shows that &“is even in z, so that E{? and ES”are even in z, but E°”is
odd. We note that E{? and ES”are the x and y componentsofthetotalelectric
field, but that, because of (3.170), E%is not the total z component. Thus, even
thoughit is oddin z, it does not vanish at z = 0. Rather,it is discontinuousthere.

z

 

 

Figure 3.13
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Since the total z componentof electric field must be continuous across z = 0 in

the hole, we must have (for p < a)

—£o + EY|<" = —F£, + EM|.<0-

Because FE‘is odd in z, this relation determines the normal componentof the
electric field to be

EM|,-0+ = —E|,-0- — 5(Eo _ F,)

provided (x, y) lie inside the opening (0 = p < a). For points on the conducting
surface (a = p < ©), the electric field is not known,but the potential is zero by
hypothesis. From (3.170) this means that ®“= 0 there. Note that in the opening

we do not knowthe potential. We therefore have an electrostatic boundary-value
problem with the following mixed boundary conditions:

 

 

gp™
=-i(EF,-E,) for0Osp<a

OZ z=0t

and (3.171)

O™|_. = 0 forasp<«

Because of the azimuthal symmetry of the geometry, the potential ®” can

be written in terms of cylindrical coordinates [from (3.106)] as

OD(p, z) = | dk A(k)e**\Jo(kp) (3.172)

Before proceeding to see how A(k) is determined by the boundary conditions,
we relate A(k) andits derivatives at k = 0 to the asymptotic behavior of the
potential. For large p or |z| the rapid oscillations of Jo(kp) or the rapid decrease
of e~**! imply that the integral in (3.172) receivesits important contributions from
the region around k = 0. The asymptotic behavior of ®is therefore related to

the behavior of A(k) at small k. We assume that A(k) can be expanded in a
Taylor series around k = 0:

< kid

A) = > Fo)
With this series inserted into G17), ththe potential 6becomes

oo l
d'A

P(p, Z) = » pe0) Bile, 2) (3.173)

where

1 {~ _
Bip, Z) = rie dk k'e Ne\T(kp) (3.174)

The integral (3.174) can evidently be written

B, = ; (- 7i) | dk e*F\Jo(kp)

Using a result from Problem 3.16c, we find that B; is

1 d\( 1

nn (-aa)ers) er)
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The reader should notbe surprisedto find that explicit calculation yields

P,(\cos @
p, = Phleos@) (3.176),

where cos 6 = z/r and r = Vp* + z*. The asymptotic expansion (3.173) is thus
an expansion of the spherical harmonic form (3.33):

dA P,(\cos 6])qd) — —— ~eee
» dk! (0) yitl (3.177)

Asis discussed in the next chapter, this expansion in powers of r~' is called a

multipole expansion. The / = 0 coefficient, A(0), is the total charge (divided by
47ré,). The / = 1 coefficient, dA(0)/dk, is the dipole momentin the z-direction,

and so on. Once the function A(k) is known these quantities that describe the
asymptotic behavior of the potential can be evaluated without explicit construc-

tion of the potential itself.

Weare now ready to discuss the mixed boundary value problem. With the

assumed form (3.172) for ®“”, the boundary conditions (3.171) becomea pairof
integral equationsof the first kind for A(k):

| dk kKA(k)Jo(kp) = $(Ey — E,) for0 <= p<a
0

. (3.178)

| dk A(k)Jo(kp) =0 forasp<©
0

Such pairs of integral equations, with one of the pair holding over one part of
the range of the independentvariable and the other over the other part of the
range, are knownas dual integral equations. The general theory of such integral
equations is complicated and not highly developed.* Just over a hundred years
ago H. Weber solved the closely related problem of the potential of a charged
circular disc by means of certain discontinuous integrals involving Bessel func-

tions. We appeal to a generalization of Weber’s formulas. Consider the dual

integral equations,

I dy yg(y)Jn(yx) x” for0O=x< 1

(3.179)

I dy g(y)J,(yx) 0 forl =x <

Examination of the formula of Sonine and Schafheitlin for the integral of
J,(at)J,(bt)t~* (see Watson, pp. 398 ff, or Magnusetal., p. 99) shows that the
solution for g(y)is

T(n+1), (y) = T(n + 1) Jne8Q)

Varb(in +3)" Pn +3) yy”
In this relation j,,(y) is the spherical Bessel function of order n (see Section 9.6).

 g(y) = (3.180)

*One monograph, I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-
Holland, Amsterdam, and Wiley-Interscience, New York (1966), is devoted to our subject. See also
Tranter (Chapter VIII).
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For our pair of equations (3.178) we have n = 0, x = p/a, y = ka. Therefore
A(k) is

 A(k) =
< Eeji(ka) =

(Eo — Fy) |sinka acoska
- 3.181

The expansion of A(k) for small k takes the form,

Athy =

Ea

Eve pq OY |

This meansthat total charge associated with ©is zero and the leading term in
the asymptotic potential (3.177) is the / = 1 contribution,

Eo ~ E,)a@ ; Iz

po = I2| 3.182
” 3a r (3.182)

falling off with distance as r~* and having aneffective electric dipole moment,

4
p = 7 (E,- Ea (z20) (3.183)

The reversal of the effective dipole moment depending on whether the obser-
vation point is above or below the plane is a consequenceof the fact that a true

dipole potential is odd in z, whereas (3.182) is even. The idea that a small hole
in a plane conducting sheet is equivalent far from the opening to a dipole normal
to the surface is important in discussing the consequences of such openingsin
the walls of waveguidesand cavities. Figure 9.4 depicts the origin of the dipole-

like field as a consequence of the penetration of the field lines through the hole

to terminate on the side with the smaller constant field. The picture is given

quantitative meaning through (3.182) and (3.183).
The added potential ©in the neighborhood of the opening must be cal-

culated from the exact expression,

Eo —E °
O(p, z) =~ae | dk j,(ka)e~*"\J)(Kp) (3.184)

7 0

The integral,* after an integration by parts to replace j; with jp, can be expressed

as a sum of the imaginary parts of the Laplace transforms (for complex p) of
J(kp)/k for v = 0, 1. The result, after some simplifications,is

BY(p, z) = ent a — I tan™( )| (3.185)

1
A= 5 (2? + p’ — a’), R= V)* + 427/a’a

where

Somespecial cases are of interest. The added potential on the axis (p = 0) is

pIN(O, 2) = Kon i a on(i5)|a

*For integrals of the kind encountered here, see Watson (Chapter 13), Gradshteyn and Ryzhik,
Magnus, Oberhettinger, and Soni, or the Bateman Manuscript Project.
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For |z| >> a thus reduces to (3.182) with r = |z|, while for |z| > 0 it is approx-
imated bythefirst term. In the plane of the opening (z = 0) the potential ©“?is

P(p, 0) ==,[P=p?
WT

for 0 = p < a (and zero, of course, for p = a). The tangentialelectric field in the

opening is a radialfield,

(Eo — F4) p

7 Vae—p
The normal componentof electric field in the openingis, from the first equation
in (3.171), just the average of the uniform fields above and belowthe plane,that
iS,

 Fian(p, 0) = (3.186)

EAp, 0) = —3(Eo + Ey) (3.187)

Wenote that the magnitude of the electric field has a square root singularity at
the edge of the opening, in agreement with the considerations of Section 2.11.
The surface-charge densities on the upper and lowersides of the conducting plane
in the neighborhood of the hole can be evaluated in a straightforward manner.
The explicit calculation is left to the problems.

Equipotential contours near the circular hole for the full potential (3.170)
are shown in Fig. 3.14 for the situation where E, = 0. At distances more than

2.0 
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Figure 3.14 Equipotential contours neara circular hole in a conducting plane with a
normal electric field Ep far from the hole on one side and nofield asymptotically on the
other (£, = 0). The numbersare the values of the potential ® in units of aEp. The
distribution is rotationally symmetric about the vertical dashed line through the center
of the hole.
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two or three times the radius away from the hole, its presence is hardly
discernible.

The classic problem of a charged conducting disc is discussed in detail by
Sneddon (op. cit.). The mixed boundary conditions for the disc or hole can be
avoided by separating the Laplace equation in elliptic coordinates. The disc (or

hole) is then taken to be the limiting form of an oblate spheroidal surface. For
this approach, see, for example, Smythe (pp. 124, 171)or Jeans (p. 244).

References and Suggested Reading

The subjects of the special functions of mathematical physics, the solution of ordinary
differential equations, hypergeometric functions, and Sturm—Liouville theory are covered
in many books. For the reader who doesnot already have his favorite, some of the pos-
sibilities are

Arfken

Dennery and Kryzwicki
Morse and Feshbach
Whittaker and Watson

A more elementary treatment, with well-chosen examples and problems, can be found in
Hildebrand, Chapters 4, 5, and 8

A somewhatold-fashioned source of the theory and practice of Legendre polynomials

and spherical harmonics, with many examples and problems,is
Byerly

For purely mathematical properties of spherical functions one of the most useful one-
volume references is

Magnus, Oberhettinger, and Soni
For more detailed mathematical properties, see

Watson, for Bessel functions

Bateman Manuscript Project books, for all types of special functions

Electrostatic problemsin cylindrical, spherical, and other coordinates are discussed
extensively in

Durand, Chapter XI
Jeans, Chapter VIII
Smythe, Chapter V
Stratton, Chapter HI

Problems

3.1 Two concentric spheres haveradii a, b (b > a) and each is divided into two hemi-
spheres by the same horizontal plane. The upper hemisphere of the inner sphere
and the lower hemisphere of the outer sphere are maintained at potential V. The
other hemispheresare at zero potential

Determine the potential in the region a = r = b as series in Legendre poly-
nomials. Include terms at least up to / = 4. Check your solution against known
results in the limiting cases b > ©, anda — 0.

3.2 A spherical surface of radius R has charge uniformly distributed over its surface
with a density Q/47R?’, except for a spherical cap at the north pole, defined by the
cone 6= a.
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3.3

3.4

3.5

3.6

(a) Show that the potential inside the spherical surface can bepresse as

Own 1
P = Bare, 2 741 [P:1(cos a) — P,_,(cos a)] =>a— P(cos PD)  

where,for / = 0, P;_,(cos a) = —1. Whatis the potential outside?

(b) Find the magnitude and the direction of the electric field at the origin.

(c) Discuss the limiting forms of the potential (part a) and electric field (part b)
as the spherical cap becomes(1) very small, and (2) so large that the area with
charge on it becomesa very small cap at the south pole.

A thin, flat, conducting, circular disc of radius R is located in the x-y plane with its

center at the origin, and is maintainedat a fixed potential V. With the information
that the charge density on a disc at fixed potential is proportional to (R* — p*)~*”,
where p is the distance out from the center of the disc,

(a) show that for r > R the potentialis

 

(b) find the potential for r < R.

(c) What is the capacitance of the disc?

The surface of a hollow conducting sphere of inner radius a is divided into an even
number of equal segments by a set of planes; their common line of intersection is
the z axis and they are distributed uniformly in the angle @. (The segments arelike
the skin on wedges of an apple, or the earth’s surface between successive meridians
of longitude.) The segments are keptat fixed potentials + V, alternately.

(a) Set up a series representation for the potential inside the sphere for the gen-
eral case of 2n segments, and carry the calculation of the coefficients in the
series far enough to determine exactly which coefficients are different from
zero. For the nonvanishing terms, exhibit the coefficients as an integral over
cos 6.

(b) For the special case of n = 1 (two hemispheres) determine explicitly the po-
tential up to and includingall terms with / = 3. By a coordinate transformation
verify that this reducesto result (3.36) of Section 3.3.

A hollow sphere of inner radius a has the potential specified on its surface to be
® = V(0, @). Prove the equivalence of the two forms of solution for the potential
inside the sphere:

(a) dx) = ae r) | V(0'", o') 40!

(r? + a? — 2ar cos y)*”
 

where cos y = cos 6 cos 6’ + sin 6 sin 6’ cos(¢ — ¢’).

, dAAn(~ Yim(9, $)

where A,,, = f dQ’ Y7,,(0', 6')V(6', d’).

Two point charges q and ~q are located on the z axis at z = +a and z = —a,
respectively.

t
M
:

(b) (x) =

(a) Find the electrostatic potential as an expansion in spherical harmonics and
powers of r for bothr > a andr <a.



3.7

3.8

(b)

(c)
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Keeping the product ga = p/2 constant, take the limit of a — 0 andfind the
potential for r # 0. This is by definition a dipole along the z axis andits
potential.

Suppose now that the dipole of part b is surrounded by a groundedspherical
shell of radius b concentric with the origin. By linear superposition find the
potential everywhereinside the shell.

Three point charges (q, —2q, q) are located in a straight line with separation a and
with the middle charge (—2q) at the origin of a grounded conducting sphericalshell
of radius b, as indicated in the sketch.

(a)

(b)

  Problem 3.7

Write down the potential of the three charges in the absence of the grounded
sphere. Find the limiting form of the potential as a — 0, but the product
ga’ = QO remainsfinite. Write this latter answer in spherical coordinates.

The presence of the groundedsphere ofradiusb alters the potential for r < b.
The added potential can be viewed as caused by the surface-charge density
induced on the inner surface at r = b or by image charges located at r > b.

Use linear superposition to satisfy the boundary conditions and find the po-
tential everywhere inside the sphere for r < a and r > a. Showthat in the

limit a > QO,

 26706) > 25 (1-5)Pulcos

There is a puzzling aspect of the solution (3.136) for the potential inside a grounded
sphere with a uniformly charged wire along a diameter. Very close to the wire (1.e.,
for p = r sin @ << b), the potential should be that of a uniformly charged wire,
namely, ® = (Q/47re,b) In(b/p) + ®p. The solution (3.136) does not explicitly have

this behavior.

(a) Show by use of the Legendre differential equation (3.10) and someintegration
by parts, that In(cosec 6) has the appropriate expansion in spherical harmonics
to permit the solution (3.136) to be written in the alternative form,

. 2j
QO 2b . 44+4+1 r®(x) = l -1-y—/= (7) Py ccoso(%) Freb "> sin6 2 ape 1 Np) P2ihcos

J
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3.9

3.10

3.11

in which the expected behavior near the wire is manifest. Give an interpre-
tation of the constant term ®) = —Q/47re9b. Note that in this form, for any

rib < 1 the Legendre polynomialseries is rapidly convergentat all angles.

(b) Show by use of the expansion (3.38) that

1 1 1 <:- + =2 P,(cos 6
2 (— 6/2 cos ia) 2 21(cos 8)
 

and that therefore the charge density on the inner surface of the sphere, Eq.

(3.137), can be expressedalternatively as

Q fi/ 1 1 =~ 40) = — + ~ —— P,,(cos 6(8) Toe {3 (— 6/2 cos 7} 2 ae 1 2's 9)

The (integrable) singular behavior at 6 = 0 and 6 = wis now exhibited ex-
plicitly. The series provides corrections in In(1/6) as 0 = 0.

   

A hollow right circular cylinder of radius.b has its axis coincident with the z axis
and its ends at z = 0 and z = L. The potential on the end facesis zero, while the
potential on the cylindrical surface is given as V(¢, z). Using the appropriate sep-
aration of variables in cylindrical coordinates, find a series solution for the potential

anywhereinside the cylinder.

For the cylinder in Problem 3.9 the cylindrical surface is made of two equalhalf-
cylinders, one at potential V and the other at potential —V, so that

V for —7/2 < 6 < w/2
V(, =
(® 2) { for i2 << 3q2

(a) Find the potential inside the cylinder.

(b) Assuming L >> b, consider the potential at z = L/2 as a function of p and ¢
and compare it with two-dimensional Problem 2.13.

A modified Bessel—Fourier series on the interval 0 <= p < a for an arbitrary function
f(p) can be based on the “homogeneous”’ boundary conditions:

at(K'p) _ 0
dp

Atp=0,  p/J,(kp)

d r
At p = 4, ap In[V,(kp)| = — a (A real)

The first condition restricts v. The second condition yields eigenvalues k = y,,,/a,
wherey,,, is the nth positive root of x d/,(x)/dx + AJ,(x) = 0.

(a) Show that the Bessel functions of different eigenvalues are orthogonal in the

usual way.

(b) Find the normalization integral and show that an arbitrary function f(p) can
be expandedonthe interval in the modified Bessel—Fourierseries

f(p) = > And222)

with the coefficients A,, given by

ip 24-1 24

A, = 7 (1 -=) + (Fb) | I f(p) p1,(2) dp
vn



3.12

3.13

3.14

3.15
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The dependence on A is implicit in this form, but the square bracket has al-
ternative forms:

(1-2).+ (LE) | = (1 +25")
Yun Yun Yun

_ Yon 7 y dS(Yin) °

- ( eR ) dyyy |
— [J2(Vin) a J,in)Jo41(V in) |

For A > © werecoverthe result of (3.96) and (3.97). The choice A = 0 is
another simple alternative.

 

Aninfinite, thin, plane sheet of conducting material has a circular hole of radius a
cut in it. A thin, flat disc of the same material and slightly smaller radius lies in the
plane, filling the hole, but separated from the sheet by a very narrow insulating
ring. The disc is maintained at a fixed potential V, while the infinite sheet is kept
at zero potential.

(a) Using appropriate cylindrical coordinates, find an integral expression involv-
ing Bessel functions for the potential at any point above the plane.

(b) Show that the potential a perpendicular distance z above the center of the disc
1s

_ ee
Polz) = v(1 as]

(c) Show that the potential a perpendicular distance z above the edge of the disc
1s

®,(z) = ; 1 - <2 Kw)

where k = 2a/(z* + 4a’)"”, and K(k) is the complete elliptic integral of the
first kind.

Solve for the potential in Problem 3.1, using the appropriate Green function ob-

tained in the text, and verify that the answer obtained in this way agrees with the
direct solution from the differential equation.

A line charge of length 2d with a total charge Q hasa linear charge density varying
as (d* — z7), where z is the distance from the midpoint. A grounded, conducting,
spherical shell of inner radius b > d is centered at the midpointof the line charge.

(a) Find the potential everywhere inside the spherical shell as an expansion in
Legendre polynomials.

(b) Calculate the surface-charge density induced ontheshell.

(c) Discuss your answers to parts a and b in the limit thatd < b.

Consider the following “spherical cow’”’ model of a battery connected to an external
circuit. A sphere of radius a and conductivity 0 is embedded in a uniform medium
of conductivity o’. Inside the sphere there is a uniform (chemical) force in the z
direction acting on the charge carriers; its strength as an effective electric field
entering Ohm’s law is F. In the steady state, electric fields exist inside and outside
the sphere and surface charge resides on its surface.

(a) Find the electric field (in addition to F) and current density everywhere in
space. Determine the surface-charge density and showthat the electric dipole
momentof the sphere is p = 47e€,0a°F/(o + 20°).



140 Chapter 3 Boundary-Value Problemsin Electrostatics: II—SI

3.16

3.17

(b) Showthat the total current flowing out through the upper hemisphereof the
sphere1s

2 /

p=. ne
o + 20

Calculate the total power dissipation outside the sphere. Using the lumped
circuit relations, P = I* R. = IV., find the effective external resistance R, and

voltage V..

(c) Find the powerdissipated within the sphere and deduce the effective internal
resistance R; and voltage Vj.

(d) Define the total voltage through the relation, V, = (R. + R;)J and show that
V, = 4aF/3, as well as V. + V; = V;,. Show that JV, is the power supplied by
the ‘‘chemical’’ force.

Reference: W. M. Saslow, Am. J. Phys. 62, 495-501 (1994).

(a) Starting from the Bessel differential equation and appropriate limiting pro-

cedures, verify the generalization of (3.108),

1 CO

+ ak - k') = | phkp.(k’p) dp

or equivalently that

1 CO

= 8p ~ p') = | kr.ckp\r.(ke") ak

where Re(v) > ~1.

(b) Obtain the following expansion:

1 fF gw
= 2 J, ae erP97,Kp)Im(kp' ye“>=

Ix — x" | - m= — oc

 

(c) By appropriate limiting procedures prove the following expansions:

——> = 2Jo(kp) dk
Vp + 2? 0 ° of p)

>Inkp)In(kp’)
nd

oo

eikpcos op — S ie’?(Kp)

i= — 0

 
J(kVp* + p’* — 2pp' cos $)

(d) From the last result obtain an integral representation of the Bessel function:

1 27 _

Jin(X) =_ =a | eixcosh —imd dd

0

Compare the standard integral representations.

The Dirichlet Green function for the unbounded space between the planes at

z = 0 and z = L allowsdiscussion of a point charge or a distribution of charge
between parallel conducting planesheld at zero potential.

(a) Using cylindrical coordinates show that one form of the Green functionis

G(x, x’)
im(o—o') «2. TZ) .. n7z' ni ni

; e sin(272)sin( T Lyn 7 pe |K,, 7 ps 
oO

n=1m ;
M
s

m
1
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(b) Show that an alternative form of the Green function is

‘\ — ° im(d—¢') ! sinh(kz_) sinh[A(L 7 z.)|G(x, x') =2 > I dk e Jin(Kp)Im(Kp’) sinh(KL) 

3.18 The configuration of Problem 3.12 is modified by placing a conducting plane held
at zero potential parallel to and a distance L away from the plane with the disc
insert in it. For definiteness put the grounded plane at z = 0 andthe other plane
with the center of the disc on the z axis at z = L.

(a) Show that the potential between the planes can be written in cylindrical co-
ordinates (z, p, &) as

sinh(Az/a)
®(z, p) = V I dd IsAMo(AbIa)La)

(b) Showthat in the limit a > © with z, p, L fixed the solution of part a reduces

to the expected result. Viewing your result as the lowest order answer in an
expansion in powers of a~', consider the question of corrections to the lowest
order expressionif a is Jarge comparedto p and L,but not infinite. Are there
difficulties? Can you obtain an explicit estimate of the corrections?

(c) Consider the limit of L — © with (L — z), a and p fixed and show that the
results of Problem 3.12 are recovered. What about corrections for L >> a, but

not L — ©?

3.19 Consider a point charge gq between two infinite parallel conducting planes held at
zero potential. Let the planes be located at z = 0 and z = L in a cylindrical coor-
dinate system, with the charge on the z axis at z = zo, 0 < z < L. Use Green’s

reciprocation theorem of Problem 1.12 with problem 3.18 as the comparison
problem.

(a) Show that the amount of induced charge on the plate at z = L inside a circle

of radius a whose centeris on the z axis is given by

Q;(a) = “F P(Zo, 0)

where ®(Z, 0) is the potential of Problem 3.18 evaluated at z = zo, p = 0.
Find the total charge induced on the upper plate. Compare with the solution
(in method and answer) of Problem 1.13.

(b) Show that the induced charge density on the upper plate can be written as

q [a sinh(kz,)4+ kdo Jo Sinh(kL) 1%?)o(p) = —

This integral can be expressed (see, e.g., Gradshteyn and Ryzhik, p. 728, for-
mula 6.666) as an infinite series involving the modified Bessel functions
K,(n7p/L), showing that at large radial distances the induced charge density
falls off as (p)~ "ee7°".

(c) Show that the charge density at p = 0 can be written as the series

 o0)=-—-, YS [m- awL)2 - (nt wl)2
271 n=6-odd

3.20 (a) From the results of Problem 3.17 or from first principles show that the poten-

tial at a point charge g between two infinite parallel conducting planes held
at zero potential can be written as

Q wa. [ntz\ . [niz nip®(z, = ame) 7~)x,{ =P(z, p) 7e,L x sin( 7 sin( Z ( 7 
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where the planes are at z = 0 and z = L and the chargeis on the z axis at the
point z = Zp.

(b) Calculate the induced surface-charge densities op(p) and o,(p) on the lower
and upperplates. The result for o;(p) is

o1(p) = 75 > (-1)"n sin(222)(222)

Discuss the connection of this expression with that of Problem 3.19b and 3.19c.

 

(c) From the answerin part b, calculate the total charge Q, on theplate at z = L.
By summing the Fourier series or by other means of comparison, check your
answer against the known expression of Problem 1.13 [C. Y. Fong and C.
Kittel, Am. J. Phys. 35, 1091 (1967).]

3.21 (a) By using the Green function of Problem 3.17b in the limit L — %, show that

3.22

the capacitance of a flat, thin, circular, conducting disc of radius R located

parallel to, and a distance d above, a grounded conducting planeis given by

2

I pJo(kp)a(p) in|

I, po(p) in|

where o(p) is the charge density on the disc.

 
 ATE _ - oka

co |, dk(1 e “““)

(b) Use the expression in part a as a variational or stationary principle for C7
with the approximation that o(p) = constant. Show explicitly that you obtain
the correct limiting value for C~' as d << R. Determine an approximate value
of C~* for an isolated disc (d >> R) and evaluate the ratio of it to the exact
result, 47é9/C = (7/2)R™.

(c) Asa better trial form for o(p) consider a linear combination of a constant and
(R? — p’)-'”, the latter being the correct form for an isolated disc.

For part b the following integrals may be of use:

{ iit) 4 { dt P(t) 1
dt} | =—, aa ==

0 t 377 0 t 2

The geometry of a two-dimensional potential problem is defined in polar coordi-
nates by the surfaces ¢ = 0, ¢ = B, and p = a,as indicated in the sketch.

Ss
a

Problem 3.22 

Using separation of variables in polar coordinates, show that the Green function
can be written as

=“ 4 1 amb\ . (mrd\ . (mid!
G(p, Pp; p's p') — >» _ pro m7/B 7 | in( *) sin( ne

m=1 M Ps a B

 

Problem 2.25 may be of use.
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3.23 A point charge q is located at the point (p’, ¢’, z’) inside a grounded cylindrical
box defined by the surfaces z = 0, z = L, p = a. Show that the potential inside the
box can be expressed in the following alternative forms:

eim(o—o')p [AmnP | XmnP
“\ a a

  

 

 

  

P(x, x') = » 2
TTEQA m=—-a n=1 Xmnl

Xmndon+1(Xmn) sinh ,

x“2 sinh] (L - |
a a

r
(x, x’) = 7 SS ei($-9 sin ae sinf74

mane nal Lt L

 [ulsdte) -t2}.e8)
veo§ gg irnidee) ateeee

m=—o k=1 n=1 Xmn ° ka 5

(=) +(F)Joven
Discuss the relation of the last expansion (with its extra summation) to the other

two.

 

  

3.24 The walls of the conducting cylindrical box of Problem 3.23 are all at zero potential,
except for a disc in the upper end, defined by p = b < a, at potential V.

(a) Using the various forms of the Green function obtained in Problem 3.23, find
three expansions for the potential inside the cylinder.

(b) For each series, calculate numerically the ratio of the potential at p = 0,

z = L/2 to the potential of the disc, assuming b = L/4 = a/2. Try to obtain at
least two-significant-figure accuracy. Is one series less rapidly convergent than

the others? Why?
(Abramowitz and Stegun have tables; Mathematica has Bessel functions, as

does the software of Press et al.)

3.25 Consider the surface-charge densities for the problem of Section 3.13 of the con-
ducting plane with a circular hole of radiusa.

(a) Show that the surface-charge densities on the top and bottom of the plane for

p = aare

o+(p) = —€£o + Ao(p)

o_(p) = &E, + Ao(p)

where

 

— (Eo = Fi) a fa

sotp) = -« |ota— sio(8)|
How does Ao(p) behave for large p? Is Ao(p), defined in terms of ®, zero

for p < a? Explain.
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(b) Show by direct integration that

R R
lim al dp p(ao, + a_) + 2mey | dp p(Eo — e) | = 0
Ro

Interpret.

3.26 Consider the Green function appropriate for Neumann boundary conditionsfor the

3.27

volume V between the concentric spherical surfaces defined by r = a andr = b,
a <b. To be able to use (1.46) for the potential, impose the simple constraint (1.45).
Use an expansion in spherical harmonics of the form,

co

G(x, x') = > gir, r')Pi(cos 7)
/=0

where g(r, r') = rLirS! + fir, r’).

(a) Showthat for / > 0, the radial Green function has the symmetric form

r!

girs!) = 54
1 I+1, I (ab)*"*" r! r’!

(p21 _ q2!*1) ] (rr ’ + l+1 (rr + at" pled + ytd

(b) Show that for / = 0

  

1 ae 1
t -_ — _— — +

207, r ) re. (- 4 =) yr! ft)

wheref(r) is arbitrary. Show explicitly in (1.46) that answers for the potential
@(x) are independentoff(r).
[The arbitrariness in the Neumann Green function can be removed by sym-
metrizing gj in r and r’ with a suitable choice off(r).]

Apply the Neumann Green function of Problem 3.26 to the situation in which the
normalelectric field is E, = —E, cos 6 at the outer surface (r = b) andis E, = 0

on the inner surface (r = a).

(a) Show that the electrostatic potential inside the volume is

r cos 0 a?

where p = a/b. Find the componentsof the electric field,

cos 6 a? sin 6 a
E,(r, 0) = —Ep— ( — “), E,(r, 6) = Eo 7 — D ( T =)

  

(b) Calculate the Cartesian or cylindrical components of the field, E, and E,, and

make a sketch or computerplot of the lines of electric force for a typical case
of p = 0.5.



CHAPTER 4

Multipoles, Electrostatics of
Macroscopic Media, Dielectrics

This chapteris first concerned with the potential due to localized charge distri-
butions and its expansion in multipoles. The development is made in terms of
spherical harmonics, but contact is established with the rectangular components
for the first few multipoles. The energy of a multipole in an externalfield is then
discussed. An elementary derivation of the macroscopic equations of electro-
statics is sketched, but a careful treatment is deferred to Chapter 6. Dielectrics
and the appropriate boundary conditions are then described, and sometypical
boundary-value problems with dielectrics are solved. Simple classical models are

used to illustrate the main features of atomic polarizability and susceptibility.
Finally the question of electrostatic energy and forces in the presenceofdielec-
trics is discussed.

4.1 Multipole Expansion

A localized distribution of charge is described by the charge density p(x’), which
is nonvanishing only inside a sphere of radius R around someorigin.* The po-

tential outside the sphere can be written as an expansion in spherical harmonics:

1 Qu 49 Yin(9, )
ATrey <0 > y+. tm pit

wherethe particular choice of constant coefficients is made for later convenience.
Equation (4.1) is called a multipole expansion; the / = O term is called the mon-
opole term, / = 1 are the dipole terms, etc. The reason for these names becomes

clear below. The problem to besolved is the determination of the constants q,,,

in terms of the properties of the charge density p(x’). The solutionis very easily
obtained from the integral (1.17) for the potential:

B(x) = 1 ee d3x!

Ame |x — x’|

 P(x) = (4.1)

 

with expansion (3.70) for 1/|x — x’|. Since we are interested at the momentin
the potential outside the charge distribution, r. = r’ and r, = r. Then wefind:

1 1 Yim(8,
D(x) = & > 741 | YimlO', b')r''p(x') x Yin (4.2) 

r

*The sphere of radius R is an arbitrary conceptual device employed merely to divide space into
regions with and without charge. If the charge density falls off with distance faster than any power,

the expansion in multipoles is valid at large enough distances.
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Consequently the coefficients in (4.1) are:

din = | Vin(O, br"p(x") x’ (4.3)
These coefficients are called multipole moments. To see the physical interpreta-

tion of them we exhibit the first few explicitly in terms of Cartesian coordinates:

1
1 , 3y.F

doo = = | ote’) dx ~ \/4q 4 (4.4)

qu = ~jeJ (x' — iy')p(x') d°x' = -ee 0. — Ipy)
(4.5)

10 Je [eee #x' = [ep.

an =} Ee J @ye) ax = + ie (Ox — 27012 ~ On)

an = le J c@' — iyoax’ = ie (Ors iO) $ (46)

an = Ie J Ge? = 7%p(x) ae’ =} ie Os, }
Only the moments with m = 0 havebeengiven,since (3.54) showsthat for a real
charge density the moments with m < 0 are related through

dim — (—1)"qim (4.7)

In equations (4.4)—(4.6), g is the total charge, or monopole moment, p is the
electric dipole moment:

 

p= | x'pcx’) d°x' (4.8)

and Q,, is the traceless quadrupole momenttensor:

QO, = | (3xjx' — r'*6,)p(x') d°x' (4.9)

Wesee that the /th multipole coefficients [(2/ + 1) in number] are linear com-
binations of the corresponding multipoles expressed in rectangular coordinates.

The expansion of ®(x) in rectangular coordinates

1 jq -x 1 XX;
oo) = [t+ Be +52 Oy bo (4.10)

1]

 

r

by direct Taylor series expansion of 1/|x — x’| will be left as an exercise for the
reader. It becomesincreasingly cumbersome to continue the expansionin (4.10)
beyond the quadrupole terms.

The electric field components for a given multipole can be expressed most
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easily in terms of spherical coordinates. The negative gradient of a term in (4.1)
with definite /, m has spherical components:

+1) Yl, 8)
21 + Deg "rl?

1 1 oo

1 1 im
Ey — Yim(Ps d)(2D + Wey 2" r' sin 6

dY,,/00 and Y,,,/sin 6 can be expressed as linear combinationsof other Y,,,,’s, but

the expressions are not particularly illuminating and so will be omitted. The

proper way to describe a vector multipole field is by vector spherical harmonics,
discussed in Chapter9.

For a dipole p along the z axis, the fields in (4.11) reduce to the familiar

form:

 

_ 2p cos é

f Amegr?

Fr, -Psin8 (4.12)
Aqer?

Ey, =0

These dipole fields can be written in vector form by recombining (4.12) or by
directly operating with the gradient on the dipole term in (4.10). The result for
the field at a point x due to a dipole p at the point Xz is:

+n) (4.13)
4TTE) Ix — Xo ?

E(x) =

where n is a unit vector directed from Xp to x.

There are two important remarks to be made. Thefirst concerns the rela-

tionship of the Cartesian multipole momentslike (4.8) to the spherical multipole
moments (4.3). The formerare (/ + 1)(/ + 2)/2 in numberand for / > 1 are more
numerousthan the (2/ + 1) spherical components. There is no contradiction here.
The root of the differences lies in the different rotational transformation prop-
erties of the two types of multipole moments; the Cartesian tensors are reducible,

the spherical, irreducible—see Problem 4.3. Note that for / = 2 we have recog-

nized the difference by defining a traceless Cartesian quadrupole moment(4.9).
The second remarkis that in general the multipole momentcoefficients in

the expansion (4.1) depend on the choice of origin. As a blatant example, con-
sider a point charge e located at Xp = (Y, 90, do). Its potential has a multipole

expansion of the form (4.1) with multipole moments,

dim — eroim(90; do)

These are nonvanishing for all /, m in general. Only the / = 0 multipole

doo = e/V 47 is independentof the location of the point charge. For two point

charges + e and —eat xX, and x,, respectively, the multipole momentsare

dim — e[roYim(90; Po) — ri Vim(O1, ,)|
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Nowthe / = 0 multipole momentof the system vanishes, and the / = 1 moments

are

;3
dio = Aq e(Zo _ Z1)

T

3
qi = — Ign el(Xo — X1) — Yo - yi)]

T

These momentsare independentof the location of the origin, depending only on
the relative position of the two charges, but all higher moments depend on the

location of the origin as well. These simple examplesare special cases of general
theorem (see Problem 4.4). The values of q,,,, for the lowest nonvanishing mul-

tipole momentof any charge distribution are independentof the choice oforigin

of the coordinates, but all higher multipole moments do in general depend on

the location of the origin.

Before leaving the general formulation of multipoles, we consider a result

that is useful in elucidating the basic difference between electric and magnetic
dipoles (see Section 5.6) as well as in other contexts. Consider a localized charge
distribution p(x) that gives rise to an electric field E(x) throughout space. We
wish to calculate the integral of E over the volume of a sphere of radius R. We

begin by examining the problem in general, but then specialize to the two ex-
tremes shownin Fig. 4.1, one in which the sphere containsall of the charge and

the other in which the chargelies external to the sphere. Choosing the origin of

coordinatesat the center of the sphere, we have the volumeintegralofthe electric
field,

| E(x) d°x = -| V® d°x (4.14)
r<R r<R

This can be converted to an integral over the surface of the sphere:

| E(x) d°x = -| R* dQ, ®(x)n (4.15)
r<R r=R

7 << N

f,

(a) (bd)

Figure 4.1 Two configurations of charge density and the spheres within which the
volumeintegral of electric field is to be calculated.
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where n is the outwardly directed normal (n = x/R). Substitution of (1.17) for
the potential leads to

R?

ATE,

n
| d?x' p(x’) |_a (4.16)

IK — x'|
 | E(x) d°x = —

To perform the angular integration wefirst observe that n can be written in terms

of the spherical angles (0, d) as

n =isiné@cos¢@ + j sind@ sing + k cos 6

Evidently the different components of n are linear combinations of Y,,, for

I = 1 only. When (3.38) or (3.70) is inserted into (4.16), orthogonality of the Y,,,,
will eliminate all but the / = 1 term in the series. Thus we have

| dQ. ——_ = = | dO. n cos y (4.16’)
r=R [x — x’| ore

where cos y = cos 6 cos 6’ + sin 6 sin 6’ cos(¢@ — ¢’). The angular integral is
equal to 47n'/3, where n' = r'/r’. Thus the integral (4.16) is

| E(x) d°x = _R | d3x' =n (x’) (4.17)
r<R 3€ rz, P

where (re, r.) = (r’, R) or (R, r’) depending on which of r’ and R is larger.
If the sphere of radius R completely encloses the charge density, as indicated

in Fig. 4.1a, then re = r’ and r. = R in (4.17). The volumeintegralof the electric
field over the sphere then becomes

| E(x) dx = — (4.18)
r<R 3€

wherep is the electric dipole moment(4.8) of the charge distribution with respect
to the center of the sphere. Note that this volumeintegral is independentof the

size of the spherical region of integration providedall the chargeis inside.
If, on the other hand,the situation is as depicted in Fig. 4.1b, with the charge

all exterior to the sphere of interest, r. = R and r, = r’ in (4.17). Then we have

R? | n’
3 —- _ 34.1 ,

|. E(x) d * 3€ d r’ p(x )

From Coulomb’s law (1.5) the integral can be recognized to be the negative of

47re, timestheelectric field at the center of the sphere. Thus the volumeintegral
of E is

| _ E(x) dx = = R°E(0) (4.19)

In other words, the average value of the electric field over a spherical volume

containing no chargeis the value ofthe field at the center of the sphere.

The result (4.18) implies modification of (4.13) for the electric field of a
dipole. To be consistent with (4.18), the dipole field must be written as

1 |3n(p-n)—p 4a
Ix — x,|° 3
 po(x — «)| (4.20)
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The addeddelta function does not contribute to the field away from thesite of
the dipole. Its purpose is to yield the required volumeintegral (4.18), with the
convention that the spherically symmetric (around xy) volumeintegralof the first
term is zero (from angular integration), the singularity at x = x9 causing an
otherwise ambiguousresult. Equation (4.20) and its magnetic dipole counterpart
(5.64), when handled carefully, can be employedas if the dipoles were idealized
point dipoles, the delta function terms carrying the essential information about
the actually finite distributions of charge and current.

4.2 Multipole Expansion of the Energy of a Charge Distribution
in an External Field

If a localized charge distribution described by p(x) is placed in an external
potential O(x), the electrostatic energy of the system is:

W-= | pyocx) d°x (4.21)

If the potential ® is slowly varying over the region where p(x) is nonnegligible,
then it can be expanded in a Taylor series around a ee chosen origin:

D(x) = (0) + x- V0) + =>> 2 XjX (O) ++++ (4.22)
°iSean

Utilizing the definition of the electric field E = —V®, the last two terms can be
rewritten. Then (4.22) becomes:

D(x) = (0) — x- E(0) — =>> 2 X,Xx “(0 4+.

Since V - E = 0 for the externalfield, we can subtract

ar’V - E(0)

from the last term to obtain finally the expansion:

1 OE;
(x) = &(0) — x- E(0) - 5 > (3x;x,; — 776,) 5, O) +++ (4.23)

i J] i

Whenthis is inserted into (4.21) and the definitions of total charge, dipole mo-
ment (4.8), and quadrupole moment(4.9) are employed, the energy takes the
form:

OE,W= GO) —p-EO-FS LAWM+. (4.24)
This expansion showsthe characteristic way in which the various multipoles in-
teract with an external field—the charge with the potential, the dipole with the
electric field, the quadrupole with the field gradient, and so on.

In nuclear physics the quadrupole interactionis of particular interest. Atomic
nuclei can possess electric quadrupole moments, and their magnitudes andsigns
reflect the nature of the forces between neutrons and protons, as well as the
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shapes of the nuclei themselves. The energy levels or states of a nucleus are

described by the quantum numbersof total angular momentum J andits projec-
tion M along thez axis, as well as others, which we will denote by a general index
a. A given nuclear state has associated with it a quantum-mechanical charge

density* pyy.(X), Which depends on the quantum numbers(J, M,a) butis cylin-
drically symmetric about the z axis. Thus the only nonvanishing quadrupole mo-
mentis G29 in (4.6), or Q33 in (4.9).' The quadrupole momentof a nuclearstate
is defined as the value of (1/e) Q33 with the charge density p;,,,(x), wheree is the

protonic charge:

Onin =~ { Be? — PYprmel) 2 (425)
The dimensions of Qj, are consequently (length)*. Unless the circumstances

are exceptional (e.g., nuclei in atoms with completely closed electronic shells),
nuclei are subjected to electric fields that possess field gradients in the neighbor-
hood of the nuclei. Consequently, according to (4.24), the energy of the nuclei
will have a contribution from the quadrupole interaction. Thestates of different
M value for the same J will have different quadrupole moments Q;y,, and so a

degeneracy in M value that may have existed will be removed by the quadrupole
coupling to the ‘‘external’’ (crystal lattice, or molecular) electric field. Detection
of these small energy differences by radiofrequency techniquesallowsthe deter-

mination of the quadrupole momentof the nucleus.*
The interaction energy between two dipoles p, and p, can be obtained di-

rectly from (4.24) by using the dipole field (4.20). Thus, the mutual potential

energy 1s

Pi * Po — 3(n- p(n py) (4.26)
4 Tre, | X} — X> I?

Wir =

where n is a unit vector in the direction (x; — x2) and it is assumed that x, # Xp.

The dipole-dipole interaction is attractive or repulsive, depending on the orien-
tation of the dipoles. For fixed orientation and separation of the dipoles, the
value of the interaction, averaged overthe relative positions of the dipoles, is
zero. If the moments are generally parallel, attraction (repulsion) occurs when
the moments are oriented moreorless parallel (perpendicular)to the line joining
their centers. For antiparallel moments the reverse is true. The extreme values

of the potential energy are equal in magnitude.

4.3 Elementary Treatment ofElectrostatics with Ponderable Media

In Chapters 1, 2, and 3 we considered electrostatic potentials and fields in the
presence of charges and conductors, but no other ponderable media. Wethere-

*See Blatt and Weisskopf (pp. 23 ff.) for an elementary discussion of the quantum aspects of the

problem.

‘Actually Q,,; and Q,, are different from zero, but are not independent of Q33, being given by

O11 = Qo = —37033.

*“The quadrupole momentof a nucleus,” denoted by Q,is defined as the value of Q;,, in thestate

M = J. See Blatt and Weisskopf, loc.cit.
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fore made no distinction between microscopic fields and macroscopicfields, al-
though our treatment of conductors in an idealized fashion with surface charge
densities implied a macroscopic description. Air is sufficiently tenuous that the

neglect of its dielectric properties causes no great error; our results so far are
applicable there. But much of electrostatics concernsitself with chargesandfields
in ponderable media whoserespective electric responses must be taken into ac-
count. In the Introduction we indicated the need for averaging over macroscop-

ically small, but microscopically large, regions to obtain the Maxwell equations
appropriate for macroscopic phenomena. This is done in a careful fashion in
Chapter 6, after the Maxwell equations with time variation have been discussed.
For the present we merely remind the readerof the outlines of the elementary

discussion of polarization in a fashion that glosses over difficult and sometimes
subtle aspects of the averaging procedureandthe introduction of the macroscopic

quantities.
Thefirst observation is that when an averaging is made of the homogeneous

equation, V X Ejjicro = 0, the same equation, namely,

Vx E=0 (4.27)

holds for the averaged, that is, the macroscopic,electric field E. This means that

the electric field is still derivable from a potential ®(x) in electrostatics.
If an electric field is applied to a medium made up of a large numberof

atoms or molecules, the charges bound in each molecule will respond to the

applied field and will execute perturbed motions. The molecular charge density
will be distorted. The multipole moments of each molecule will be different from
what they were in the absenceof the field. In simple substances, whenthereis
no applied field the multipole momentsareall zero, at least when averaged over

many molecules. The dominant molecular multipole with the appliedfields is the
dipole. There is thus produced in the medium anelectric polarization P (dipole
moment per unit volume) given by

P(x) = > Nip.) (4.28)

where p; is the dipole momentof the ith type of molecule in the medium,the
average is taken over a small volumecentered at x and N,is the average number

per unit volumeof the ith type of molecule at the point x. If the molecules have

a net charge e; and, in addition, there is macroscopic excess or free charge, the

charge density at the macroscopic level will be

p(x) = > Nei) + Pexcess (4.29)

Usually the average molecular charge is zero. Then the charge density is the

excess or free charge (suitably averaged).

If we now look at the medium from a macroscopic point of view, we can
build up the potential or field by linear superposition of the contributions from
each macroscopically small volume element AVat the variable point x’. Thus

the charge of AVis p(x’) AV and the dipole momentof AV is P(x’) AV.If there
are no higher macroscopic multipole momentdensities, the potential A®(x, x’)
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caused by the configuration of moments in AV can be seen from (4.10) to be
given without approximation by

A®(x, x’) = — p(x) ay + Pix): (x= x’) Av (4.30)
Amey |x — x’ | Ix — x’?
  

provided x is outside AV. We nowtreat AV as (macroscopically) infinitesimal,
put it equal to d°*x', and integrate over all space to obtain the potential

®(x) = ne | ite]POOp(x’)ot PO) v(—)| (4.31)

The second term is analogous to the dipole layer potential (1.25), but is for a
volume distribution of dipoles. An integration by parts transforms the potential

into

 

B(x) = oe | x’TS [pta') —+ POW’) (4.32)
This is just the customary expression for the potential caused by a chargedistri-
bution (p — V- P). With E = —V9,the first Maxwell equation therefore reads

1
V-E=—I[p-V-P (4.33)

Eo

The presence of the divergence of P in the effective charge density can be un-
derstood qualitatively. If the polarization is nonuniform there can be netin-

crease or decrease of charge within any small volume,as indicated schematically

in Fig. 4.2.

With the definition of the electric displacement D,

D=e6E +P (4.34)

(4.33) becomes the familiar

V-D=p (4.35)

Equations (4.27) and (4.35) are the macroscopic counterparts of (1.13) and (1.14)
of Chapter1.

As discussed in the Introduction, a constitutive relation connecting D and E
is necessary before a solution for the electrostatic potential or fields can be ob-

tained. In the subsequent sections of this chapter we assumethat the response

of the system to an applied field is linear. This excludes ferroelectricity from

discussion, but otherwise is no real restriction provided thefield strengths do not

Figure 4.2 Origin of polarization-charge density.
Because of spatial variation of polarization, more
molecular charge may leave a given small volume
than enters it. Only molecules near the boundary are

shown.
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become extremely large. As a further simplification we suppose that the medium
is isotropic. Then the inducedpolarization P is parallel to E with a coefficient of
proportionality that is independentof direction:

P = €0)y-E (4.36)

The constant y, is called the electric susceptibility of the medium. The displace-

ment D is therefore proportional to E,

D = «€E (4.37)

where

€ = €(1 + X%) (4.38)

is the electric permittivity; €/é) = 1 + x, is called the dielectric constantor relative

electric permittivity.
If the dielectric is not only isotropic, but also uniform, then € is independent

of position. The divergence equations (4.35) can then be written

V-E= ple (4.39)

All problems in that medium are reduced to those of preceding chapters, except
that the electric fields produced by given charges are reduced bya factor €)/e.

The reduction can be understood in terms of a polarization of the atomsthat

producefields in opposition to that of the given charge. One immediate conse-
quenceis that the capacitance of a capacitoris increased bya factor of €/€, if the
empty space betweenthe electrodesisfilled with a dielectric with dielectric con-
stant €/€) (true only to the extent that fringing fields can be neglected).

If the uniform medium doesnotfill all of the space where there areelectric

fields or, more generally, if there are different media juxtaposed, not necessarily
linear in their responses, we must consider the question of boundary conditions
on D and E atthe interfaces between media. These boundary conditions are

derived from the full set of Maxwell equations in Section I.5. The results are that
the normal components of D and the tangential componentsof E oneitherside

of an interface satisfy the boundary conditions, valid for time-varying as well as
static fields,

(D, — D,) +m= | (4.40)

(E> — E,) x nh, = QO

where np, is a unit normalto the surface, directed from region 1 to region 2, and

o is the macroscopic surface-charge density on the boundary surface (not includ-
ing the polarization charge).

4.4 Boundary- Value Problems with Dielectrics

The methodsof earlier chapters for the solution of electrostatic boundary-value
problems can readily be extended to handle the presence of dielectrics. In this
section we treat a few examples of the various techniques applied to dielectric
media.

Toillustrate the method of imagesfor dielectrics we consider a point charge
gq embeddedin a semi-infinite dielectric e€, a distance d away from a planeinter-
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€9

 

Figure 4.3

face that separates the first medium from another semi-infinite dielectric e,. The
surface may be taken as the plane z = 0, as shownin Fig. 4.3. We mustfind the

appropriate solution to the equations:

eV e E = Ps Zz > Q

€,V ° E = 0, Zz < 0
and (4.41)

Vx E= 0, everywhere

subject to the boundary conditions at z = 0:

é,FE, é,f,

lim, FE, = lim, &, (4.42)
z>07 E, z—07 E,

Since V X E = 0 everywhere, E is derivable in the usual way from a potential
®. In attempting to use the image methodit is natural to locate an image charge

q' at the symmetrical position A’ shownin Fig. 4.4. Then for z > 0 the potential
at a point P described bycylindrical coordinates (p, ¢, z) will be

1 /

(+2) z>0 (4.43) 

~ 47, R, R

where R; = Vp? + (d — z)*, Ro = Vp’ + (d + z)’. So far the procedure is
completely analogous to the problem with a conducting material in place of the
dielectric €, for z < 0. But we now must specify the potential for z < 0. Since

there are no charges in the region z < 0, it must be a solution of the Laplace
equation without singularities in that region. Clearly the simplest assumption is

that for z < 0 the potential is equivalent to that of a charge q”at the position A
of the actual charge q:

  

 

 

1 q’’

= — < 0 4,44
Ame, R,’ “ ( )

€9 €]

P

Ro Ry

q’ q

A’! 1A
<——d>ad——>

 Figure 4.4
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Since

aft _~_9ft ~a
OZ R, z=0 OZ R, z=0 (p? + d*)*?

while

afd _9/ft ee
6p \Ri/|.-0 9p \Ro/ 2-0 (p* + a???  

the boundary conditions (4.42) lead to the requirements:

"

q-q =q

1 / 1 "

—-(q+q')=—4q
E; E>

These can be solved to yield the image charges q’ and q”:

» | & 7 &

d €& + & d

y 2€

4 E> + Ej 4

 

(4.45)

For the two cases €, > e€; and €, < e, the lines of force (actually lines of D) are

shown qualitatively in Fig. 4.5.
The polarization-charge density is given by —V- P.Inside either dielectric,

P = e)y-E, so that —-V +> P = —e,v.V- E = 0, except at the point charge g. At

the surface, however, x, takes a discontinuous jump, Vx. = (€; — €)/€o aS Z passes

through z = 0. This implies that there is a polarization-surface-charge density on

the plane z = 0:

Opol = —(P, — Pj) + ny

  

  W
Z

N
A
V
E

E, >€, €, <€,

(4.46)

Figure 4.5 Lines of electric displacement for a point charge embeddedin a dielectric
€, near a semi-infinite slab of dielectric e&.
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where np, is the unit normal from dielectric 1 to dielectric 2, and P; 1s the polar-

ization in the dielectric i at z = 0. Since

P; = (€; — &)E; = —(€; — €)VP(0~)

it is a simple matter to show that the polarization-charge density is

Q €(€ — &) d
Co... = -— 4.47
pol 27 €(€ + &) (p* + d*)'? ( )

In the limit e€, >> e, the dielectric e, behaves much like a conductorin that the

electric field inside it becomes very small and the surface-charge density (4.47)
approachesthe value appropriate to a conducting surface, apart from a factor of

Eo/€,.

The secondillustration of electrostatic problemsinvolving dielectrics is that

of a dielectric sphere of radius a with dielectric constant €/€, placed in an initially
uniform electric field, which at large distances from the sphere is directed along
the z axis and has magnitude Eo,as indicated in Fig. 4.6. Both inside and out-

side the sphere there are no free charges. Consequently the problem is one of
solving the Laplace equation with the proper boundary conditionsat r = a. From
the axial symmetry of the geometry we can takethe solution to be of the form:

INSIDE:

O,, = > A,r'P;(cos 0) (4.48)

OUTSIDE:

Dour = > [Byr’ + Cyr“|P,(cos 6) (4.49)

From the boundary condition at infinity (® — —E)z = —Eor cos 0) wefind that
the only nonvanishing B, is B, = —E,. The other coefficients are determined

from the boundary conditions at r = a:

TANGENTIAL FE:

 

  

ul di, _ 1 IDout

a 00 _, a 00 _,
b ’ (4.50)

OD, IDou
NORMALD: —¢— = —-E,—

or r=a or r=a

When the series (4.48) and (4.49) are substituted, there result two series of
Legendre functions equal to zero. Since these must vanish for all 0, the coef-

  

—— P a

—— a
Eo Ko

z

—— a

—_____> —_____>

 

Figure 4.6
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ficient of each Legendre function must vanish separately. For the first boundary
condition this leads (through orthogonality of P',; = dP,/d@) to the relations:

 

C
A, = —Eo + =

a
c (4.51)

A, = ei for] #1

while the second gives (through orthogonality of P,):

C
(E/E)A, = —Eq — 2 3

C (4.52)

(eleA, = -1 +1) 55 forl #1
a

The second equations in (4.51) and (4.52) can be satisfied simultaneously only
with A, = C; = 0 for all / # 1. The remaining coefficients are given in terms of

the applied electric field Ep:

3A, = -(———|E
' (2)

\ (4.53)
E EQ —~ 3

C, = |——_ |]@aE
, (a + s)e .

The potential is therefore

P ; For cos 6
™ e/En + 2 one

(4.54)
e/Ey — 1 a’

Bout = —Epr cos 8 + (soe 2 cos 0

The potential inside the sphere describes a constantelectric field parallel to
the applied field with magnitude

in = ele, Eo < Ey if € > & (4.55)

Outside the sphere the potential is equivalent to the applied field Ey plus the

field of an electric dipole at the origin with dipole moment:

E/E, — 1

ee tna5 + 5) 40)

+ &—-+

Figure 4.7 Dielectric sphere in a uniform field Ep, showing the polarization on the left
and the polarization charge with its associated, opposing,electric field on the right.
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Figure 4.8 Spherical cavity in a dielectric
with a uniform field applied.

 

oriented in the direction of the applied field. The dipole momentcanbe inter-
preted as the volumeintegral of the polarization P. The polarization is

e/Ey — 1
P = (€ — e&\)E = 36S (4.57)

It is constant throughout the volume of the sphere and has a volumeintegral

given by (4.56). The polarization-surface-charge density is, according to (4.46),
Opa = (Perr:

E/E —~ 1

Opol = 30(+ 5)Es cos 0 (4.58)

This can be thought of as producing an internalfield directed oppositely to the

applied field, so reducingthefield inside the sphereto its value (4.55), as sketched
in Fig. 4.7.

The problem of a spherical cavity of radius a in a dielectric medium with
dielectric constant €/€, and with an applied electric field Eparallel to the z axis,
as shown in Fig. 4.8, can be handled in exactly the same wayasthe dielectric

sphere. In fact, inspection of boundary conditions (4.50) showsthat the results
for the cavity can be obtained from those of the sphere by the replacement

€/Ey — (€9/e). Thus, for example, the field inside the cavity is uniform, parallel
to E,, and of magnitude:

_ 3e

2€ + &
 in Ey > Ey if € > && (4.59)

Similarly, the field outside is the applied field plus that of a dipole at the origin
oriented oppositely to the applied field and with dipole moment:

e/eo —1)\ ,=: <0 NE |P tre0 1 :)e 0 (4 60)

4.5 Molecular Polarizability and Electric Susceptibility

In this section and the next we consider the relation between molecular prop-

erties and the macroscopically defined parameter, the electric susceptibility x.

Ourdiscussion is in terms of simple classical models of the molecular properties,
although a proper treatment necessarily would involve quantum-mechanical con-

siderations. Fortunately, the simpler properties of dielectrics are amenable to
classical analysis.
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Before examining how the detailed properties of the molecules are related
to the susceptibility, we must makea distinction between thefields acting on the

molecules in the medium and the applied field. The susceptibility is defined

through the relation P = e)y.E, where E is the macroscopic electric field. In

rarefied media where molecular separations are large thereis little difference
between the macroscopicfield and that acting on any molecule or group of mol-
ecules. But in dense media with closely packed molecules the polarization of

neighboring molecules gives rise to an internal field E; at any given molecule in
addition to the average macroscopicfield E, so that the total field at the molecule
is E + E,. The internal field E; can be written as the difference of two terms,

E; = Enear _ Ep (4.61)

where Eyecar 18 the actual contribution of the molecules close to the given molecule

and E> is the contribution from those moleculestreated in an average continuum

approximation described by the polarization P. What we are saying hereis that
close to the molecule in question we must take care to recognize the specific
atomic configuration and locations of the nearby molecules. Inside some mac-

roscopically small, but microscopically large, volume V wetherefore subtract out
the smoothed macroscopic equivalent of the nearby molecular contributions (E;)
and replace it with the correctly evaluated contribution (E,,,,). This difference
is the extra internalfield E,.

Theresult (4.18) for the integral of the electric field inside a spherical volume
of radius RK containing a charge distribution can be usedto calculate E>. If the
volume V is chosen to be a sphere of radius R containing many molecules, the

total dipole momentinsideis

_ 4nR*

Pp 3
 

provided V is so small that P is essentially constant throughout the volume. Then
(4.18) showsthat the average electric field inside the sphere (just whatis desired
for Ep) is

3 P
E d°x = -— (4.62)

~ AR? Jrer 3€,
 E>

The internal field can therefore be written

1
E; = —_— P + Enear (4.63)

3€

The field due to the moleculesnear by is moredifficult to determine. Lorentz
(p. 138) showed that for atoms in a simple cubic lattice E,.,, vanishes at any
lattice site. The argument depends on the symmetry of the problem, as can be

seen as follows. Supposethat inside the sphere we have a cubic array of dipoles

such as are shownin Fig. 4.9, with all their moments constant in magnitude and
oriented along the samedirection (rememberthat the sphere is macroscopically
small even though it contains very many molecules). The positions of the dipoles

are given by the coordinates x; with the components along the coordinate axes

(ia, ja, ka), where a is the lattice spacing, andi, j, k each take on positive and
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—Cf -—>

 

 

      
Figure 4.9 Calculation of the internalfield:
contribution from nearby molecules in a
simple cubic lattice.

negative integer values. Thefield at the origin duetoall the dipolesis, according
to (4.13),

3(p * Xie)Xie — XijxPE = aaa 4 4.64
2 ATEXFx ( )

The x componentof the field can be written in the form:

3(°p1 + ijp2 + ikps) —@ +7 + KpE, = 4.65
: > 4nea(’? +7? + ky? (4.65)

Since the indices run equally over positive and negative values, the cross terms

involving (ijp2. + ikp3) vanish. By symmetry the sums

“2 2 k?

   i _ J _
>» (i? + Ir + k?)? > (i? + r 4 k?yp? > (i + r + ky?
ijk ijk ijk

are all equal. Consequently

(37 -@ +7 + k’))p,E, = =0 4.66= 2 trea+ Pt R)™ (4.66)
 

Similar arguments show that the y and z components vanish also. Hence
E,ear = O for a simple cubic lattice.

If E,2ar = 0 for a highly symmetric situation, it seems plausible that E,.2, = 0

also for completely random situations. Hence we expect amorphous substances
to have no internal field due to nearby molecules. Forlattices other than simple
cubic, the components of E,.,, are related to the components of P through a

traceless tensor s,g that has the symmetry properties of the lattice. Nevertheless,
it is a good working assumption that E,,.., = 0 for most materials.

The polarization vector P was defined in (4.28) as

P — N(Pmo)

where (pio) 1S the average dipole momentof the molecules. This dipole moment

is approximately proportional to the electric field acting on the molecule. To
exhibit this dependence on electric field we define the molecular polarizability

Ymoi as the ratio of the average molecular dipole momentto €, times the applied

field at the molecule. Taking account of the internal field (4.63), this gives:

(Pmo — €)Ymoi(E + E,) (4.67)
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Ymoi 1S, in principle, a function of the electric field, but for a wide rangeoffield -

strengths is a constant that characterizes the response of the molecules to an
applied field. Equation (4.67) can be combined with (4.28) and (4.63)to yield:

1
P = Moa(a +5 P) (4.68)

where we have assumed E,,.,, = 0. Solving for P in terms of E and usingthefact
that P = eoy.E defines the electric susceptibility of a substance, we find

N mo% =oS (4.69)
1 — = NYmo3 Ymol

as the relation between susceptibility (the macroscopic parameter) and molecular
polarizability (the microscopic parameter). Since the dielectric constant is
e/Eo = 1 + x, it can be expressed in terms of y,,,.1, or alternatively the molecular

polarizability can be expressed in termsof the dielectric constant:

3 fele — 1
= — rs 4. 0

Ymol Ay (a + 5) (4.70)

This is called the Clausius—Mossotti equation, since Mossotti (in 1850) and
Clausius independently (in 1879) established that for any given substance
(€/€ — 1)/(€/€, + 2) should be proportional to the density of the substance.* The
relation holds best for dilute substances such as gases. For liquids and solids,

(4.70) is only approximately valid, especially if the dielectric constantis large.
The interested reader can refer to the books by Béttcher, Debye, and Frohlich
for further details.

4.6 Modelsfor the Molecular Polarizability

The polarization of a collection of atoms or molecules can arise in two ways:

the applied field distorts the charge distributions and so produces an induced
dipole momentin each molecule;

the applied field tendsto line uptheinitially randomly oriented permanentdipole
moments of the molecules.

To estimate the induced moments we consider a simple model of harmonically
bound charges (electrons and ions). Each charge e is bound underthe action of

a restoring force

F = —mo2x (4.71)

where m is the mass of the charge, and w the frequency of oscillation about

equilibrium. Underthe action of an electric field E the charge is displaced from
its equilibrium by an amountx given by

mwsx = eE

*At optical frequencies, €/€y = n*, where n is the index of refraction. With n? replacing €/e, in (4.70),
the equation is sometimescalled the Lorenz—Lorentz equation (1880).
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Consequently the induced dipole momentis

2

Prot = eX =——E (4.72)
NWo

 

This meansthat the polarizability is y = e?/mw(«. If there are a set of charges e,
with masses m, and oscillation frequencies w; in each molecule then the molecular
polarizability is

   (4.73)Ymol — &) 4 mw

To get a feeling for the order of magnitude of y we can make twodifferent

estimates. Since y has the dimensions of a volume,its magnitude must be of the

order of molecular dimensionsor less, namely y.; S 10~*” m’. Alternatively, we

note that the binding frequencies of electrons in atoms must be of the order

of light frequencies. Taking a typical wavelength of light as 3000 A, we find

w =~ 6 X 10s_'. Then the electronic contribution to y is y. ~ (elmoEy) ~
0.88 X 10°”? m?, consistent with the molecular volume estimate. For gases at
NTP the number of molecules per cubic meter is N = 2.7 X 10°, so that their
susceptibilities should be of the order of y, = 10°°. This meansdielectric con-

stants differing from unity by a few parts in 10°, or less. Experimentally, typical
values of dielectric constant are 1.00054 forair, 1.0072 for ammoniavapor, 1.0057
for methyl alcohol, 1.000068 for helium. Forsolid or liquid dielectrics, N ~ 10°°
— 10”? molecules/m°. Consequently, the susceptibility can be of the orderof unity

(to within a factor 10~') as is observed.*

The possibility that thermal agitation of the molecules could modify the re-

sult (4.73) for the induced dipole polarizability needs consideration.In statistical

mechanics the probability distribution of particles in phase space (p, q space)is
some function f(#7) of the Hamiltonian. For classical systems,

f(H) = eK" (4.74)

is the Boltzmann factor. For the simple problem of the harmonically bound
charge with an applied field in the z direction, the Hamiltonian1s

1
=F p’ + 5 wx’ — eEz (4.75)

where here p is the momentum ofthe charged particle. The average value of the
dipole momentin the z direction is

| a’p | d°x (ez)f(H)

(Pmol) = (4.76)

| a'p | d°x f(H)

If we introduce a displaced coordinate x’ = x — eEZ/ma6 then

 

mw> eE*1
4 r\2 __

=s7P a ()
 (4.77)

2
2mWo

*See, e.g., CRC Handbook of Chemistry and Physics, 78th ed., ed. D. R. Lipe, CRC Press, Boca

Raton, FL (1997-98).
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and

    Jerr fave
| ap | ax f(H)

Since H is even in z’ the first integral vanishes. Thus, independentof the form
of f(1), we obtain

2)
 

(Pmol) = (4.78)

 
(Pmol) —

Wo

just as was found in (4.72), ignoring thermal motion.
The second type of polarizability is that caused by the partial orientation of

otherwise random permanent dipole moments. This orientation polarization is
importantin “polar” substances such as HCl and H,0 andwasfirst discussed by
Debye (1912). All molecules are assumedto possess a permanent dipole moment
Po, Which can be oriented in any direction in space. In the absence of field,
thermal agitation keeps the molecules randomly oriented so that there is no net
dipole moment. With an applied field there is a tendency to line up along the
field in the configuration of lowest energy. Consequently there will be an average

dipole moment. To calculate this we note that the Hamiltonian of the molecule
is given by—

H= A — Po -E (4.79)

where His a function of only the “internal” coordinates of the molecule. Using
the Boltzmann factor (4.74), we can write the average dipole momentas:

Pok cos 6
dQ, ————_———| Po cos 6 exo LT

(Pmol) — (4.80)

PoE cos 6
dO =J <*p(Bees?kT

where we have chosen E along the z axis, integrated out all the irrelevant vari-

ables, and noted that only the componentof (po) parallel to the field is different
from zero. In general, (po£/kT) is very small comparedto unity, except at low
temperatures. Hence we can expand the exponentials and obtain theresult:

 

1 po(Pmol) ~ 3 gre (4.81)

The orientation polarization depends inversely on the temperature, as might be
expected of an effect in which the applied field must overcome the opposition of

thermalagitation.

In general both types of polarization, induced (electronic and ionic) and

orientation, are present, and the general form of the molecular polarization is

1
Ymol — Yi + Po (4.82)

E
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Figure 4.10 Variation of molecular
polarizability y,,.; with temperature
for polar and nonpolar substances:

1/T——> Ymo) Versus T'.

This shows a temperature dependence of the form (a + b/T) so that the two

types of polarization can be separated experimentally, as indicated in Fig. 4.10.
For “polar”? molecules, such as HCl and H,O, the observed permanentdipole
moments are of the order of an electronic charge times 107° cm, in accordance

with molecular dimensions.

4.7 Electrostatic Energy in Dielectric Media

In Section 1.11 we discussed the energy of a system of charges in free space. The

result obtained there,

We : | p(x)P(x) d°x (4.83)

for the energy due to a charge density p(x) and a potential ®(x) cannotin general
be taken overas it stands in our macroscopic description of dielectric media. The
reason becomes clear when werecall how (4.83) was obtained. We thought of
the final configuration of charge as being created by assembling bit by bit the

elemental charges, bringing each onein from infinitely far away against the action

of the then existing electric field. The total work done wasgiven by(4.83). With

dielectric media, work is done not only to bring real (macroscopic) charge into

position, but also to produce a certain state of polarization in the medium.If p
and ® in (4.83) represent macroscopic variables, it is certainly not evident that

(4.83) represents the total work, including that done on the dielectric.
To be general in our description of dielectrics, we will not initially make any

assumptionsaboutlinearity, uniformity, etc., of the response of a dielectric to an

applied field. Rather, let us consider a small change in the energy 6W due to
some sort of change 6p in the macroscopic charge density p existing in all space.

The work done to accomplish this change is

5W = | dp(x)®(x) d°x (4.84)

where (x) is the potential due to the charge density p(x) already present. Since
V-D = p, we canrelate the change dp to a change in the displacement of 6D:

Sp = V- (8D) (4.85)
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Then the energy change 6W can becast into the form:

OW = | E- 6D d°x (4.86)

where we have used E = —V@ and have assumedthat p(x) was a localized charge
distribution. The total electrostatic energy can now be written down formally,

at least, by allowing D to be brought from an initial value D = 0 toits final
value D:

D

W = | d3x | E- SD (4.87)

If the medium is /inear, then

E - 6D = 56(E- D) (4.88)

and the total electrostatic energy is

1
w=i[E-pax (4.89)

This last result can be transformed into (4.83) by using E = —V® and V-D =
p, or by going back to (4.84) and assuming that p and ® are connectedlinearly.
Thus wesee that (4.83) is valid macroscopically only if the behavioris linear.

Otherwise the energy of a final configuration must be calculated from (4.87) and
might conceivably depend on the past history of the system (hysteresis effects).

A problem of considerable interest is the change in energy when dielectric
object with a linear responseis placed in an electric field whose sourcesare fixed.
Supposethat initially the electric field E) due to a certain distribution of charges
po(X) exists in a medium ofelectric susceptibility €), which may be a function of
position (for the momente, is not the susceptibility of the vacuum). The initial
electrostatic energy is

1
Wo =5 | Eo Do d’s

where Do = €)K,. Then with the sources fixed in position a dielectric object of

volume V, is introduced into the field, changing the field from E, to E. The
presence of the object can be described by a susceptibility e(x), which has the
value e, inside V, and €, outside V,. To avoid mathematical difficulties we can

imagine e(x) to be a smoothly varying function of position that falls rapidly but

continuously from e, to €,) at the edge of the volume V,. The energy now has the

value

1
WwW, = > | E-D d°x

where D = e€E.The difference in the energy can be written:

|
W--1|(E-D—-E,-D,) dx

2 ( 0 Dy) (4.90)
1 1

=1{+p, - D+) d’x +4 | (E + B,) - (D ~ Dy) as
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The second integral can be shown to vanish by the following argument. Since

V X (E + E,) = 0, we can write

Then the second integral becomes:

I= -+ | ve. (D ~ Dy) ax

Integration by parts transforms this into

1=1 | ©v-( — Dy)a’x = 0

since V-(D — Dj) = 0 because the source charge density po(x) is assumed
unaltered by the insertion of the dielectric object. Consequently the energy

changeis

1
w=-|@-D,-D-5,) d°x (4.91)

The integration appears to be overall space, but is actually only over the volume

V, of the object, since, outside V,, D = e€)E. Therefore we can write

1
W = 9 | (€, —_ €y)E ° Eo d>x (4.92)

Vy

If the medium surrounding the dielectric body is free space, then using the def-
inition of polarization P, (4.92) can then be expressedin the form:

1
W=-- P.-E, d°x (4.93)

2 IV;

where P is the polarization of the dielectric. This shows that the energy density

of a dielectric placed in a field Ey whose sourcesare fixed is given by

w= —5P-E, (4.94)

This result is analogous to the dipole term in the energy (4.24) of a charge dis-

tribution in an externalfield. The factor 5 is due to the fact that (4.94) represents

the energy density of a polarizable dielectric in an external field, rather than a

permanentdipole.It is the same factor 5 that appears in (4.88).
Equations (4.92) and (4.93) show that a dielectric body will tend to move

toward regions of increasing field E, provided e, > e€,. To calculate the force

acting we can imagine a small generalized displacement of the body 6é. Then
there will be a change in the energy 6W.Since the chargesare held fixed, there
is no external source of energy and the changein field energy can be interpreted
as a change in the potential energy of the body. This meansthat there is a force

acting on the body:

ow
PF, = -\|—= 4.95--(3) 4.95)

where the subscript Q has been placed on the partial derivative to indicate that
the sources of the field are kept fixed.
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In practical situations involving the motion of dielectrics the electric fields
are often produced by a configuration of electrodes held at fixed potentials by
connection to an external source such as a battery. To maintain the potentials

constant as the distribution of dielectric varies, charge will flow to or from the

battery to the electrodes. This means that energy is being supplied from the

external source, andit is of interest to compare the energy supplied in that way
with the energy change found abovefor fixed sources of the field. We will treat

only linear media so that (4.83)is valid. It is sufficient to consider small changes
in an existing configuration. From (4.83) it is evident that the change in energy
accompanying the changes 6p(x) and 6®(x) in charge density and potentialis

SW = : | (p 5B + ® Sp) d?x (4.96)

Comparison with (4.84) showsthat, if the dielectric properties are not changed,
the two termsin (4.96) are equal. If, however, the dielectric properties are altered,

E(x) — e(x) + de(x) (4.97)

the contributions in (4.96) are not necessarily the same. In fact, we have just

calculated the change in energy brought about byintroducing a dielectric body
into an electric field whose sources were fixed (6p = 0). Equal contributions in

(4.96) would imply 6W = 0, but (4.91) or (4.92) are not zero in general. The
reason for this difference lies in the existence of the polarization charge. The
change in dielectric properties implied by (4.97) can be thought of as a change
in the polarization-charge density. If then (4.96) is interpreted as an integral over
both free and polarization-charge densities (i.e., a microscopic equation), the two
contributions are always equal. However,it is often convenientto deal with mac-
roscopic quantities. Then the equality holds only if the dielectric properties are
unchanged.

The processof altering the dielectric properties in some way (by moving the

dielectric bodies, by changing their susceptibilities, etc.) in the presence of elec-
trodesat fixed potentials can be viewed as taking place in twosteps. In thefirst

step the electrodes are disconnected from the batteries and the charges on them

held fixed (6p = 0). With the change (4.97) in dielectric properties, the energy
changeis

1

where 6®, is the change in potential produced. This can be shownto yield
the result (4.92). In the second step the batteries are connected again to the

electrodes to restore their potentials to the original values. There will be a flow
of charge 6p, from the batteries accompanying the change in potential*
6D, = —6@,. Therefore the energy change in the secondstep is

1

*Note that it is necessary merely to know that 6@, = —6@®, on the electrodes, since that is the only

place where free charge resides.
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since the two contributions are equal. In the second step wefind the external
sources changing the energy in the opposite sense and by twice the amountof

the initial step. Consequently the net change 1s

1
oW = —> | p 8®, d3x (4.100)

Symbolically

dbWy = —6Wo (4.101)

where the subscript denotes the quantity held fixed. If a dielectric with e/eg > 1
moves into a region of greater field strength, the energy increases instead of

decreases. For a generalized displacement dé the mechanicalforce acting 1s now

ow
P; = (2) (4.102)
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Problems

4.1 Calculate the multipole moments q,,, of the charge distributions shown asparts a
and b. Try to obtain results for the nonvanishing momentsvalid forall /, but in each
case find the first two sets of nonvanishing momentsat the veryleast.
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Problem 4.1

(c) For the charge distribution of the second set b write down the multipole ex-
pansion for the potential. Keeping only the lowest-order term in the expan-
sion, plot the potential in the x-y plane as a function of distance from the
origin for distances greater thana.

(d) Calculate directly from Coulomb’s law the exact potential for b in the
x-y plane. Plot it as a function of distance and compare with the result found
in part c.

Divide out the asymptotic form in parts c and d to see the behaviorat large distances
more clearly.

A point dipole with dipole momentp is located at the point x). From the properties
of the derivative of a Dirac delta function, show that for calculation of the potential
® or the energy of a dipole in an externalfield, the dipole can be described by an
effective charge density

Pett(X) = —p+ VO(x — Xo)

The /th term in the multipole expansion (4.1) of the potential is specified by the
(21 + 1) multipole moments q,,,. On the other hand, the Cartesian multipole
moments,

O%by = | p(x)x*yPz” d°x

with a, B, y nonnegative integers subject to the constraint a + B + y = J, are
(J + 1)( + 2)/2 in number. Thus, for / > 1 there are more Cartesian multipole
moments than seem necessary to describe the term in the potential whose radial
dependenceis r~/'.

Show that while the q,,, transform underrotations as irreducible spherical ten-

sors of rank /, the Cartesian multipole moments correspond to reducible spherical
tensors of ranks /, / — 2,1 — 4,..., Luin, Where J,i, = 0 or 1 for / even or odd,

respectively. Check that the numberof different tensorial components adds up to
the total number of Cartesian tensors. Whyare only the q,,,, needed in the expansion
(4.1)?

(a) Prove the following theorem: For an arbitrary charge distribution p(x) the
values of the (2/ + 1) moments of the first nonvanishing multipole are inde-
pendentof the origin of the coordinate axes, but the valuesof all higher mul-
tipole moments doin general depend on the choice oforigin. (The different
moments q),, for fixed / depend, of course, on the orientation of the axes.)

(b) A charge distribution has multipole moments gq,p, Q,;,.. . with respect to one
set of coordinate axes, and moments q’, p’, Q},,... with respect to another
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set whoseaxesare parallel to the first, but whose origin is located at the point
= (X, Y, Z)relative to the first. Determine explicitly the connections be-

tween the monopole, dipole, and quadrupole moments in the two coordinate
frames.

(c) Ifg #0,canR be found so that p’ = 0? If gq # 0, p # 0, or at least p # 0, can

R be found so that Q;; = 0?

A localized charge density p(x, y, z) is placed in an externalelectrostatic field de-
scribed by a potential ®©(x, y, z). The external potential varies slowly in space
over the region where the charge density is different from zero.

(a) From first principles calculate the total force acting on the charge distribution
as an expansion in multipole moments times derivatives of the electric field,
up to andincluding the quadrupole moments. Showthatthe force is

E®

F = gE®(0) + {V[p - EO(x)]}o +{y23> Qn—Hoy}+

Compare this to the expansion (4.24) of the energy W. Note that (4.24) is a
number—it is not a function of x that can be differentiated! Whatis its con-

nection to F?

(b) Repeat the calculation of part a for the total torque. For simplicity, evaluate

only one Cartesian component of the torque, say N,. Show that this compo-
nentis

1 0 0
_— (0) a FO) — FO) taN, [px E 0 (0), + 3 2 (> 0x”) ou (> Q3,E° )I. +

A nucleus with quadrupole momentQ findsitself in a cylindrically symmetric elec-
tric field with a gradient (dE,/dz)) along the z axis at the position of the nucleus.

(a) Show that the energy of quadrupoleinteractionis

 

(b) If it is known that Q = 2 X 10°*8 m* and that W/h is 10 MHz, where
h is Planck’s constant, calculate (0E,/dz)) in units of e/47re,a3, where
Ay = 4m€h*/me? = 0.529 X 10°'° m is the Bohr radius in hydrogen.

(c) Nuclear charge distributions can be approximatedby a constant charge density
throughout a spheroidal volume of semimajor axis a and semiminoraxis D.
Calculate the quadrupole momentof such a nucleus, assuming that the total
charge is Ze. Given that Eu’ (Z = 63) has a quadrupole moment Q =
2.5 X 10-78 m? and a meanradius

R=(at+ b/2=7X 10m

determine the fractional difference in radius (a — b)/R.

A localized distribution of charge has a charge density

24—Frp(r) =a- re sin’6

(a) Make a multipole expansion of the potential due to this charge density and
determineall the nonvanishing multipole moments. Write downthepotential
at large distancesas a finite expansion in Legendre polynomials.
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4.8

4.9

4.10

(b) Determine the potential explicitly at any point in space, and show that near
the origin, correct to r? inclusive,

 bir) = 1 ]1 fF p
(r) = Ate, 4 — 120 (Cos 0)

(c) Ifthere exists at the origin a nucleus with a quadrupole moment Q = 107° m?,
determine the magnitude of the interaction energy, assuming that the unit of
charge in p(r) above is the electronic charge and the unit of length is the
hydrogen Bohrradius a) = 47€)f7/me* = 0.529 X 107'° m. Express your an-
swer as a frequency by dividing by Planck’s constant h.

The charge density in this problem is that for the m = +1 states of the
2p level in hydrogen, while the quadrupole interaction is of the same order as
found in molecules.

A very long, right circular, cylindrical shell of dielectric constant €/e) and inner and
outer radii a and5,respectively, is placed in a previously uniform electric field E,
with its axis perpendicularto the field. The medium inside and outside the cylinder
has a dielectric constant of unity.

(a) Determine the potential and electric field in the three regions, neglecting end
effects.

(b) Sketch the lines of force for a typical case of b = 2a.

(c) Discuss the limiting forms of your solution appropriate for a solid dielectric
cylinder in a uniform field, and a cylindrical cavity in a uniform dielectric.

A point charge g is located in free space a distance d from the center of a dielectric
sphere of radius a (a < d) anddielectric constant €/€.

(a) Find the potential at all points in space as an expansion in spherical harmonics.

(b) Calculate the rectangular components of the electric field near the center of
the sphere.

(c) Verify that, in the limit e/e, — ©, your result is the same as that for the

conducting sphere.

Two concentric conducting spheres of inner and outer radii a and 5, respectively,
carry charges +Q. The empty space between the spheresis half-filled by a hemi-
spherical shell of dielectric (of dielectric constant é/e,), as shown in the figure.

 

Problem 4.10

(a) Find theelectric field everywhere between the spheres.

(b) Calculate the surface-charge distribution on the inner sphere.

(c) Calculate the polarization-charge density induced on the surface of the di-
electric at r = a.
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The following data on the variation of dielectric constant with pressure are taken
from the Smithsonian Physical Tables, 9th ed., p. 424:

 

 

 

Air at 292 K

Pressure (atm) Elé

20 1.0108 Relative density of air as a function of
40 1.0218 pressure is given in AJP Handbook,
60 1.0333 [3rd ed., McGraw-Hill, New York

80 1.0439 (1972), p. 4-165}.
100 1.0548
 

Pentane (C;H,,) at 303 K
 

 

Pressure (atm) Density (g/cm*) e/€

1 0.613 1.82

10° 0.701 1.96

4x 10° 0.796 2.12

8 x 10° 0.865 2.24

12 x 10° 0.907 2.33

 

Test the Clausius—Mossotti relation between dielectric constants and density
for air and pentanein the ranges tabulated. Doesit hold exactly? Approximately?
If approximately, discuss fractional variations in density and (€/€) — 1). For pentane,
compare the Clausius—Mossotti relation to the cruderrelation,(€/e€) — 1) « density.

Water vapor is a polar gas whose dielectric constant exhibits an appreciable tem-
perature dependence. The following table gives experimental data onthis effect.
Assuming that water vapor obeys the ideal gas law, calculate the molecular polar-
izability as a function of inverse temperature and plot it. From the slope of the
curve, deduce a value for the permanent dipole moment of the H,O molecule (ex-
press the dipole moment in coulomb-meters).

 

 

T(K) Pressure (cm Hg) (eleg — 1) x 10°

393 56.49 400.2

423 60.93 371.7

453 65.34 348.8

483 69.75 328.7

 

Two long, coaxial, cylindrical conducting surfaces of radii a and b are lowered
vertically into a liquid dielectric. If the liquid rises an average height h between the
electrodes when a potential difference V is established between them, show that
the susceptibility of the liquid is

_ (b* — a’)pgh In(b/a)

Xe €&V"

where p is the density of the liquid, g is the acceleration due to gravity, and the
susceptibility of air is neglected.

 



CHAPTER 5

Magnetostatics, Faraday’s Law,
Quasi-Static Fields

5.1 Introduction and Definitions

174

In the preceding chapters we examined various aspects of electrostatics(i.e., the
fields and interactions of stationary charges and boundaries). We now turn to
steady-state magnetic phenomena, Faraday’s law of induction, and quasi-static
fields. From a historical point of view, magnetic phenomena have been known
and studiedforat least as long as electric phenomena. Lodestones were known
in ancient times; the mariner’s compass is a very old invention; Gilbert’s re-
searches on the earth as a giant magnet date from before 1600. In contrast to
electrostatics, the basic laws of magnetic fields did not follow straightforwardly
from man’s earliest contact with magnetic materials. The reasonsare several, but
they all stem from the radical difference between magnetostatics and electro-
statics: there are no free magnetic charges (even though the idea of a magnetic
charge density may be a useful mathematical construct in some circumstances).

This meansthat magnetic phenomenaare quite different from electric phenom-
ena and that for a long time no connection was established between them. The
basic entity in magnetic studies was what we now knowas a magnetic dipole.In
the presence of magnetic materials the dipole tends to align itself in a certain
direction. That direction is by definition the direction of the magnetic-flux den-
sity, denoted by B, provided the dipoleis sufficiently small and weak that it does
not perturb the existing field. The magnitude of the flux density can be defined
by the mechanical torque N exerted on the magnetic dipole:

N=pxXB (5.1)

where p is the magnetic moment of the dipole, defined in somesuitable set of

units.
Already, in the definition of the magnetic-flux density B (sometimes called

the magnetic induction), we have a more complicated situation than for the elec-
tric field. Further quantitative elucidation of magnetic phenomenadid not occur
until the connection between currents and magnetic fields was established. A
current corresponds to charges in motion andis described by a current density

J, measured in units of positive charge crossing unit area per unit time, the di-
rection of motion of the charges defining the direction of J. In SI units it is
measured in coulombsper square meter-second or amperesper square meter.If

the current density is confined to wires of small cross section, we usually integrate

over the cross-sectional area and speak of a current of so many amperes flowing

along the wire.
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Conservation of charge demandsthat the charge density at any point in space

be related to the current density in that neighborhoodby a continuity equation:

Piv.y=0 (5.2)
ot

This expresses the physical fact that a decrease in charge inside a small volume
with time must correspond to a flow of charge out through the surface of the

small volume, since the total amount of charge must be conserved. Steady-state
magnetic phenomenaare characterized by no change in the net charge density

anywhere in space. Consequently in magnetostatics

V-J=0 (5.3)

We now proceed to discuss the experimental connection between current and
magnetic-flux density and to establish the basic laws of magnetostatics.

5.2 Biot and Savart Law

In 1819 Oersted observed that wires carrying electric currents produced deflec-
tions of permanent magnetic dipoles placed in their neighborhood. Thus the
currents were sources of magnetic-flux density. Biot and Savart (1820), first, and

Ampére (1820-1825), in much more elaborate and thorough experiments, estab-

lished the basic experimental laws relating the magnetic induction B to the cur-
rents and established the law of force between onecurrent and another. Although
not in the form in which Ampére deducedit, the basic relation is the following.
If dl is an element of length (pointing in the direction of current flow) of a
filamentary wire that carries a current J and x is the coordinate vector from the

element of length to an observation point P, as shownin Fig. 5.1, then the ele-
mentalflux density dB at the point P is given in magnitude and direction by

ap = kp AX») (5.4)
Ix

It should be notedthat (5.4) is an inverse square law, just as is Coulomb’s law
of electrostatics. However, the vector character is very different.

A word of caution about (5.4). There is a temptation to think of (5.4) as the
magnetic equivalent of the electric field (1.3) of a point charge and to identify
I dl as the analog of q. Strictly speaking this is incorrect. Equation (5.4) has
meaningonly as one elementof a sum over a continuousset, the sum representing
the magnetic induction of a current loop or circuit. Obviously the continuity
equation (5.3) is not satisfied for the current element J dl standing alone—the

Figure 5.1 Elemental magnetic induction dB
due to current element / dl.
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current comes from nowhere and disappears after traversing the length dl! One
apparent way outofthis difficulty is to realize that current is actually charge in

motion and to replace J dl by qv where q is the charge andv its velocity. The

flux density for such a charge in motion would be

B = kq*> (5.5)xP
in close correspondence with (5.4). But this expression is time dependent and
furthermoreis valid only for charges whosevelocities are small comparedto that

of light and whose accelerations can be neglected. Since we are considering
steady-state magnetic fields in this chapter, we stick with (5.4) and integrate over
circuits to obtain physical results.*

In (5.4) and (5.5) the constant k depends in magnitude and dimension on the
system of units used, as discussed in detail in the Appendix. In Gaussian units,
in which current is measured in esu and magnetic induction in emu, the constant
is empirically found to be k = 1/c, where c is the speed of light in vacuo. The
presence of the speed of light in the equations of magnetostatics is an initial
puzzlement resolved within special relativity where u/c has a natural appearance.
In Gaussian units, E and B have the same dimensions:charge divided by length
squared or force per unit charge.

In SI units, kK = o/4a = 107’ newton per square ampere (N/A’) or henry
per meter (H/m). Here B has the dimensions of newtons per ampere-meter
(N/A -m) while E has dimensions of N/C. B times a speed has the same dimen-
sions as E. Since c is the natural speed in electromagnetism,it is no surprise that
in SI units E and cB form thefield-strength tensor F“” in a relativistic description
(see Chapter 11).

Wecanlinearly superpose the basic magnetic-flux elements (5.4) by integra-
tion to determine the magnetic-flux density due to various configurations of
current-carrying wires. For example, the magnetic induction B of the long straight
wire shown in Fig. 5.2 carrying a current J can be seen to be directed along the
normal to the plane containing the wire and the observation point, so that the
lines of magnetic induction are concentric circles aroundthe wire. The magnitude
of B is given by

_ Ho [- di _ bo L
|B| An * 6 (R? 4 1?)>? Ia R (5.6)

where R is the distance from the observation point to the wire. This is the ex-
perimentalresult first found by Biot and Savart and is known as the Biot—Savart
law. Note that the magnitude of the induction B varies with R in the same way
as the electric field due to a long line charge of uniform linear-charge density.

*There is an apparent inconsistency here. Currents are, after all, charges in motion. How can (5.4),
integrated, yield exact results yet (5.5) be only approximate? The answeris that (5.5) applies to only
one charge. If a system of many charges movesin such a waythatas the unit of charge goes to zero
and the numberof charges goesto infinity it produces a steady current flow, then the sum of the

exact relativistic fields, including acceleration effects, gives a magnetostatic field equal to the field
obtained by integrating (5.4) over the circuit. This rather subtle result is discussed for some special
situations in Problems 14.23 and 14.24.
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 Figure 5.2

This analogy showsthat in some circumstances there may be a correspondence
between electrostatic and magnetostatic problems, even thoughthe vector char-
acter of the fields is different. We see more ofthat in later sections.

Ampeére’s experiments did not deal directly with the determination of the
relation between currents and magnetic induction, but were concerned rather
with the force that one current-carrying wire experiences in the presence of an-
other. Since we havealready introduced the idea that a current element produces
a magnetic induction, we phrase the force law as the force experienced by a
current element J, dl, in the presence of a magnetic induction B. The elemental
force is

dF = I, (dl, x B) (5.7)

If the external field B is due to a closed current loop #2 with current /,, then the

total force which a closed current loop #1 with current J, experiences is [from
(5.4) and (5.7)]:

 

dl, x (dl, Xx
Fo = “11 ¢ 1X (dh, X12) (5.8)

Aqr )x1>|°

The line integrals are taken around the twoloops; x;, is the vector distance from

line element dl, to dl, as shownin Fig. 5.3. This is the mathematical statement

of Ampere’s observations about forces between current-carrying loops. By ma-

nipulating the integrand it can be put in a form that is symmetric in dl, and dl,
and that explicitly satisfies Newton’s third law. Thus

= 3 2 .

1X10 ?

  

—_ (dl, ° dl,)

X12

[X10 |X12"

 
Figure 5.3) Two Ampeérian currentloops.



178 Chapter5 Magnetostatics, Faraday’s Law, Quasi-Static Fields—SI

The second term involves a perfect differential in the integral over dl,. Conse-
quently it gives no contributionto the integral (5.8), provided the paths are closed
or extendto infinity. Then Ampére’s law of force between current loops becomes

dl, + dl
F> = _ Ko LL } } dhy)x12 (5.10)

Aor Ixy)?

showing symmetry in the integration, apart from the necessary vectorial depen-
dence on Xj.

Each of twolong,parallel, straight wires a distance d apart, carrying currents
f, and J,, experiencesa force per unit length directed perpendicularly toward the
other wire and of magnitude,

a = Ho hs (5.11)
dl mda

The force is attractive (repulsive) if the currents flow in the same (opposite)
directions. The forces that exist between current-carrying wires can be used to
define magnetic-flux density in a way that is independent of permanent magnetic
dipoles.* We will see later that the torque expression (5.1) and the force result
(5.7) are intimately related.

If a current density J(x) is in an external magnetic-flux density B(x), the
elementary force law implies that the total force on the current distribution is

= [ 506 x B(x) d°x (5.12)

Similarly the total torqueis

N = [x x (J x B) d°x (5.13)

These general results will be applied to localized current distributions in Sec-
tion 5.7.

5.3 Differential Equations of Magnetostatics and Ampére’s Law

The basic law (5.4) for the magnetic induction can be written down in general
form for a current density J(x):

B(x) = Ho | (xx) xnopex" (5.14)

This expression for B(x) is the magnetic snmog of electric field in terms of the
charge density:

x — x’B(s) == | ota’)Sa (5.15)
Just as this result for E was not as convenient in somesituations as differential
equations, so (5.14) is not the most useful form for magnetostatics, even though
it contains in principle a description of all the phenomena.

*In fact, (5.11) is the basis of the internationally accepted standard of current. See the Appendix.
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To obtain the differential equations equivalent to (5.14), we use the relation
just above (1.15) to transform (5.14) into the form:

Ho J(x!) 33B(x) = — V x | ——— dx’ 5.16(x) Aa |x _. x" | x ( )

From (5.16) it follows immediately that the divergence of B vanishes:

V-B=0 (5.17)

This is the first equation of magnetostatics and corresponds to V X E = 0 in
electrostatics. By analogy with electrostatics we now calculate the curl of B:

J /

vxB=“Hyxyx {2ay (5.18)
4 Ix — x7 |

With the identity V x (V x A) = V(V-A) — WA for an arbitrary vector field
A, expression (5.18) can be transformed into

Mo 1 Mo 1V x B —_ Fv v| m" . V d° rp | J ’ V2 d° t

Aa Mx’) ( — a) * Aa (x’) (= — =) *

(5.19)

1 {1
vi; =) a (i 7 =)

(4) = —476(x — x’)
Ix — x’|

  

If we use

and

the integrals in (5.19) can be written:

 vxB=-9 | J(x')> v( d°x' + wod(x) (5.20)
Aa Ix — x’|

Integration by parts yields

Vi = d(x’VX B= pod + Boy VIED sy (5.21)
Aa Ix — x’|

But for steady-state magnetic phenomena V- J = 0, so that we obtain

VX B= Lod (5.22)

This is the second equation of magnetostatics, corresponding to V- E = p/e, in

electrostatics.
In electrostatics Gauss’s law (1.11) is the integral form of the equation

V -E = p/e. The integral equivalent of (5.22) is called Ampére’s law. It is ob-
tained by applying Stokes’s theorem to the integral of the normal componentof
(5.22) over an open surface S bounded by a closed curve C, as shownin Fig.5.4.

Thus

[ vx Benda = po |J+ n da (5.23)
s
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Figure 5.4

is transformed into

> Bedi =p | J-nda (5.24)
C s

Since the surface integral of the current density is the total current / passing
through the closed curve C, Ampére’s law can be written in the form:

¢ B+ dl = pol (5.25)
Cc

Just as Gauss’s law can be used for calculation of the electric field in highly
symmetric situations, so Ampére’s law can be employed in analogous
circumstances.

5.4 Vector Potential

The basic differential laws of magnetostatics are

V X B= Ld
5.26

V-B=0 (9:26)

The problem is how to solve them.If the current density is zero in the region of
interest, V X B = 0 permits the expression of the vector magnetic induction B
as the gradient of a magnetic scalar potential, B = —V®,y. Then (5.26) reduces
to the Laplace equation for ®,,, and all our techniquesfor handling electrostatic
problems can be brought to bear. A large numberof problemsfall into thisclass,

but we will defer discussion of them until later in the chapter. The reasonis that

the boundary conditions are different from those encountered in electrostatics,

and the problems usually involve macroscopic media with magnetic properties
different from free space with charges and currents.

A general method of attack is to exploit the second equation in (5.26). If

V - B = 0 everywhere, B must be the curl of somevectorfield A(x), called the
vector potential,

B(x) = V x A(x) (5.27)

Wehave,in fact, already written B in this form (5.16). Evidently, from (5.16),
the general form of A is

_ Bo I(x’) d’x' + VW 5.284a |x — x’ x V(x) ( )A(x)
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The added gradient of an arbitrary scalar function VY shows that for a given

magnetic induction B, the vector potential can be freely transformed accord-

ing to

A>A+VY (5.29)

This transformationis called a gauge transformation. Such transformations on A
are possible because (5.27) specifies only the curl of A. The freedom of gauge

transformations allows us to make V- A have any convenient functional form we
wish.

If (5.27) is substituted into the first equation in (5.26), we find

Vx (V X A) = bod
or ( )= He (5.30)

V(V- A) — WA = pod

If we now exploit the freedom implied by (5.29), we can make the convenient
choice of gauge,* V-A = 0. Then each rectangular component of the vector

potential satisfies the Poisson equation,

VA = — pod (5.31)

From our discussions of electrostatics it is clear that the solution for A in un-
boundedspaceis (5.28) with ‘YW = constant:

Mo J(x') 3A(x) = — —— a@x' 5.326) =F) aa (5.32)
The condition VW = constant can be understood as follows. Our choice of gauge,
V-A = 0, reduces to V’¥ = 0,since thefirst term in (5.28) has zero divergence
because of V’- J = 0. If V*¥ = 0 holdsin all space, VY must be at most a constant
provided there are no sourcesat infinity.

5.5 Vector Potential and Magnetic Induction
for a Circular Current Loop

As an illustration of the calculation of magnetic fields from given currentdistri-
butions, we consider the problem ofa circular loop of radius a, lying in the x-y
plane, centered at the origin, and carrying a current J, as shown in Fig. 5.5. The
current density J has only a componentin the ¢ direction,

d(r' — a)

a
J, = I sin 6'd(cos 6’) (5.33)

The delta functionsrestrict current flow to a ring of radius a. The vectorial current

density J can be written

J= —J,sing'i + Jy cos bj (5.34)

Since the geometry is cylindrically symmetric, we may choose the observation
point in the x-z plane (¢ = 0) for purposesof calculation. Since the azimuthal

*The choice is called the Coulomb gauge, for a reason that will become apparentonly in Section 6.3.
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x Figure 5.5

integration in (5.32) is symmetric about ¢’ = 0, the x componentof the current
does not contribute. This leaves only the y component, which is Ay. Thus

sin 6’ cos f'd(cos 6')d(r' — a)
 

Mol | 12 ’ ’A 9) = dr’ aQ 5.35
o(r, 8) 47a na Ix — x’| ( )

where |x — x’| = [r* + r'* — 2rr'(cos 6 cos 6’ + sin 6 sin 6’ cos $')]*”.
Wefirst consider the straightforward evaluation of (5.35). Integration over

the delta functions leaves the result

Ula {" cos b' dd'
Ag(r, 6) =o(7, 8) 4m Jo (a? +r? — 2ar sin @ cos ¢

  ye (5.36)

This integral can be expressed in termsof the completeelliptic integrals K and E:

4Ta | — KW) — 2), (5.37)
 

Mo
A,(r, 8) = —
(8) 4a Va’? + r? + 2ar sin 6
 

 

where the argumentk ofthe elliptic integrals is defined through

5 4ar sin 6

a’ t+ r* + 2ar sin 0
 

The components of magnetic induction,

 

 

a, )
Br = r sin 6 06 (sin 6A, )

loBo=—— (rAg) ——[ (5:38)
By, = 0

can also be expressedin termsofelliptic integrals. But the results are not partic-
ularly illuminating (useful, however, for computation).

For a >> r,a <r, or 6<1, an alternative expansion of (5.36) in powers
of a’r* sin’6/(a* + r’) leads to the following approximate expression for the
vector potential,

Ag(r, 9) =
[ola’r sin 6 \Sa’r? sin?@ | (5.39)
4(a’ + ry? 8(a? + ry
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To the same accuracy, the corresponding field components are

 

R= [Lyla* cos 6 15a°r? sin’ _—

"  2(a? + ry? 4(a’ + ry (5.40)
1, 2 a 15 242 « 29 4 2 _. 2

B, = —Hoe

ae

IG — 2+ ar sin’ 64a" ar),

4(a“ + r*) 8(a° + r*)

These can easily be specialized to the three regions, near the axis (6 << 1), near
the center of the loop (r << a), and far from the loop (r >> a).

Of particular interest are the fields far from the loop:

[Lo cos 6
B, — Va (I7ra") r>

 

a6 (5.41)
Mo sin

Bo = An (I7ra*) 7

Comparison with the electrostatic dipole fields (4.12) shows that the magnetic
fields far away from a circular current loop are dipole in character. By analogy
with electrostatics we define the magnetic dipole momentof the loop to be

m = tla? (5.42)

Weseein the next section that this is a special case of a general result—localized
current distributions give dipole fields at large distances; the magnetic moment

of a plane current loop is the product of the area of the loop times the current.

Although we have obtained a complete solution to the problem in terms of

elliptic integrals, we now illustrate the use of a spherical harmonic expansion to

point out similarities and differences between the magnetostatic and electrostatic
problems. Thus wereturn to (5.35) and substitute the spherical expansion (3.70)
for |x — x’|7?:

I Yin(0, 0 o I
Ag= — Re 2 aint.) r’? dr’ dQ’ &(cos 6')6(r' — ae’? a VinlO', 6’)

(5.43)

The presence of e’® meansthat only m = +1 will contribute to the sum. Hence

* Yu(0, 0) re 7

where now r_ (r.) is the smaller (larger) of a and r. The square-bracketed quan-
tity is a number dependingon /:

21+ 1
os 2 @ =_—= LT P} 0

| \ 4al(1 + 1) (0)

0 for / even

2+1

|

(-1)""'TM™ + 3) - (5.45)

Jatt

5

| T(n + 1)PG) | for! = 2n + 1 
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Then A, can be written

Mola & (-1)"(2n — 1)!! 7277!

4 2% 2(n+i1)! ret?

where (2n — 1)!! = (2n — 1)(2n — 3)(-::) X 5 X3 X 1, and the n = 0 coefficient
in the sum is unity by definition. To evaluate the radial component of B from
(5.38) we need

 Ay =- P3,+1(COS 0) (5.46)

 

d
rs [V1 — x* P/(x)] = 12 + 1)P,(x) (5.47)

Then wefind

Mola & (—1)"(2n + 1)! 27"!
B.= —x sn ane Pn+1(COS 0) (5.48)

The 6 componentof B is similarly

Byo=-
 P3,41(cos 6) (5.49)

(EHS+ 2).1 (")

pol? S (=1)'2n + yf ane 1) a

4 n= 2"(n+1)! K (2)

r°

The upperline holds for r < a, and the lower line for r > a. For r >> a, only the

n = 0 term in theseries is important. Then, since Pj(cos 6) = —sin 0, (5.48) and
(5.49) reduce to (5.41). For r << a, the leading term is again n = 0. Thefields
are then equivalent to a magnetic induction po//2a in the z direction, a result
that can be found by elementary means.

Wenote a characteristic difference between this problem and a correspond-
ing cylindrically symmetric electrostatic problem. Associated Legendre polyno-

mials appear, as well as ordinary Legendre polynomials. This can be traced to
the vector character of the current and vector potential, as opposedto the scalar

properties of charge and electrostatic potential.
Another mode of attack on the problem of the planar loop is to employ

an expansion in cylindrical waves. Instead of (3.70) as a representation of

|x — x’|~* we mayusethe cylindrical form (3.148) or (3.149) or that of Problem
3.16b. The application of this technique to the circular loop will be left to the
problems.

5.6 Magnetic Fields of a Localized Current Distribution,
Magnetic Moment

Wenowconsider the properties of a general currentdistribution thatis localized
in a small region of space, “‘small”’ being relative to the scale of length of interest
to the observer. A complete treatment of this problem, in analogy with the elec-

trostatic multipole expansion, can be made using vector spherical harmonics.*

*This is not the only way. Scalar potentials can be used. See J. B. Bronzan, Am. J. Phys. 39, 1357

(1971).
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Figure 5.6 Localized current density
J(x’) gives rise to a magnetic induction
at the point P with coordinate x.

 

These are presented in Chapter 9 in connection with multipole radiation. We
will be content here with only the lowest order of approximation. Assuming
|x| >> |x’|, we expand the denominator of (5.32) in powers of x’ measured
relative to a suitable origin in the localized current distribution, shown schemat-
ically in Fig. 5.6:

1 1 K° x’
= — + —— +: .

k-xl xl [xi 690)
Then a given component of the vector potential will have the expansion,

 

X
A,(x) = aie d°x' + xP : [ er’ d°x' + os (5.51)

The fact that J is a localized, divergenceless current distribution permits simpli-
fication and transformation of the expansion (5.51). Let f(x’) and g(x’) be
well-behaved functions of x’ to be chosen below.If J(x') is localized but not
necessarily divergenceless, we have the identity

| (fJ-Vig+gd- Vf t+ feV'- J) dx' =0 (5.52)

This can be established by an integration by parts on the second term, followed
by expansion of fV’-(gJ). With f = 1 and g = xj, (5.52) with V’- J = 0 estab-

lishes that

[16 d°x' = 0

Thefirst term in (5.51), corresponding to the monopole term in the electrostatic
expansion,is therefore absent. With f = x}, g =x; and V’-J = 0,(5.52) yields

The integral in the second term of (5.51) can therefore be written

x | x's dx' > x; xiJ; dex!
J

1“5 Da | uy ~ xy ate
1
9 » cnx | (x’ x J)x d?°x'

J»

-5 E x | (x’ x J) ary}
L
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It is customary to define the magnetic moment density or magnetization as

1
M(x) = 5 [x x J(x)] (5.53)

and its integral as the magnetic moment m:

1
m = 5 | x’ X J(x’) d?x’ (5.54)

Then the vector potential from the second term in (5.51) is the magnetic dipole
vector potential,

 ; (5.55)

Thisis the lowest nonvanishing term in the expansion of A fora localized steady-
state current distribution. The magnetic induction B outside the localized source
can be calculated directly by evaluating the curl of (5.55):

B(x) = 2 Pate “m) = "| (5.56)
Aa |x|?

Here n is a unit vector in the direction x. The magnetic induction (5.56) has
exactly the form (4.13) of the field of a dipole. This is the generalization of the
result found for the circular loop in the last section. Far away from anylocalized
current distribution the magnetic inductionis that of a magnetic dipole of dipole
momentgiven by (5.54).

If the current is confined to a plane, but otherwise arbitrary, loop, the mag-
netic moment can be expressedin a simple form.If the current J flows in a closed
circuit whose line elementis dl, (5.54) becomes

 

I
m=! ox x dl

For a plane loop suchasthat in Fig. 5.7, the magnetic momentis perpendicular
to the plane of the loop. Since 5|x x dl| = da, where da is the triangular element
of the area defined by the two ends of dl and the origin, the loop integral gives
the total area of the loop. Hence the magnetic moment has magnitude,

|m| = J X (Area) (5.57)

regardless of the shape of thecircuit.

da~, dl

 

 Figure 5.7
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If the current distribution is provided by a numberof charged particles with

charges gq; and masses M, in motion with velocities v;, the magnetic moment can

be expressed in terms of the orbital angular momentum ofthe particles. The

current density is

J = > qiV;5(x ~~ )

where x; is the position of the ith particle. Then the magnetic moment (5.54)
becomes

1
m =52 qi(X X Vi)

The vector product (x; X v;) is proportional to the 7th particle’s orbital angular
momentum, L; = M;(x; X v;). Thus the moment becomes

m = >, oA L, (5.58) 

If all the particles in motion have the same charge-to-massratio (q;/M; = e/M),
the magnetic moment can be written in terms of the total orbital angular mo-
mentum L:

e€ e€-—S[L=—Lm mM = ‘=a (5.59)

This is the well-known classical connection between angular momentum and

magnetic moment, which holds for orbital motion even on the atomicscale. But

this classical connection fails for the intrinsic moment of electrons and other
elementary particles. For electrons, the intrinsic momentis slightly more than

twice as large as implied by (5.59), with the spin angular momentum replacing
L. Thus we speak of the electron having a g factor of 2(1.00116). The departure
of the magnetic momentfrom its classical value has its origins in relativistic and
quantum-mechanical effects which we cannot considerhere.

Before leaving the topic of the fields of a localized current distribution, we
consider the spherical volume integral of the magnetic induction B. Just as in the
electrostatic case discussed at the end of Section 4.1, there are two limits of

interest, one in which the sphere of radius R containsall of the current and the
other where the current is completely external to the spherical volume. The vol-
umeintegral of B is

| B(x) d°x = | VxAdx (5.60)
r<R r<R

The volumeintegral of the curl of A can be integrated to give a surface integral.

Thus

| Bd’x = R? | donx A
r<R

where n is the outwardly directed normal. Substitution of (5.32) for A and an
interchange of the orders of integration permits this to be written as

| B d°x = #0 Re | ay’ J(x') x ——
r<R Aor x — x’|
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The angular integral is the same one as occurred in the electrostatic situation,
Making use of (4.16’), we therefore find for the integral of B over a spherical]
volume,

 
R?

| R B d’x = He | (Ax x J(x’) d°x' (5.61)

where(r., r..) are the smaller and larger of r’ and R.If all the current densityis
contained within the sphere, r- = r’ and r, = R. Then

2
| B dx = 2m (5.62)
r<R 3

where m is the total magnetic moment(5.54). For the opposite extreme of the
currentall external to the sphere, we have, by virtue of (5.14),

4aR?
| _Bd'x = 5 B(0) (5.63) 

The results (5.62) and (5.63) can be compared with their electrostatic counter-
parts (4.18) and (4.19). The difference between (5.62) and (4.18) is attributable
to the difference in the origins of the fields, one from charges andthe other from

circulating currents. If we wish to include the information of (5.62) in the mag-
netic dipole field (5.56), we must add a delta function contribution

B(x) = i fa wp = + =moc (5.64) 

The delta function term enters the expression for the hyperfine structure of

atomic s states (see the next section).

5.7 Force and Torque on and Energy of a Localized Current
Distribution in an External Magnetic Induction

If a localized distribution of current is placed in an external magnetic induction
B(x), it experiences forces and torques according to Ampére’s laws. The general

expressions for the total force and torque are given by (5.12) and (5.13). If the
external magnetic induction varies slowly over the region of current, a Taylor
series expansion can be utilized to find the dominant terms in the force and

torque. A component of B can be expanded arounda suitable origin,

Then the ith component of the force (5.12) becomes

F=> cnBuO {100+ d°x' + co - VB,(0) d°x' + os (5.66)
jk

Here €,, 1s the completely antisymmetric unit tensor (€,, = 1 for i = 1, j = 2,

k = 3, and anycyclic permutation, €, = —1 for other permutations, and Ei =

Q for two or more indices equal). The volumeintegral of J vanishes for steady
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currents; the lowest order contribution to the force comes from the second term

in (5.66). The result above (5.53) can be used [with x > VB,(0)| to yield

Fi = >» éx(m xX V),B,(x) (5.67)

After differentiation of B,(x), x is to be put to zero. This can be written vecto-
rially as

F=(m x V) x B = V(m-B) — m(V B) (5.68)

Since V-B = 0 generally, the lowest order force on a localized current distri-
bution in an external magnetic field B is

F = Vim- B) (5.69)

This force represents the rate of change of the total mechanical momentum,

including the “hidden mechanical momentum” associated with the presence of
electromagnetic momentum.(See Problems6.5 and 12.8, and the referencescited
at the end of Chapter 12.) The effective force in Newton’s equation of motion
of mass times acceleration is (5.69), augmented by (1/c’)(d/dt)(E X m), where E
is the external electric field at the position of the dipole. Apart from angular

factors, the relative size of the two contributionsis (cB/L) versus (£/A), where L
is the length scale over which B changessignificantly and 4 is the free-space

wavelength of radiation at the typical frequencies present in a Fourier decom-
position of the time-varyingelectricfield.

A localized current distribution in a nonuniform magnetic induction expe-
riences a force proportional to its magnetic moment m andgiven by (5.69). One
simple application of this result is the time-averaged force on a chargedparticle
spiraling in a nonuniform magnetic field. As is well known, a charged particle in
a uniform magnetic induction movesin a circle at right angles to the field and

with constantvelocity parallel to the field, tracing out a helical path. The circular
motion is, on the time average, equivalent to a circular loop of current that will
have a magnetic momentgiven by (5.57). If the field is not uniform but has a
small gradient (so that in one turn aroundthe helix the particle does not feel
significantly different field strengths), then the motion of the particle can be
discussed in terms of the force on the equivalent magnetic moment. Considera-
tion of the signs of the momentand the force showsthat charged particles tend

to be repelled by regions of high flux density, independentof the sign of their
charge. This is the basis of the ‘“‘magnetic mirrors,’ importantin the confinement

of plasmas.

The total torque on the localized current distribution is found in a similar

wayby inserting expansion (5.65) into (5.13). Here the zeroth-order term in the
expansion contributes. Keeping only this leading term, we have

N = [x x [J x B(0)] d°x’ (5.70)

Writing out the triple vector product, we get

N = | [(x' + B)J — (x'- JB] d°x'
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The first integral has the same form as the one considered in (5.66). Hence we
can write downits value immediately. The second integral vanishesfor a localized
steady-state current distribution, as can be seen from (5.52) with f = g =r’. The
leading term in the torque is therefore

N = m X B(0) (5.71)
This is the familiar expression for the torque on a dipole, discussed in Section
5.1 as one of the ways of defining the magnitude and direction of the magnetic
induction.

The potential energy of a permanent magnetic moment (or dipole) in an
external magneticfield can be obtained from either the force (5.69) or the torque
(5.71). If we interpret the force as the negative gradient of a potential energy U,
wefind

U=-m-B (5.72)

For a magnetic momentin a uniform field, the torque (5.71) can be interpreted
as the negative derivative of U with respect to the angle between B and m.This
well-knownresult for the potential energy of a dipole showsthat the dipole tends
to orientitself parallel to the field in the position of lowest potential energy.

We remark in passing that (5.72) is not the total energy of the magnetic
moment in the external field. In bringing the dipole m intoits final position in
the field, work must be doneto keep the current J, which produces m, constant.
Even thoughthefinalsituationis a steady state, there is a transient period initially
in which the relevant fields are time-dependent. This lies outside our present
considerations. Consequently we leave the discussion of the energy of magnetic
fields to Section 5.16, following Faraday’s law of induction.

The energy expression (5.72) can be employed in the treatment of magnetic
effects on atomic energylevels, as in the Zeeman effect or for the fine and hy-
perfine structure. The fine structure can be viewed as coming from differences
in energy of an electron’s intrinsic magnetic moment ,in the magneticfield seen
in its rest frame. Fine structure, with the subtle complication of Thomas preces-
sion, is discussed briefly in Chapter 11. The hyperfine interaction is that of the
magnetic moment py of the nucleus with the magnetic field produced by the
electron. The interaction Hamiltonian is (5.72) with m = py and B equalto the
magneticfield of the electron, evaluated at the position of the nucleus (x = 0).
Thisfield has two parts; oneis the dipole field (5.64) and the otheris the magnetic
field produced by the orbital motion of the electron’s charge. Thelatteris given
nonrelativistically by (5.5) and can be expressed as Borita(O) = pwoeL/4amr?,
where L = x X mvis the orbital angular momentum of the electron about the
nucleus. The hyperfine Hamiltonian is therefore

Ho Sar
Hups = Aq {82 Pe ° 18(X)

 

r mM

(5.73)Syeeeee

The expectation values of this Hamiltonian in the various atomic (and nuclear
spin) states yield the hyperfine energy shifts. For spherically symmetric s states
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the second term in (5.73) gives a zero expectation value. The hyperfine energy

comessolely from thefirst term:

Lo 87
AE=—7> | (0) |? (me + be) (5.74)

For / # 0, the hyperfine energy comes entirely from the second term in (5.73)
because the wave functions for / # 0 vanish at the origin. These expressions are

due to Fermi, who obtained them from the Dirac equation (1930). In applying
(5.73) and (5.74) it should be rememberedthat the charge e is negative and that
1. points in the opposite direction to the electron’s spin. The energy difference

(5.74) between the singlet and triplet states of the 1s state of atomic hydrogenis
the source of the famous 21 cm line in astrophysics.

The difference of the ‘‘contact”’ term in (5.73) from the electric dipole form
(4.20) allows us to draw a conclusion concerning the nature of intrinsic magnetic

moments. While orbital magnetic moments are obviously caused by circulating
currents,it is a priori possible that the intrinsic magnetic moments of elementary
particles such as the electron, positron, muon, proton, and neutron are caused

by magnetic charges, arranged in magnetically neutral configurations (no net
magnetic charge). If the electron and proton magnetic moments were caused by

groups of magnetic charges, the coefficient 87/3 in (5.74) would be replaced by
—477/3! The astrophysical hyperfine line of atomic hydrogen would be at 42 cm
wavelength, and the singlet and triplet states would be reversed. The experimen-
tal results on positronium and muonium, as well as the magnetic scattering of

neutrons, give strong additional support to the conclusion that intrinsic magnetic

moments of particles can be attributed to electric currents, not magnetic charges.”

5.8 Macroscopic Equations, Boundary Conditions on B and H

So far we have dealt with the basic laws (5.26) of steady-state magneticfields as
microscopic equations in the sense of the Introduction and Chapter 4. We have
assumedthat the current density J was a completely known function of position.

In macroscopic problemsthis is often not true. The atoms in matter have elec-

trons that give rise to effective atomic currents, the current density of whichis a
rapidly fluctuating quantity. Only its average over a macroscopic volume is
knownorpertinent. Furthermore, the atomic electrons contribute intrinsic mag-
netic moments in addition to those from their orbital motion. All these moments
can give rise to dipole fields that vary appreciably on the atomic scale of

dimensions.
The process of averaging the microscopic equations to obtain a macroscopic

description of magnetic fields in ponderable mediais discussedin detail in Chap-
ter 6. Here, just as in Chapter 4, we give only a sketch of the elementary

“There is a caveat that all particles must have the sameorigin for their moments. For a pedagogical

discussion of the experiments, see J. D. Jackson, The nature of intrinsic magnetic dipole moments,
CERNReport No. 77-17, CERN, Geneva(1977), reprinted in The International Community ofPhys-

icists: Essays on Physics and Society in HonorofVictor Frederick Weisskopf, ed. V. Stefan, AIP Press/

Springer-Verlag, New York (1997).
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derivation. The first step is to observe that the averaging of the equation,

V ° Bnicro = 0, leads to the same equation

V-B=0 (5.75)

for the macroscopic magnetic induction. Thus wecanstill use the concept of a
vector potential A(x) whosecurl gives B. The large numberof molecules or atoms
per unit volume, each with its molecular magnetic moment m,, gives rise to an

average macroscopic magnetization or magnetic momentdensity,

M(x) = » N<m,) (5.76)

where N;is the average numberper unit volume of molecules of type i and (m,)

is the average molecular momentin a small volumeat the point x. In addition

to the bulk magnetization, we supposethat there is a macroscopic current density
J(x) from the flow of free charge in the medium. Then the vector potential from
a small volume AVat the point x’ will be

AA(x) = #2 te AV _ M@’) x (x = x") Av)
4a |x x’ | Ix x’|

This is the magnetic analog of (4.30). The second term is the dipole vector po-
tential (5.55). Letting AV becomethe macroscopically infinitesimal d°*x', the total
vector potential at x can be written as the integral over all space,

A(x) = bo | Vx) MQ) x & = are (5.77)
Ix — x’| Ix — x’P
 

The magnetization term can be rewritten as follows:

[ Meo XK) pyr = [ mew) x v(—- =) dex!
Ix — x’[?
 

Now anintegration by parts casts the gradient operator over onto the magneti-
zation and also gives a surface integral. If M(x’) is well behaved and localized,
the surface integral vanishes. The vector potential (5.77) then becomes

_ po [J(x') + V’ X M(x’)]

a(n) = He | x — x’ |
 d°x' (5.78)

The magnetization is seen to contribute an effective current density,

Ju =VXM (5.79)

The macroscopic equivalent of the microscopic equation, V X Byico =

MoSmicro, Can be read off from (5.78). If the equations (5.26) have (5.32) as a
solution, then (5.78) implies that J + Jy, plays the role of the current in the
macroscopic equivalent, that is:

Vx B=p/J+V x M] (5.80)

The V x M term can be combined with B to define a new macroscopicfield H,
called the magnetic field,

1
H=—-B—-M (5.81)

Mo
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Then the macroscopic equations, replacing (5.26), are

VxH=J
5.82

V-B=0 (9:82)

The introduction of H as a macroscopic field is completely analogous to the

introduction of D for the electrostatic field. The macroscopic equations (5.82)

have their electrostatic counterparts,

V-D=pop
5.83

VxE=0 ( )

Weemphasize that the fundamentalfields are E and B. Theysatisfy the homo-
geneous equations in (5.82) and (5.83). The derived fields, D and H,are intro-
duced as a matter of convenience, to permit us to take into account in an average
way the contributions to p and J of the atomic charges and currents.

To complete the description of macroscopic magnetostatics, there must be a
constitutive relation between H and B. As discussed in the Introduction, for

isotropic diamagnetic and paramagnetic substances the simple linear relation

B = pH (5.84)

holds, being a parameter characteristic of the medium and called the magnetic

permeability. Typically s/o differs from unity by only a few parts in 10° (u > Mo
for paramagnetic substances and uw < py for diamagnetic). For the ferromagnetic
substances, (5.84) must be replaced by a nonlinear functional relationship,

B = F(H) (5.85)

The phenomenonof hysteresis, shown schematically in Fig. 5.8, implies that B is
not a single-valued function of H. In fact, the function F(H) depends on the

history of preparation of the material. The incremental permeability u(H) is
defined as the derivative of B with respect to H, assuming that B and H are

parallel. For high-permeability substances, (H)/o can be as high as 10°. Most

untreated ferromagnetic materials have a linear relation (5.84) between B and
H for very small fields. Typical values of initial relative permeability range from

10 to 10%.

Cf.
L
 

Figure 5.8 Hysteresis loop giving B ina
ferromagnetic material as a function of H. 
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Figure 5.9

The complicated relationship between B and H in ferromagnetic materials
makes analysis of magnetic boundary-value problems inherently moredifficult
than that of similar electrostatic problems. But the very large values of rela-
tive permeability sometimes allow simplifying assumptions on the boundary
conditions.

The boundary conditions for B and H at an interface between two media are
derived in Section I.5. There it is shown that the normal components of B and

the tangential components of H on either side of the boundaryare related ac-
cording to

(B, — B,)-n

n X (H, — H,)

0 (5.86)
K (5.87)

where n is a unit normal pointing from region 1 into region 2 and K is the ide-
alized surface current density. For media satisfying linear relations of the form
(5.84) the boundary conditions can be expressed alternatively as

B,-n = B,-n, B,xn=—B, xn (5.88)
My

or

H-n=“H-n, Hxn=H, xn (5.89)
M2

If uw, >> py, the normal component of H, is much larger than the normal com-

ponent of H,, as shown in Fig. 5.9. In the limit (4;/u.) > ©, the magneticfield

H,is normalto the boundarysurface, independentofthe direction of H, (barring
the exceptional case of H, exactly parallel to the interface). The boundary con-
dition on H at the surface of a material of very high permeability is thus the same

as for the electric field at the surface of a conductor. We maytherefore use

electrostatic potential theory for the magnetic field. The surfaces of the high-

permeability material are approximately ‘‘equipotentials,”’ and the lines of H are
normalto these equipotentials. This analogy is exploited in many magnet-design
problems. The type offield is decided upon, and the pole faces are shaped to be

equipotential surfaces. See Section 5.14 for further discussion.

5.9 Methods ofSolving Boundary- Value Problems
in Magnetostatics

The basic equations of magnetostatics are

V-B=0, VxH=J (5.90)
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with some constitutive relation between B and H. Thevariety of situations that

can occur in practice is such that a survey of different techniques for solving
boundary-value problems in magnetostatics is worthwhile.

A. Generally Applicable Method of the Vector Potential

Because of the first equation in (5.90) we can always introduce a vector
potential A(x) such that

B=VxA

If we have an explicit constitutive relation, H = H[B], then the second equation

in (5.90) can be written

Vx HIV x AJ = J

This is, in general, a very complicated differential equation, even if the current
distribution is simple, unless H and B are simply related. For linear media with
B = uH,the equation becomes

V x (Av xa) = J (5.91)
U

If u is constant over a finite region of space, then in that region (5.91) can be

written

V(V-A)-VA=BpJ (5.92)

With the choice of the Coulomb gauge (V- A = 0), this becomes (5.31) with a
modified current density, (44/49)J. The situation closely parallels the treatment

of uniform isotropic dielectric media where the effective charge density in the
Poisson equation is €p/e. Solutions of (5.92) in different linear media must be
matched across the boundary surfaces using the boundary conditions (5.88)

or (5.89).

B. J = 0; Magnetic Scalar Potential

If the current density vanishes in some finite region of space, the second

equation in (5.90) becomes V X H = 0. This implies that we can introduce a
magnetic scalar potential ®,, such that

H = -V0,, (5.93)

just as E = —V® in electrostatics. With an explicit constitutive relation,this time
of B = B[H], the V- B = 0 equation can bewritten

V - B[-V®,,] = 0

Again, this is a very complicated differential equation unless the medium is /inear,
in which case the equation becomes

V+ (uV®y,) =0 (5.94)

If w is at least piecewise constant, in each region the magnetic scalar potential
satisfies the Laplace equation,

VOy =
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The solutions in the different regions are connected via the boundaryconditions
(5.89). Note that in this last circumstance of piecewise constancy of jw, we can
also write B = —VWV,, with V’V,, = 0. With this alternative scalar potential the
boundary conditions (5.88) are appropriate.

The concept of a magnetic scalar potential can be used fruitfully for closed

loops of current. It can be shown that ®,, is proportional to the solid angle

subtended by the boundary of the loop at the observation point. See Problem
5.1. Such a potential is evidently multiple-valued.

C. Hard Ferromagnets (M given and J = 0)

A commonpractical situation concerns “hard” ferromagnets, having a mag-
netization that is essentially independent of applied fields for moderate field

strengths. Such materials can be treated as if they had a fixed, specified magne-

tization M(x).

(a) Scalar Potential

Since J = 0, the magnetic scalar potential ®,, can be employed. Thefirst
equation in (5.90) is written as

V-B=,,V- (H+ M)=0

Then with (5.93) it becomes a magnetostatic Poisson equation,

 

V’-Oy = —pu (5.95)

with the effective magnetic-charge density,

Pm = -V-M (5.96)

The solution for the potential ®,, if there are no boundarysurfacesis

P(x) = -= ad°x' (5.97)

If M is well behaved andlocalized, an integration by parts may be performed to
yield

P(x) = + | M(x’) - v( ; d°x'
Aa Ix — x’|

Then

rhcta) Gch[x — x’| Ix — x’|

Dy(x) = -7-v- OD
In passing we observethat far from the region of nonvanishing magnetization

the potential may be approximated by

@,,(x) =~ zr}). [ mw) d3x'

m-x

may be used to give

dx! (5.98)
IX — x"

 

4or>
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where m = JM d°xis the total magnetic moment. This is the scalar potential of
a dipole, as can be seen from theelectrostatic (4.10). Thus an arbitrary localized
distribution of magnetization asymptotically has a dipole field with strength given
by the total magnetic momentof the distribution.

While physical distributions of magnetization are mathematically well be-
haved and without discontinuities, it is sometimes convenientto idealize the re-

ality and treat M(x) asif it were discontinuous. Thus, if a “hard’’ ferromagnet
has a volume V andsurface S, we specify M(x) inside V and assumethatitfalls

suddenly to zero at the surface $. Application of the divergence theorem to py

(5.96) in a Gaussian pillbox straddling the surface showsthat there is an effective
magnetic surface-charge density,

where n is the outwardly directed normal. Then instead of (5.97) the potential is
given by

1 V' - M(x’) 1 n’- M(x’) da’_ d°x' + —

4a Jv |x —x'| * da Js Ix — x’|
 P(x) = (5.100)

An important special case is that of uniform magnetization throughout the vol-
ume V. Thenthefirst term vanishes; only the surface integral over o,, contributes.

It is important to note that (5.98) is generally applicable, even for the limit
of discontinuousdistributions of M, because we can introduce a limiting proce-
dure after transforming(5.97) into (5.98) in order to discuss discontinuities in M.
Never combinethe surface integral of Oy with (5.98)!

(b) Vector Potential

If we choose to write B = V X A to satisfy V- B = 0 automatically, then we
write the second equation of (5.90) as

V xX H=V X (B/uy — M) = 0

This leads to the Poisson equation for A in the Coulomb gauge,

where Jy, is the effective magnetic current density (5.79). The solution for the
vector potential in the absence of boundary surfaces is

bu VX M(x’)
Aa Ix — x'|

A(x) = d°x' (5.102)

as was already shownin (5.78). An alternative form is given by the magnetization
term in (5.77).

If the distribution of magnetization is discontinuous, it is necessary to add a
surface integral to (5.102). Starting from (5.77) it can be shown that for M dis-
continuously falling to zero at the surface S bounding the volume V,the gener-
alization of (5.102)is

V' x ' M / 4 '

A(x) = He MOD pay4 Hog MODXO
Andy |x —x'| 4nJs |x —x’|

da' (5.103)

The effective surface current (M xX n) can also be understood by expressing the
boundary condition (5.87) for tangential H in terms of B and M. Again,if M is
constant throughout the volume, only the surface integral survives.
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5.10 Uniformly Magnetized Sphere

To illustrate the different methods possible for the solution of a boundary-value
problem in magnetostatics, we consider in Fig. 5.10 the simple problem of a
sphere of radius a, with a uniform permanent magnetization M of magnitude M,
and parallel to the z axis, embedded in a nonpermeable medium.

The simplest method of solution is that of part C(a) of the precedingsection,
via the magnetic scalar potential in spherical coordinates and a surface magnetic-
charge density o4,(6). With M = Moe; and ay, = n-M = M, cos 8,the solution
(5.100) for the potentialis

Ma’ , cos @’

u(r = TEE | ao ix—x'|
 

With the expansion (3.38) or (3.70) for the inverse distance, only the / = 1 term
survives. The potentialis

1 <Dy(r, 8) = = Moa’ > cos 6 (5.104)
>

where (r., r.) are smaller and larger of (r, a). Inside the sphere, r- = r and

r, = a. Then ®y = (1/3)Mor cos 6 = (1/3)Moz. The magnetic field and magnetic
induction inside the sphere are therefore

1 2
H,=-5M, Bis = s M (5.105)

Wenote that B,, is parallel to M, while H,,, is antiparallel. Outside the sphere,
r-=aandr, =r. The potential is thus

1 3 COS 6
 

 

Py = 3 Moa 2 (5.106)

This is the potential of a dipole with dipole moment,

4 3

m = + M (5.107)

For the sphere with uniform magnetization,the fields are not only dipole in char-
acter asymptotically, but also close to the sphere. For this special geometry (and
this only) there are no higher multipoles.

The lines of B and H are shownin Fig. 5.11. The lines of B are continuous
closed paths, but those of H terminate on the surface because thereis an effective

surface-charge density oy.

M = Moes  
 

Figure 5.10
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B H

Figure 5.11 Lines of B andlines of H for a uniformly magnetized sphere. Thelines of
B are closed curves, but the lines of H originate on the surface of the sphere where the
effective surface magnetic “‘charge,” oy, resides.

Brief mention should be made of employing (5.98) instead of (5.100). With
M = Moe; inside the sphere,(5.98) gives

1 a [° 1outr.)= bm 2 [rar favtosm(?, 8) tg as Jy r’ dr' d x — x" (5.108)

Now only the / = O term in expansion of the inverse separation survives the
angular integration and the integral is a function only of r. With dr/dz = cos0,
the potentialis

r'2 dr’

rs

 
3 a

® =-M o|M(’, oD) 0 cos @ = 0

Integration over r' leads directly to the expression (5.104) for By.
Analternative solution can be accomplished by meansof the vector potential

and (5.103). Because M is uniform inside the sphere the volumecurrent density
Jx, vanishes, but there is a surface contribution. With M = Moe;, we have

M xX n’ = Mo sin 6’e,

= M, sin 6'(—sin d'e, + cos d’€,)

Because of the azimuthal symmetry of the problem we can choose the observa-

tion point in the x-z plane (¢ = 0), just as in Section 5.5. Then only the y com-
ponent of M xX n’ survives integration over the azimuth, giving an azimuthal
componentof the vector potential,

sin 8’ cos ¢'
A(x) = a Mya | dQ! (5.109)

Ix — x’|
where x’ has coordinates (a, 6’, @'). The angular factor can be written

sin 6' cos’ = -/2 Re[Y,,(6', ¢')] (5.110)
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Thus with expansion (3.70) for |x — x’| only the / = 1, m = 1 term will survive.
Consequently

Ag(x) = 5 Moe?“ sin 6 (5.111)

where r. (r.) is the smaller (larger) of r and a. With only a ¢ componentof A,
the components of the magnetic induction B are given by (5.38). Equation (5111)
evidently gives the uniform B inside and the dipole field outside, as found before.

5.11 Magnetized Sphere in an External Field; Permanent Magnets

In Section 5.10 we discussedthefields of a uniformly magnetized sphere. Because
of the linearity of the field equations we can superpose a uniform magneticin-
duction By = oH) throughout all space. Then we have the problem of a uni-
formly magnetized sphere in an external field. From (5.105) we find that the
magnetic induction andfield inside the sphere are now

2B,, = By + S M
(5.112)

Hi, = Bo — >M
Mo 3

Wenow imaginethat the sphere is not a permanently magnetized object, but
rather a paramagnetic or diamagnetic substance of permeability w. Then the
magnetization M is a result of the application of the external field. To find the
magnitude of M we use (5.84):

B;, = wHn (5.113)

Thus

2 1 1
B, + —2@M = »|—B, —-M (5.114)

3 Mo 3

This gives a magnetization,

3 —_—

M = — (2), (5.115)
Mo \b + 2M

We note that this is completely analogous to the polarization P of a dielectric
sphere in a uniform electric field (4.57).

For a ferromagnetic substance, the arguments of the preceding paragraph
fail. Equation (5.115) implies that the magnetization vanishes whenthe external
field vanishes. The existence of permanent magnets contradicts this result. The
nonlinearrelation (5.85) and the phenomenonofhysteresis allow the creation of
permanent magnets. We can solve equations (5.112) for one relation between
H;,, and B;,, by eliminating M:

B., + 2oH, = 3Bo (5.116)

The hysteresis curve provides the other relation between B,,, and H,,, so that
specific values can be found for any externalfield. Equation (5.116) corresponds
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 Figure 5.12

to a line with slope —2 on the hysteresis diagram with intercept 3B, on the y axis,
as in Fig. 5.12. Suppose, for example, that the externalfield is increased until the

ferromagnetic sphere becomessaturated and then decreased to zero. The internal
B and H will then be given bythe point marked P in Fig. 5.12. The magnetization
can be found from (5.112) with By = 0.

The relation (5.116) between B,, and Hj, is specific to the sphere. For other
geometries other relations pertain. The problem of the ellipsoid can be solved
exactly and showsthat the slope of the lines (5.116) range from zero fora flat

disc to — for a long needle-like object. Thusa larger internal magnetic induction
can be obtained with a rod geometry than with spherical or oblate spheroidal
shapes.

5.12 Magnetic Shielding, Spherical Shell
ofPermeable Material in a Uniform Field

Suppose that a certain magnetic induction By = oHexists in a region of empty
space initially. A permeable bodyis now placed in the region. Thelines of mag-
netic induction are modified. From our remarks at the end of Section 5.8 con-
cerning media of very high permeability, we would expectthe field lines to tend
to be normal to the surface of the body. Carrying the analogy with conductors
further, if the body is hollow, we would expect the field in the cavity to be smaller
than the externalfield, vanishing in the limit 4 — %. Such a reductioninfield is
said to be due to the magnetic shielding provided by the permeable material. It

is of considerable practical importance, since essentially field-free regions are
often necessary or desirable for experimental purposesorfor the reliable working

of electronic devices.
As an example of the phenomenon of magnetic shielding we consider a

spherical shell of inner (outer) radius a (b), made of material of permeability py,
and placed in a formerly uniform constant magnetic induction By, as shown in
Fig. 5.13. We wish to find the fields B and H everywhere in space, but most
particularly in the cavity (r < a), as functions of w. Since there are no currents
present, the magnetic field H is derivable from a scalar potential, H = —V®,,.

Furthermore, since B = wH, the divergence equation V-B = 0 becomes
V-H = 0 in the various regions. Thus the potential ®,, satisfies the Laplace
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Figure 5.13 

equation everywhere. The problem reducesto finding the propersolutionsin the
different regions to satisfy the boundary conditions (5.89) at r = a and r = b.

For r > b, the potential must be of the form,

®y = —Hprcos6+ > oa P,(cos 6) (5.117)
l=0

to give the uniform field, H = Hp, at large distances. For the inner regions, the
potential must be

oO

1
axr< b Oxy = S (sr + VI <x)Pico 0)

1=0 r
~ (5.118)

r<a ®y = >, &r'P,(cos 8)
i=0

The boundary conditions at r = a and r = bare that H, and B, be continuous.
In terms of the potential ®,, these conditions become

aDyy _ aDy aDyy — dDy
50 (b.) = 50 (b_) 50 (a.) = 50 (a_) 6.19)

IDy (b.) = IDy (b APru ( ) = IPui
Ho (04) = We (B-) MS (a+) = Mo “a (4-)

The notation b. means the limit r > b approached from r 2 b, andsimilarly for
a.. These four conditions, which holdforall angles 6, are sufficient to determine

the unknownconstants in (5.117) and (5.118). All coefficients with / # 1 vanish.
The / = 1 coefficients satisfy the four simultaneous equations

a —- bp, - v1 = bH

2a, + w'b°B, — 2m = —b°Hy

a’By + V1 —a°s, = 0

paBy, — 2p'y, —a°6; = 0

(5.120)

Here we have used the notation 4’ = p/p to simplify the equations. The solu-
tions for a, and 6, are

(Qu' + 1)(u' — 1) (b> — @)H,
Oy 3

Qu’ + (ul + 2) 255 (uw! — 1) (5.121)
9

6 = - r oe A

(2u' + (ul + 2) — 255 (wu — IY
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Figure 5.14 Shielding effect of a shell of highly permeable material.

The potential outside the spherical shell corresponds to a uniform field Hp plus
a dipole field (5.41) with dipole moment a, oriented parallel to Ho. Inside the
cavity, there is a uniform magnetic field parallel to Hp and equal in magnitude
to —6,. For uw >> po, the dipole moment a, andthe inner field —6, become

a, => b°H,

9[0

a
2u(1 — a

Weseethat the innerfield is proportional to ~~'. Consequently a shield made

of high-permeability material with 1/1) ~ 10° to 10° causes a great reduction in
the field inside it, even with a relatively thin shell. Figure 5.14 showsthe behavior
of the lines of B. Thelines tend to pass through the permeable medium if possible.

(5.122)
—§,—> Ao

5.13 Effect of a Circular Hole in a Perfectly Conducting Plane
with an Asymptotically Uniform Tangential Magnetic Field

on One Side

Section 3.13 discussed the electrostatic problem of a circular hole in a conducting
plane with an asymptotically uniform normal electric field. Its magnetic counter-

part has a uniform tangential magnetic field asymptotically. The two examples
are useful in the treatment of small holes in wave guides and resonant cavities

(see Section 9.5).
Before sketching the solution of the magnetostatic boundary-value problem,

we must discuss what we mean by a perfect conductor. Static magnetic fields
penetrate conductors, even excellent ones. The conductor modifies the fields only
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because of its magnetic properties, not its conductivity, unless of course thereis
current flow inside. With time-varyingfields it is often otherwise. It is shown in
Section 5.18 that at the interface between conductor and nonconductor,fields
with harmonic time dependence penetrate only a distance of the order of
5 = (2/wwo)'” into the conductor, where w is the frequency and o the conduc-
tivity. For any nonvanishing w, therefore, the skin depth 5 > 0 as a > . Os-
cillating electric and magnetic fields do not exist inside a perfect conductor. We
define magnetostatic problems with perfect conductors as the limit of harmoni-
cally varying fields as w — 0, provided at the same time that wa — ©. Then the
magnetic field can exist outside and up to the surface of the conductor, but not
inside. The boundary conditions (5.86) and (5.87) show that B-n = 0,n X H =
K at the surface. These boundary conditions are the magnetostatic counterparts
of the electrostatic boundary conditions, E,,,, = 0, D-n = a, at the surface of a
conductor, where in this last relation a is the surface-charge density, not the
conductivity!

Weconsider a perfectly conducting plane at z = 0 with a hole of radius a
centered at the origin, as shown in Fig. 5.15. For simplicity we assume that the
medium surrounding the plane is uniform, isotropic, and linear and that thereis
a uniform tangential magnetic field H, in the y direction in the region z > 0 far
from the hole, and zero field asymptotically for z < 0. Other possibilities can be
obtained by linear superposition. Because there are no currents present except
on the surface z = 0, we can use H = —V®y,with the magneticscalar potential
®,,(x) satisfying the Laplace equation with suitable mixed boundary conditions.
Then we can parallel the solution of Section 3.13.

The potential is written as

—-Hy +®”  forz>0

Pulx) = je for z <0

The reversal of sign for the added potential ®“below the plane is a consequence
of the symmetry properties of the added fields—Hand H®are oddin z, while
HY and ®™are even in z. This can be inferred from (5. 14) with the realization
that the effective currentis only on the surface z = 0,as is the effective magnetic-
charge density that determinesthe scalar potential ®™.

From (3.106) the added potential can be written in cylindrical coordinates as

(5.123)

D(x) = in dk A(k)e~*'J,(kp) sin b (5.124)

   
Figure 5.15
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Only m = 1 enters becausethe holeis cylindrically symmetric and the asymptotic
field varies as y = p sin d@. From the boundary conditions on normal B andtan-
gential H wefind that the boundary conditions on the full potential ®,, are

®y continuous across z = 0 forO = p<a

a®D
~~ = Oatz=0 fora<p<©

Zz

These requirements imply the dual integral equations,

| dk A(k)J\(kp) = Hopl2 forO0<p<a
e (5.125)

| dk kA(k)J,(kp) = 0 fora< p<
0

These are closely related to, but different from, the electrostatic set (3.178) or
(3.179). The necessary pair here are

| dy g(y)J,(yx) = x” forO <x <1

' (5.126)
| dy yg(y)J,(yx) = 0 forl<x< ©
0

with solution,

 

1/2

260) = FEDjy) = FD (2) paso) (6127
In (5.125) we have g = 2A(k)/Hoa’, n = 1, x = p/a, and y = ka. Hence

A(k) = 2H j\(ka) (5.128)

The added potential 1s therefore

P(x) = 2H |. dk j,(ka)e*'*\J,(kp) sin b (5.129)

By methodssimilar to those of Section 3.13 it can be shown that far from the
opening the added potential has the asymptotic form

2Ha?P(x) > —— 2 (5.130)
TT

r°

This is the potential of a dipole aligned in the y direction, the direction of Ho.
Because of the signs in (5.123), the circular hole is equivalent at large distances
to a magnetic dipole with moment

8a°
m = — H) for z 20 (5.131)

where Hy,is the tangential magnetic field on the z = 0” side of the plane in
the absence of the hole. Later (Fig. 9.4) we show qualitatively how the magnetic
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field lines distort to give rise to the dipole field. In the openingitself (z = 0,
0 = p < a) the tangential and normal components of the magnetic field are

1
Han — 2 Hy (5 132)

Hp, 0) = 222 |
2(p, 0) = 7 Veop

Comparison with the corresponding electrostatic problem in Section 3.13
shows similarities and differences. Roughly speaking, the roles of tangential and
normal componentsoffields have been interchanged. Theeffective dipoles point
in the directions of the asymptotic fields, but the magnetic moment(5.131) is a

factor of 2 larger than the electrostatic moment (3.183) for the samefield
strengths. For arbitrarily shaped holes the far field in the electrostatic case1sstill
that of a dipole normal to the plane, while the magnetic case hasits effective
dipole in the plane, but now the direction of the magnetic dipole depends on
both the field direction and the orientation of the hole (the hole has an aniso-
tropic magnetic susceptibility).

5.14. Numerical Methodsfor Two-Dimensional Magnetic Fields

Magnetic fields in the presence of iron or other highly permeable materials can
be evaluated numerically in two dimensionsby the relaxation method described
in Section 1.13 or, more generally, by the method of finite element analysis of
Section 2.12. The problems can beclassed as “‘interior”’ or ‘‘exterior,” depending
whetherthe current flow and/or magnetized material and desired field are within
the same region.

First consider the boundary conditions for the field components at the

smooth interface of a highly permeable medium and a nonpermeable one. Lo-

cally, the interface can be approximated by a plane. The boundary conditions
are that the tangential component of H and the normal component of B are
continuousacrossthe interface, if there are no surface currents. Figure 5.16 is a

 

>> Lg L = Uo

Uo, By Lig= BO

UoH\ VY up (0) © pO) B =H
Hoff) = Bi 0

Y  
Figure 5.16 Illustration of the effect of large permeability on the componentsof the
magnetic induction and magnetic field on either side of an interface. The sketch has
ft ~ Spo, not a very high permeability!
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sketch of the behavior of the field components, similar to Fig. 5.9 but showing
both B and H components.For a given “external” field Bin the nonpermeable

region, the components of B (and H) in the highly permeable medium are more
closely parallel to the interface. The magnitude of the magnetic induction just
inside the highly permeable medium is

Vm
| BI? _ BOY +4 = Bi”

Ko

while the energy per unit volume (see Section 5.16) there 1s

i IB)? = i BO? + a BO”

2b 2b 2Mo

These tworelations are immediately useful in learning the appropriate boundary
conditions of ‘‘exterior’’ and “‘interior” problemsin the limit p/p. > @~.

The most familiar static magnetic fields are those around a permanent mag-
net of high permeability or an iron core excited by remote current-carrying wind-

ings. The region of interest is the nonpermeable region bounded by the highly

permeable pole face or faces—the archetypal “exterior” problem. If we suppose
that the stored energy within the highly permeable medium isfinite, the energy

relation showsthat, as p/j4, — ©, the parallel component of the magnetic field

outside must vanish: the ‘‘external’’ magnetic field at the surface is perpendicular

to the interface. These are just the boundary conditionsfor the electrostatic field
at the surface of a conducting boundary, as mentioned at the end of Section
5.8. If there are no currents within the nonpermeable region of interest, then

V x H = O there and we can write H = —V®,,. The magnetic scalar potential
satisfies the Laplace equation, V’Py = 0, with the “‘pole pieces,” surfaces of
constant potential; the analogy with electrostatics is complete.

For simplicity we restrict our discussion of “interior” problems to two di-
mensions, with steady current flow only in the third direction in a uniform,highly
permeable conducting medium. Weare interested in the magnetic induction
within the medium—for example,a longiron third rail of a subway system. The
current flow produces a magnetic induction both inside and outside the medium.

Whatever the magnitudesof the parallel and perpendicular componentsjust out-
side, the boundary conditions assure that B is parallel to the surface of the me-

dium just inside as p/py) > ©.

If the current density has only a z component, J,(x, y), the vector potential
A has only a z component, A,(x, y), which satisfies the Poisson equation,
V’A, = —pJ,. The field components are B, = 0A,/dy, B, = —0A,/ax, B, = 0.
If the internal field B is tangential to the boundary C of the region R sketched
in Fig. 5.17, we haven+(V, X A) = (nx V,)- A =0onC.Thegradient operator
in the x-y plane can be resolved into componentsparallel to and perpendicular

to n. The boundary condition thus becomes

aA, = 0
ol

where dl is an element of arc length along C. The vector potential is constant
along the boundary curve C. Furthermore,we caninfer that in the interior region
R the magneticfield lines are parallel to the contours of constant A,. Because B
= V x A,the density of lines of force is given by the derivative of A, perpen-
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Figure 5.17 Cross section of a long, highly permeable
cylindrical conductor with current flow alongits length.

 

dicular to the surfaces of constant value; the spacing of contours of constant A,
with equal increments in A, will show the intensity of the field as well asits
direction.

In implementing numerical methods of solution of the Poisson equation,
V*A, = —pJ,, boundary conditions must be specified. That seems to mean the
constant value of A, on the contour C. But the vector potential is arbitrary
to within addition of the gradient of a scalar function y. With the choice,
X = —Ao:Z, where Ag is the yet undetermined value of A, on C, we define
Az, = A,(x, y) — Ap. The Poisson equation problem to be solved then becomes
V*A; = pJ, within R with the homogeneous boundary condition A! = 0 on the
boundary C. The value of A, on C is not physically meaningful and is not
needed. With J,(x, y) specified, the solution by the relaxation technique proceeds
as in Section 1.13.

Powerful numerical codes exist to solve more realistic magnetic field prob-
lems where, for example, the different permeable materials have large, but not
infinite, values of 1/49. References are given at the end of the chapter.

5.15 Faraday’s Law ofInduction

Thefirst quantitative observations relating time-dependentelectric and magnetic
fields were made by Faraday (1831) in experiments on the behavior of currents
in circuits placed in time-varying magnetic fields. Faraday observed that a tran-
sient current is inducedin a circuit if (a) the steady current flowing in an adjacent
circuit is turned on oroff, (b) the adjacent circuit with a steady current flowing
is movedrelative to thefirst circuit, (c) a permanent magnetis thrust into or out
of the circuit. No currentflows unless either the adjacent current changesor there
is relative motion. Faraday attributed the transient current flow to a changing
magnetic flux linked by the circuit. The changing flux induces anelectric field
around the circuit, the line integral of whichis called the electromotive force, &.
The electromotive force causes a current flow, according to Ohm’slaw.

We now express Faraday’s observations in quantitative mathematical terms.
Let the circuit C be boundedby an open surface S with unit normaln, as in Fig.
5.18. The magnetic induction in the neighborhoodofthe circuit is B. The mag-
netic flux linking the circuit is defined by

F= | B-nda (5.133)
S
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Figure 5.18

The electromotive force around thecircuit 1s

€é= ¢ E'- dl (5.134)
C

where E’ is the electric field at the element dl of the circuit C. Faraday’s obser-

vations are summedup in the mathematicallaw,

dF
© k ih (5.135)

The induced electromotive force around the circuit is proportional to the time

rate of change of magneticflux linking the circuit. The sign is specified by Lenz’s

law, which states that the induced current (and accompanying magnetic flux) is
in such a direction as to oppose the change offlux through the circuit.

The constant of proportionality k depends on the choice of units for the

electric and magnetic field quantities. It is not, as might at first be supposed, an

independent empirical constant to be determined from experiment. As wewill

see immediately, once the units and dimensions in Ampére’s law have been cho-

sen, the magnitude and dimensions of k follow from the assumption of Galilean

invariance for Faraday’s law. For SI units, k = 1; for Gaussian units, k = cl,

where c is the velocity of light.

Before the developmentof special relativity (and even afterward, when in-

vestigators were dealing with relative speeds that were small compared with the

velocity of light), it was understood, although not often explicitly stated, by all

physicists that physical laws should be invariant under Galilean transformations.

That is, physical phenomenaare the same when viewed by twoobservers moving

with a constant velocity v relative to one another, provided the coordinates in

space and time are related by the Galilean transformation, x’ = x — vi, t' = 8.

In particular, consider Faraday’s observations. It is expected and experimentally

verified that the same currentis induced in a secondarycircuit whetherit is moved

while the primary circuit through which currentis flowing is stationary or it is

held fixed while the primary circuit is moved in the same relative manner.

Let us now consider Faraday’s law for a moving circuit and see the conse-

quences of Galilean invariance. Expressing (5.135) in terms of the integrals over

E’ and B, we have

d
p E’-di=-k4 | Benda (5.136)
C dt Js
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Figure 5.19

The induced electromotive force is proportional to the total time derivative of
the flux—the flux can be changed by changing the magnetic induction or by
changing the shape or orientation or position of the circuit. In form (5.136) we
havea far-reaching generalization of Faraday’s law. Thecircuit C can be thought
of as any closed geometrical path in space, not necessarily coincident with an
electric circuit. Then (5.136) becomesa relation between the fields themselves,
It is important to note, however, that the electric field, E’ is the electricfield at
dl in the coordinate system or medium in which dlis at rest, sinceit is that field
that causes current to flow if a circuit is actually present.

If the circuit C is moving with a velocity v in some direction, as shownin Fig.
5.19, the total time derivative in (5.136) must take into account this motion. The
flux through the circuit may change because (a) the flux changes with time at a
point, or (b) the translation of the circuit changes the location of the boundary.
It is easy to show that the result for the total time derivative of flux through the
moving circuit is*

 
d B
— B-nda=| Binds Bx val (5.137)

S Ccdt Js

Equation (5.136) can now bewritten in the form,

 p [E’ — k(v x B)]- dl = —k I = “nda (5.138)

This is an equivalent statement of Faraday’s law applied to the movingcircuit C.
But we can chooseto interpret it differently. We can think of the circuit C and
surface S as instantaneously at a certain position in space in the laboratory. Ap-
plying Faraday’s law (5.136) to thatfixed circuit, we find

 
OB

¢ E- dl = -k | -n da (5.139)
C S ot

*For a generalvector field there is an added term, f,(V - B)v- n da, which gives the contribution of
the sourcesof the vectorfield swept over by the movingcircuit. The general result follows most easily
from the use of the convective derivative,

d 0
—=—+vyv-V
dt ot .

Thus

aqB- OB OB
—=—+(y.- =—+Vx x + v(V -ary (v-V)B Ot V (BX v) W(V-B)

wherev is treated as a fixed vectorin the differentiation. Use of Stokes’s theorem on the second term
yields (5.137).
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where E is now theelectric field in the laboratory. The assumption of Galilean

invariance implies that the left-hand sides of (5.138) and (5.139) must be equal.

This meansthatthe electric field E’ in the moving coordinate system of the circuit

is

E’=E+ k(v x B) (5.140)

To determine the constant k we merely observe the significance of E’. A charged

particle (e.g., one of the conduction electrons) essentially at rest in a moving

circuit will experience a force gE’. When viewed from the laboratory, the charge

represents a current J = qvd(x — Xo). From the magnetic force law (5.7) or (5.12)

it is evident that this current experiences a force in agreement with (5.140) pro-

vided the constant k is equal to unity (SI) or 1/c (Gaussian).

Thus wesee that, with our choice of units for charge and current, Galilean

covariance requires that the present constant k be equal to the constant appearing

in the definition of the magneticfield (5.4). Faraday’s law (5.136) therefore reads

i'.dJ=——| Bend |>x dl |, |, Bom da (5.141)

where E’ is the electric field at dl in its rest frame of coordinates. The time

derivative on theright is a total time derivative (5.137). As a by-product we have

found that the electric field E’ in a coordinate frame moving with a velocity v

relative to the laboratoryis

E’=E+vxB (5.142)

Because we considered a Galilean transformation, the result (5.142) is an ap-

proximation valid only for speeds small compared to the speed oflight. (The

relativistic expressions are derived in Section 11.10.) Faraday’s law is no approx-

imation, however. The Galilean transformation was used merely to evaluate the

constant k in (5.135), a task for which it was completely adequate.

Faraday’s law (5.141) can be put in differential form by use of Stokes’s the-

orem, providedthe circuit is held fixed in the chosen reference frame (to have E

and B defined in the same frame). The transformation of the electromotive force

integral into a surface integral leads to

[(vxe +) maa =o
Ss ot

Since the circuit C and bounding surface S are arbitrary, the integrand must

vanish at all points in space.
Thus the differential form of Faraday’s law is

oB
Vx E+— = 0 (5.143)

We note that this is the time-dependent generalization of the statement,

V x E = 0,for electrostatic fields.
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5.16 Energy in the Magnetic Field

In discussing steady-state magnetic fields in the first 14 sections of this chapter
we avoided the question of field energy and energy density. The reason wasthat
the creation of a steady-state configuration of currents and associated magnetic
fields involves aninitial transient period during which the currents andfields are
brought from zero to the final values. For such time-varying fields there are
induced electromotive forces that cause the sources of current to do work. Since
the energyin thefield is by definition the total work doneto establish it, we must
consider these contributions.

Suppose for a moment that we have only a single circuit with a constant
current / flowingin it. If the flux through the circuit changes, an electromotive
force @ is induced aroundit. To keep the current constant, the sources of current
must do work. To determine the rate, we note that the time rate of change of
energy of a particle with velocity v acted on by a force F is dE/dt = v- F. With
a changing flux, the addedfield E’ on each conduction electron of charge g and
mean velocity v gives rise to a change in energy per unit time of gv-E’ per
electron. Summingoverall the electrons in the circuit, we find that the sources
do work to maintain the currentat the rate

= -1e -1
dt dt

the negative sign following from Lenz’s law. This is in addition to ohmic losses
in the circuit, which are not to be included in the magnetic-energy content. Thus,
if the flux change through a circuit carrying a current J is 6F, the work done by
the sourcesis

OW = I 6F

Now weconsider the problem of the work donein establishing a general
steady-state distribution of currents and fields. We may imagine that the buildup
process occursat an infinitesimal rate so that V - J = 0 holds to any desired degree
of accuracy. Then the current distribution can be broken up into a network of
elementary current loops, the typical one of which is an elemental tube of current
of cross-sectional area Ao following a closed path C and spannedby a surface S
with normal n, as shownin Fig. 5.20.

Wecan express the increment of work doneagainst the induced emf in terms
of the change in magnetic induction through the loop:

A(sW) = J Ao | n+ 3B da
S

 

 

 Figure 5.20 Distribution of current
density broken up into elemental current
loops.
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where the extra A appears because we are considering only one elementalcircuit.
If we express B in termsof the vector potential A, then we have

A(é6W) =s Ac| (V x 6A)-nda
S

With application of Stokes’s theorem this can be written

A(6éW) = J so 6A + dl
Cc

but J Ao dl is equal to J d°x, by definition, since dl is parallel to J. Evidently the
sum overall such elemental loops will be the volumeintegral. Hencethetotal
increment of work done by the external sources due to a change 6A(x) in the

vector potentialis

6W = | SA + J d3x (5.144)

An expression involving the magnetic fields rather than J and 6A can be

obtained by using Ampére’s law:

VxH=J

Then

6W = | 5A -(V Xx H) d°*x (5.145)

The vector identity,

V-(PxQ)=Q-(VxP)-—P-(V x Q)

can be used to transform (5.145):

bW = | [H-(V x 5A) + V- (H x 6A)| d’x (5.146)

If the field distribution is assumed to be localized, the secondintegral vanishes.
With the definition of B in terms of A, the energy increment can bewritten:

SW = | H - 5B d3x (5.147)

This relation is the magnetic equivalent of the electrostatic equation (4.86). In
its present form it is applicable to all magnetic media, including ferromagnetic
substances. If we assume that the medium is para- or diamagnetic, so that a linear
relation exists between H and B, then

H- 5B = 56(H- B)

If we nowbring the fields up from zero to their final values, the total magnetic

energy will be

1
W=5 | H-B d°x (5.148)
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This is the magnetic analog of (4.89).
The magnetic equivalent of (4.83) where the electrostatic energy is expressed

in terms of charge density and potential, can be obtained from (5.144) by assum-
ing a linear relation between J and A. Then wefind the magnetic energy to be

1
W=> | J-A dx (5.149)

The magnetic problem of the change in energy when an object of perme-
ability 4, is placed in a magnetic field whose current sources are fixed can be
treated in close analogy with the electrostatic discussion of Section 4.7. The role
of E is taken by B,that of D by H. Theoriginal medium has permeability wo and
existing magnetic induction By. After the object is in place the fields are B and
H. It is left as an exercise for the reader to verify that for fixed sources of the
field the change in energyis

1
wet] (B- HH, — H- B,) d°x

2 JV,

where the integration is over the volumeof the object. This can be writtenin the
alternative forms:

w=t| (1 — po)H- Hy d2x = 4 Yew, ay
2 Jv, 2Jvi \Mo My

Both jy; and po can be functions of position, but they are assumed independent
of field strength.

If the object is in otherwise free space, the change in energy can be expressed
in terms of the magnetization as

W = 1 M : By d°x (5.150)
2 JV;

It should be noted that (5.150) is equivalent to the electrostatic result (4.93),
exceptfor sign. This sign change arises because the energy W consists of the total
energy change occurring when the permeable body is introduced in the field,
including the work donebythe sourcesagainst the induced electromotive forces.
In this respect the magnetic problem with fixed currentsis analogousto the elec-
trostatic problem with fixed potentials on the surfaces that determine thefields.
By an analysis equivalent to that at the end of Section 4.7 we can showthat for
a small displacement the work done against the induced emf’s is twice as large
as, and of the opposite sign to, the potential-energy change of the body. Thus,
to find the force acting on the body, we consider a generalized displacement é
and calculate the positive derivative of W with respect to the displacement:

F, = (*) (5.151)

The subscript J implies fixed source currents.
The difference between (5.150) and the potential energy (5.72) for a per-

manent magnetic momentin an externalfield (apart from the factor 4, whichis
traced to the linear relation assumed between M and B) comesfrom thefact that
(5.150) is the total energy required to produce the configuration, whereas(5.72)
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includes only the work donein establishing the permanent magnetic momentin
the field, not the work done in creating the magnetic moment and keepingit

permanent.

5.17. Energy and Self- and Mutual Inductances

A. Coefficients of Self- and Mutual Inductance

Just as the concept of coefficients of capacitance for a system of conductors
held at different electrostatic potential is useful (Section 1.11), the concept of

self- and mutual inductances are useful for systems of current-carrying circuits.

Imagine a system of N distinct current-carrying circuits, the ith one with total

current J,, in otherwise empty space. The circuits are not necessarily thin wires

(they can be busbars, etc.) but are assumedfor the present to be nonpermeable.

The total energy (5.149) in terms of an aanof J - A/2 can be expressed as

> L,I? + S Ss M,iJ; (5.152)
l j>i

whereL,is the self-inductance of the ith circuit and M;; is the mutual inductance

between the ith andjth circuits. To establish this result, we first use (5.32) for the

vector potential to convert (5.149) to

w= #2 | ae [a'sae (5.153)

The integrals can now be broken up into sums of separate integrals over each

circuit:

BY[as>| ex, M(x) J(x;)

|x; — x}

In the sums there are terms with i = j and terms with i # j. The former define

the first sum in (5.152), the latter, the second. Evidently, the coefficients L; and

M;; are given by

 

 

J(x;) + J(xi)| ax,J 3x1 SR) 5.154
Mi = aa J. eT Tx, — x! (9.154)

and

Mo J(x;) + J(x})
M,;, = | d° | d?x',. —————+ 5.155
"AddI, Jc; * C, i |x; — x}| (5.155)

Note that the coefficients of mutual inductance M,; are symmetricin i and j.
These general expressions for self- and mutual inductance are the rigorous

versions of the more elementary definitions in termsof flux linkage. To establish

the connection, consider the expression for mutual inductance (for which the

ambiguities in the definition offlux linkage for self-inductance are absent). The

integral over d3x' times j1o/47r is just the expression (5.32) for the vector potential

A(x,) at position x; in the ith circuit caused by the current J; flowing in the jth

circuit. If the ith circuit is imagined to be negligible in cross section comparedto
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the overall scale of both circuits, we can write the integrand J(x,) d°x for the
integration over the volume ofthe ith circuit as J d?x = J, da dl, where dais a
locally defined element of cross-sectional area and dl is a directed longitudinal
differential in the sense of current flow. With the vector potential sensibly con-
stant in the cross-sectional integral at a fixed position along thecircuit, the mutual]
inductance becomes

M.. = - . -- @ = V x A: e adi i, I, C A; +dl 7, Js ( ij) °m da

where A,is the vector potential caused bythejth circuit at the integration point
on the ith and the factor J; comes from the integral overthe cross section. Stokes’s
theorem has been used to obtain the second form. Since the curl of A is the
magnetic inductionB,the area integralis just the magnetic-flux linkage (5.133).
Thus the mutual inductanceis finally

1
M,; — 7 fi

J

(5.156)

where F;; is the magnetic flux from circuit j linked within circuit i. For self-induc-
tance, the physical argumentis the same, but the ambiguity in the meaning of
the self-flux linkage F;; requires a return to the rigorous expression (5.154) based
on the magnetic energy.

For both mutual andself-inductance the energy definitions are fundamental.
If either the conductors carrying the current are permeable or the medium be-
tween the conductors is (uw # 9), (5.152) is valid, but (5.153) is not. It is then
best to use the expression (5.148) for the magnetic energy in termsof the fields
on the left-handside of (5.152) in computation of the coefficients of induction.

The presence of terms such as L di/dt or M,, dl./dt in the voltage balance in
lumped circuit equations follows immediately from relating the time derivative
of the linked flux (dF/dt) to the induced emf € through (5.135).

B. Estimation ofSelf-Inductancefor Simple Circuits

Theself-inductance of simple current-carrying elements can be estimated by
consideration of the magnetic energy. Supposea circular wire of cross-sectional
radius a carrying a steady current J formsa loop of circumference C and “area”
A (the quotation marks remindus that, since the loop maynot be planar, A may
stand for a projected area). We imaginethat the loop, though relatively arbitrary
in shape, does not have kinks in it with radii of curvature as small as the wire
size. An example is sketched in Fig. 5.21. There are three length scales here—
the wire radius, the dimensionsof the loop, represented by C/27 or A", and the
outside region, r >> C/27. From (5.152), the relation betweentheself-inductance
and the magnetic energy, wefind that

L= i BB d°x (5.157)
[ [L

Estimation of the magnetic induction will lead to an estimate of the inductance.
Onthe length scale of the wire radius, we may ignore the curvature and consider
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Diameter = 2a

     

   
"Area" =A

Circumference = C

Figure 5.21 Closed current-carrying
circuit made of a wire of radius a, length
C, and (projected) area A.

the field inside and outside the wire as if it were straight and infinitely long.If

the current density is uniform throughout the interior, from symmetry and

Ampére’s law (5.25) the magnetic induction is azimuthal and equal to

_ Bol pez

% Ina ps

where p- (p..) is the smaller (larger) of a and p. We have assumedthat the wire

and the medium surrounding it are nonpermeable. The contributions to the in-

ductance per unit length from inside the wire and outside the wire,out to a radius

Pmax, are

adLin _ Ko . dLout(Pmax) _ Ho in2

dl 8a’ dl An @&

Theradial integral outside the wireis limited to p < pax because the expression

for B, fails to represent the magnetic induction at distances of the order of the

middle length scale. If we look to the interior of the loop,it is clear that for

p = O(C/27) = O(A"”) the isolated straight wire is a very poor representation

of the current pattern. Thus we expect* pmax = O(A"”). There is, of course, a

contribution to the inductance from the outside region at distances beyond pmax.

There, at distances large compared to A’, the slow falloff of the magnetic in-

duction as 1/pis replacedby a dipole field pattern with |B| = O(yom/4ar°), where

m = O(IA)is the magnetic moment of the loop of wire. Because of the rapid

decrease of the field beyond pax, the contribution per unit length to the induc-

tance from large distances(i.e., p = A‘) can be estimated to be

 AL dipote 4m [”
a— o(2. | r?(uolAl4arr?) ir ~ O((0A7/4TpinaxC)

Pmax

If we set pmax = (€'A)'”, where é’ is a number of order unity (containing our

ignorance),

dL= O(moA'AnC)

*If the circuit shape is such that A< C2. as for an elongated loop, a different estimate of pmax may

be appropriate [e.g., Pmax = O(A/C)].
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a contribution of order unity compared to the logarithm above. Upon combining
the different contributions, the inductance of the loop is estimated to be

Le rm c}n( + | (5.158)
qT a 2

Here we have exhibited the interior contribution explicitly and indicated the
uncertainty in the propervalue of p,,,, and the size of the exterior contribution
through the number€, of order unity.

Four comments: First,if the wire has a magnetic permeability , the interior
contribution becomes 5 > p/2419. Second,for a thin wire bentin a circle of radius
large comparedto the wire radius, a precise calculation (see Problem 5.32) shows
that € = 64/7e* ~ 0.373. Third, at frequencies high enough to ensure that the
skin depth of the wire is small compared to its radius, the interior contribution
is absent becausethe currentis confined to near the surface of the wire (see next
section). Fourth,if the single turn of wire is replaced bya tight coil of N turns,
with the effective cross-sectional radius of the bundle being a,the self-inductance
is N* times the expression above.

Exercise

Consider a circuit made up of two long,parallel, nonpermeable, circular wires of
radii a, and a, separated by a distance d large compared to the largest radius.
Current flows up one wire and back along the other. Ignore the ends. Use the
method above to show that the self-inductance per unit length is approximately

mle)dl T A,a> 4

where ¢ is of order unity. Can youfind a reliable value of & within the approxi-
mations stated?

 

/

5.18 Quasi-Static Magnetic Fields in Conductors;
Eddy Currents; Magnetic Diffusion

The magnetostaticsof the first 14 sections of this chapter are based on Ampére’s
law and the absence of magnetic charges. As we saw in Section 5.15,if the mag-
netic induction varies in time, an electric field is created, according to Faraday’s
law; the situation is no longer purely magnetic in character. Nevertheless,if the
time variation is not too rapid, the magnetic fields dominate and the behavior
can be called quasi-static. “‘Quasi-static” refers to the regime for whichthefinite
speed of light can be neglected andfields treated as if they propagated instan-
taneously. Said in other, equivalent words, it is the regime where the System is
small compared with the electromagnetic wavelength associated with the domi-
nant timescale of the problem. As welearn in subsequentchapters, such a regime
permits neglect of the contribution of the Maxwell displacement current to
Ampeére’s law. We consider such fields in conducting media, where Ohm’s law
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relates the electric field to the current density and so back to the magnetic field
via the Ampére equation. The relevant equations are

Vx H=J, V-B=0, VxXE+ =o, J= oF (5.159)

With B = V x A,Faraday’s law showsthat the curl of E + dA/dt vanishes. As a
result, we can write E = —dA/ot — V ®. With the assumption of negligible free
charge and the time-varying B as the sole source of the electric field, we mayset
the scalar potential ® = 0 and have E = —dA/ot. Note that we havethe subsidiary
conditions, V- E = 0 and V- A = 0. For media of uniform, frequency-indepen-
dent permeability 4, Ampére’s law can be written V x B = pJ = wok. Elimi-
nation of B and E in favor of A and use of the vector identity, V x V x A =
V(V- A) — V°A,yields the diffusion equation for the vector potential,

VA = po oA (5.160)
ot

This equation, which obviously also holds for the electric field E, is valid for

spatially varying, but frequency-independento. If the conductivity is constant in
space, it follows that the magnetic induction B and the current density J also
satisfy the same diffusion equation.

Thestructure of (5.160) allows us to estimate the time 7 for decayof an initial
configuration of fields with typical spatial variation defined by the length L. We
put V7A = O(A/L?’) and dA/at = O(A/7). Then

tT = O(poL’) (5.161)

Alternatively, (5.161) can be used to estimate the distance L over which fields
exist in a conductor subjected externally to fields with harmonic variation at
frequency v = 1/r,

 
1

L oa) (5.162)

For a coppersphereof radius 1 cm, the decay time of someinitial B field inside
is of the order of 5—10 milliseconds; for the molten iron core of the earth it is of

the order of 10° years. This last number is consistent with paleomagnetic
data—the last polarity reversal of the earth’s field occurred about 10° years ago;
there is some evidence for a decline to near zero about 5 X 10* years ago and a
rise back to its present value.

A. Skin Depth, Eddy Currents, Induction Heating

A simple quantitative illustration of the fields described by (5.160)is afforded
by the situation shown in Fig. 5.22: A semi-infinite conductor of uniform con-
ductivity o and permeability 4 occupies the space z > 0, with empty space for
z <0. The surface at z = 0° is subjected to a spatially constant, but time-varying,
magnetic field in the x direction, H(t) = Hp cos wt. We seek a steady-state so-
lution of (5.160) for z > 0, subject to appropriate boundary conditions at z = 0
and finiteness at z > +. Continuity of the tangential component of H and the
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H,, = Hg cos wt Lo
 

 

 
a

Figure 5.22 At the surface of a semi-infinite conducting permeable medium, a spatially
constant magnetic field, H,(t) = Hy cos wt, is applied parallel to the surface at z = 0°.
A localized magneticfield and current flow exists within the medium in the region
Z< O(8).

normal componentof B across z = 0 requires that at z = 0*, the magnetic field
have only an x component, H,(t) = Hp cos wt. The linearity of (5.160) implies
that there is only an x component throughoutthe half-space, z > 0 andit is a
function of z and t, H,(z, ft).

Because the diffusion equation is second orderin the spatial derivatives and
first order in the time,it is convenient to use complex notation, with the under-

standing that the physical fields are found by taking the real parts of the solutions.
Thus, the boundary value on H, is H, = Hye~*’, where taking the real partis
understood. The steady-state solution for H,(z, t) can be written

H,(z, t) = h(z)e
where, from (5.160), h(z) satisfies

dq?

(< + ino)W = 0 \ (5.163)
dz

A trial solution of the form, h(z) = e’** leads to the condition

ke =ipow or k= +(1 +i) = (5.164)

The square root has the dimensions of an inverse length characteristic of the
medium and the frequency [see (5.162)]. The length is called the skin depth 6:

2
6 = |— (5.165)

Low

For copper at room temperature (0' = 1.68 X 10°° Q-m), 6 = 6.52 x
10°*/Vv(Hz) m, where v = w/27. For seawater, 6 ~ 240/\V/v(Hz) m (see Fig. 7.9
and accompanying text).

The solution for H, is the real part of

H,(z, t) = Ae2sei(/8-©t) 4. Beep-iz/6+ or)

with A and B complex numbers. We must choose B = 0 to avoid exponentially
large fields as z — ©. Comparison of the solution to the boundary value,
H,(0", t) = Hoe“, shows that A = H) andthe solution for z > 0 is

H(z, t) = Hoe” cos(z/6 — wt) (5.166)

The magnetic field falls off exponentially in z, with a spatial oscillation of the
same scale, being confined mainly to a depth less than the skin depth 6.
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Since the field varies in time, there is an accompanying small electric field.

From Ampére’s and Ohm’slaws, together with the existence of only H,(z, ft), we
find that there is only a y componentof E,given by

_1dH,  -1+i_ H,o72/8piz/B— iat

ao dz ao
 

y

Taking the real part and writing 1/06 = pdw/2, we have

pwd ~2/8E, = —= Hoe *” cos(z/6 — wt + 37/4 5.167y /2 0 ( ) ( )

To compare the magnitudeof the electric field and the magnetic induction, we
form the dimensionless ratio,

E,/cwH, = O(wéle) << 1

by the quasi-static assumption. The fields are predominantly magnetic, with a
small tangential electric field. The field is associated with a localized current

density (for z > 0),

V2
J, = oF, = > Hoe~2° cos(z/6 — wt + 37/4) (5.168)

whose integral in z is an effective surface current,

K,(t) = I J,(z, t) dz = —Hpo cos at

For very small skin depth, the volumecurrent flow in the region within O(6) of
the surface acts as a surface current whose magnitudeanddirectionis such as to
reduce the magneticfield to zero for z >> 6. See Section 8.1 for more discussion

relevant to waveguides and cavities.
Thereis resistive heating in the conductor. The time-averaged power input

per unit volumeIs Presistive = (I * E) (recall P = IV = V’/R in a simple lumped

resistor circuit). With (5.167) and (5.168), we find

Presnine = 5 Molle?” (5.169)
The heating of the conducting medium to a depth of the order of the skin depth
is the basis of induction furnaces in steel mills and of microwave cookers in
kitchens (where the conductivity of water, or more correctly, the dissipative part
of its dielectric susceptibility, causes the losses—seeFig. 7.9). References to more
elaborate treatments of eddy currents and induction heating are found at the end

of the chapter.

B. Diffusion of Magnetic Fields in Conducting Media

Diffusion of magnetic fields in conducting media can beillustrated with the
simple example of two infinite uniform current sheets, parallel to each other and
located a distance 2a apart, at z = —a and z = +a, within an infinite conducting
medium of permeability 4 and conductivity o. The currents are such that in the
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region, 0 < |z| < a,there is a constant magneticfield Hy in the x direction and
zero field outside. Explicitly, the current density J is in the y direction, and

J, = Ald(z + a) — &z — a)]

At time ¢ = 0, the current is suddenly turned off. The vector potential and mag-
netic field decay according to (5.160), with variation only in z and ¢t. We use a
Laplace transform technique: Separate the space and time dependences by
writing

H,(z, t) = j e*h(p, z) dp

Substitution into the diffusion equation (5.160) for H,, leads to the wave equation,
(d*/dz? + k?)h(p, z) = 0, where k? = Lop. Sincethe situation is symmetric about
z = 0, the appropriate solution is h « cos(kz). With a change of variable from Dp
to k in the transform integral, H,(z, t) becomes

co

A(z, t) = I eKuon(k) cos(kz) dk (5.170)

The coefficient function h(k) is determined bythe initial conditions. At t = 0°,
the magnetic field is \

H(z, 0°) = |. h(k) cos(kz) dk = H[@(z + a) — O(z — a)]_ (5.171)

where @(x) is the unit step function, @(x) = 0 for x < 0 and @(x) = 1 for x > 0.
Exploiting the symmetry in z, we can express the cosine in terms of exponentials
and write

I. h(k)edk = H[O(z + a) — O(z — a)] (9.172)

where h(—k) = h(k). Inversion of the Fourierintegral yields h(k),

H, f° . 2H.
h(k) = — | ei dz = — sin(ka) (5.173)

7 J-a awk

The solution for the magneticfield at all times, t > 0, is therefore

2H, [~
H(z, t) = — | ene SK cos}(2) dk (5.174)

7 0 K a

where v = (uoa*)™is a characteristic decay rate [see (5.161)]. The integral in
(5.174) can be expressed as the sum of two terms, each identified with a repre-
sentation of the error function,

2 . 2 an 24.2 SINX
D = — ~~ dx = — ~xASS 5.175(=) ew de == | eee ay (5.175)

The result is

_ Ho] lzl/a [z|/aH(z, t) = 5  o( Jar ) +o Jon )| (5.176)
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Figure 5.23 Magnetic field distributions given by (5.172) for vt < 0, and (5.176) for
vt = 0.05, 1, 4 as a function of z/a. The outward diffusion with time for t > 0 is

manifest; the rise and fall of the field in time at a fixed position can be noted for

1<|z|/a<2.

To understand qualitatively the meaning of the solution we notefirst that
@(—€) = —(€), second that ®(€) > 1 — (1/Vm)[1 — 1/2? + - + -Jexp(—&’) for
€—> ©, and third that ®(€) ~ (2é/V7)(1 — &/3 + ---) for |é| <1. For vt > 0,
the arguments in (5.176) are large in magnitude; the solution obviously reduces
to the right-hand side of (5.172), as required. For long times (|é| < 1),
H,(z, t) > Ho/V mvt, independentof |z|/a to leading order in an expansion in
1/Vvt. This result is misleading, however, because the coefficients of the higher

terms in 1/vt are z-dependent. A more revealing result is obtained by expanding
the error functions in Taylor series in 1/2vt to the third order. The resultis

 Ao —|z|2/4vta? 1 2 2ons z["/4vta 4+ ——— 2 —1)+.:--:-: 77H,(z, t) Va ® 1 Dy (|z/°/2vta ) (5.177)

Note that the approximate expression vanishes as vt — 0, as it should for any
|z| > a, and goes to H, ~ H,/V mvt for vt >> |z|/2a. For |z|/a < 5, it is within
a few percent for any vt > 1. At a given position, the field as a function of time
has a maximum at vt ~ |z|*/2a* [exact for the approximation (5.177)], followed
by the very slow decrease as t-"’*. Figure 5.23 shows the spatial distributions of
the magnetic field at different fixed times.
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Starting with the differential expression

I x — x’dB = == di’ x ———.
An Ix — x’|

for the magnetic induction at the point P with coordinate x produced by an incre-

ment of current / dl’ at x’, show explicitly that for a closed loop carrying a current

I the magnetic induction at P is

B =“ vo
4a

where 1 is the solid angle subtended bythe loop at the point P. This corresponds
to a magnetic scalar potential, Py = —fol0/4z. The sign convention for the solid
angle is that © is positive if the point P views the “inner”side of the surface span-
ning the loop,that is, if a unit normal n to the surface is defined by the direction

of current flow via the right-handrule, 2 is positive if m points away from the point
P, and negative otherwise. This is the same convention as in Section 1.6 for the

electric dipole layer.

A long, right cylindrical, ideal solenoid of arbitrary cross sectionis created by stack-
ing a large numberofidentical current-carrying loops one above the other, with NV
coils per unit length and each loop carrying a current J. [In practice such a solenoid
could be wound on a mandrel machined to the arbitrary cross section. After the
coil was maderigid (e.g., with epoxy), the mandrel would be withdrawn.|]

(a) In the approximation that the solenoidal coil is an ideal current sheet and
infinitely long, use Problem 5.1 to establish that at any pointinside the coil

the magnetic field is axial and equal to

H=NI

and that H = 0 for any point outside the coil.

(b) Fora realistic solenoid of circular cross section of radius a (Na >> 1), butstill

infinite in length, show that the “smoothed” magnetic field just outside the
solenoid (averaged axially over several turns) is not zero, but is the same in
magnitude anddirection as that of a single wire on the axis carrying a current

I, even if Na — ~». Comparefields inside and out.

A right-circular solenoid of finite length L and radius a has N turnsper unit length
and carries a current J. Show that the magnetic induction on the cylinder axis in

the limit NL — is

boNI B, = (cos 6, + COS 62)

where the angles are defined in the figure.

 

 

Problem 5.3

A magnetic induction B in a current-free region in a uniform mediumis cylindrically

symmetric with components B,(p, z) and B,(p, z) and with a known B,(0, z) on the
axis of symmetry. The magnitude of the axialfield varies slowly in z.
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5.5

5.6

5.7

(a) Show that nearthe axis the axial and radial components of magnetic induction

are approximately

Bp, z) ~= B,(0, z) — (=)Lee +...

dz"

~ _{2\| 9B.(0, p.\| ®BO, z)}pin ~ (5) >] +(| +
(b) What are the magnitudesof the neglected terms, or equivalently whatis the

criterion defining ‘‘near”’ the axis?

(a) Use the results of Problems5.4 and 5.3 to find the axial and radial components

of magnetic induction in the central region (|z| < L/2) of along uniform
solenoid of radius a and ends at z = +L/2, including the value of B, just inside

the coil (p =a).

(b) Use Ampére’s law to show that the longitudinal magnetic induction just out-
side the coil is approximately

la? 122? 9aBp =a", 2) ~ ~(HME)( < ee) 

L? LL?

For L >a, the field outside is negligible compared to inside. How doesthis
axial component compare in size to the azimuthal component of Problem
5.2b?

(c) Show that at the end of the solenoid the magnetic induction near the axis has
components

oN oN P
B, = —_ B,~ +—— [=

“ 2° p 4 (2)

A cylindrical conductor of radius a has a hole of radius b bored parallel to, and
centered a distance d from, the cylinder axis (d + b < a). The current density is
uniform throughout the remaining metalof the cylinder andis parallel to the axis.
Use Ampére’s law andprinciple of linear superposition to find the magnitude and
the direction of the magnetic-flux density in the hole.

A compact circular coil of radius a, carrying a current J (perhaps N turns, each with
current //N), lies in the x-y plane with its center at the origin.

(a) By elementary means[Eq.(5.4)] find the magnetic induction at any point on
the z axis.

(b) An identical coil with the same magnitude and sense of the currentis located
on the sameaxis, parallel to, and a distance b above,the first coil. With the
coordinate origin relocated at the point midway between the centers of the
two coils, determine the magnetic induction on the axis near the origin as an
expansion in powers of z, up to z* inclusive:

bale) 3(b? — a*)z?_-15(b* — 6b?a? + 2a*)z' |B, = (sie 1+ 4 fous.
< a 2d* 16d®

where d? = a’ + b?/4.

(c) Show that, off-axis near the origin, the axial and radial components, correct
to second order in the coordinates, take the form

2



5.8

5.9

5.10
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(d) For the twocoils in part b show that the magnetic induction on the z axis for

(e)

large |z| is given by the expansion in inverse odd powersof |z| obtained from
the small z expansion of part b by the formal substitution, d > |z|.

If b = a, the two coils are knownas a pair of Helmholtz coils. For this choice
of geometry the second terms in the expansions of parts b and d are absent
(a2 = 0 in part c). The field near the origin is then very uniform. Whatis the
maximum permitted value of |z|/a if the axial field is to be uniform to one
part in 10*, one part in 10°?

A localized cylindrically symmetric current distribution is such that the currentflows
only in the azimuthal direction; the current density is a function only of r and 6 (or
p and z): J = bI(r, 0). The distribution is “‘hollow” in the sense that there is a
current-free region near the origin, as well as outside.

(a)

(b)

Show that the magnetic field can be derived from the azimuthal component
of the vector potential, with a multipole expansion

A,(r, 6) = —2 ¥ mr“P3(cos 6)
Aq L

in the interior and

Agl(, 7) = _ fo > pyr~~*Pz(cos 0)
Aq L

outside the current distribution.

Show that the internal and external multipole moments are

1 ee
my, = ~L(L+1) | d°x r L *P;(cos 7) I(r, 7)

and

BML = “TEED | d°x r’P;(cos 7) I(r, 0)

The two circular coils of radius a and separation b of Problem 5.7 can be described
in cylindrical coordinates by the current density

(a)

(b)

J = b18(p — a)[8(z — b/2) + 8(z + b/2)]

Using the formalism of Problem 5.8, calculate the internal and external mul-

tipole moments for L = 1,..., 5.

Using the internal multipole expansion of Problem 5.8, write down explicitly
an expression for B, on the z axis and relate it to the answer of Problem 5.7b.

A circular current loop of radius a carrying a current / lies in the x-y plane withits
center at the origin.

(a)

(b)

Show that the only nonvanishing componentof the vector potentialis

 la {~
Ag(p, Z) = = I dk cos kzI,(kp.)K,(kp.)

where p— (p,) is the smaller (larger) of a and p.

Show that an alternative expression for Ag is

 Ia [~
Ag(p, Z) = = I dk e"''J,(ka)J,(kp)
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5.11

5.12

5.13

5.14

5.15

(c) Write down integral expressions for the components of magnetic induction,
using the expressions of parts a and b. Evaluate explicitly the components of
B on the z axis by performing the necessary integrations.

A circular loop of wire carrying a current J is located with its center at the origin

of coordinates and the normal to its plane having spherical angles 6, ¢o. Thereis
an applied magneticfield, B, = Bo(1 + By) and B, = Bo(1 + Bx).

(a) Calculate the force acting on the loop without making any approximations,
Compare your result with the approximate result (5.69). Comment.

(b) Calculate the torque in lowest order. Can you deduce anything about the
higher order contributions? Do they vanish for the circular loop? What about
for other shapes? _

Two concentric circular loops of radii a, b and currents J, I’, respectively (b < a),

have an angle a between their planes. Show that the torque on oneof the loopsis
about the line of intersection of the two planes containing the loops and has the
magnitude.

_ potll'b? & (n +1)

|

Tan+3) |b)",Na AERiGee[me] a) Mon 

where P;(cos a) is an associated Legendre polynomial. Determine the sense of the
torque for a an acute angle andthe currents in the same (opposite) directions.

A sphereof radius a carries a uniform surface-charge distribution o. The sphereis
rotated about a diameter with constant angular velocity w. Find the vector potential
and magnetic-flux density both inside and outside the sphere.

A long, hollow,right circular cylinder of inner (outer) radius a (b), and of relative
permeability y,, is placed in a region ofinitially uniform magnetic-flux density B,
at right angles to the field. Find the flux density at all points in space, and sketch
the logarithm of the ratio of the magnitudes of B on the cylinder axis to By as a
function of log,o wu, for a’*/b* = 0.5, 0.1. Neglect end effects.

Consider twolong,straight wires, parallel to the z axis, spaced a distance d apart
and carrying currents J in opposite directions. Describe the magnetic field H in
terms of a magnetic scalar potential ®,,, with H = —V®,,.

(a) If the wires are parallel to the z axis with positions, x = +d/2, y = 0, show
that in the limit of small spacing, the potential is approximately that of a two-
dimensionaldipole,

_Id sin ¢d=
M 2717p

+ O(d’/p’)

where p and are the usual polar coordinates.

(b) ‘The closely spaced wires are now centered in a hollow right circular cylinder
of steel, of inner (outer) radius a (b) and magnetic permeability uw = pu,po.
Determine the magnetic scalar potential in the three regions, 0 < p < a,
a<p<b,and p > b. Show that the field outside the steel cylinder is a two-
dimensional dipole field, as in part a, but with a strength reduced bythe factor

4b?

(u, + 1)*b* — (wu, — 1)?a"
Relate your result to Problem 5.14.

(c) Assuming that uw, >> 1, and b = a + t, where the thickness t < b, write down

an approximate expression for F and determine its numerical value for

 



5.16

5.17

5.18
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ut, = 200 (typical of steel at 20 G), b = 1.25 cm, t = 3 mm. Theshieldingeffect
is relevant for reduction of stray fields in residential and commercial 60 Hz,
110 or 220 V wiring. The figure illustrates the shielding effect for a/b = 0.9,
pu, = 100.

 
Problem 5.15

A circular loop of wire of radius a and negligible thickness carries a current /. The
loop is centered in a spherical cavity of radius b > a in a large block ofsoft iron.
Assumethat the relative permeability of the iron is effectively infinite and that of
the medium in the cavity, unity.

(a) In the approximation of b >> a, show that the magnetic field at the center of
the loop is augmented by a factor (1 + a*/2b°) by the presence ofthe iron.

(b) Whatis the radius of the “image” current loop (carrying the same current)
that simulates the effect of the iron for r < b?

A current distribution J(x) exists in a medium of unit relative permeability adjacent
to a semi-infinite slab of material having relative permeability yw, and filling the half-

space, z < 0.

(a) Show that for z > 0 the magnetic induction can be calculated by replacing the
medium of permeability mw, by an image current distribution, J*, with

  

components,

bt, — 1 bu, — 1 bu, — 1J ~ J - —(&—_ |; -
(e + ) (OY 2); (M + 7 Ys 2), (H + ) Oh Yo ~2)

(b) Show that for z < 0 the magnetic induction appears to be due to a current
distribution [2y,/(u, + 1)]J in a medium of unit relative permeability.

A circular loop of wire having a radius a and carrying a current J is located in
vacuum with its center a distance d away from a semi-infinite slab of permeability
w. Find the force acting on the loop when

(a) the plane of the loopis parallel to the face of the slab,

(b) the plane of the loop is perpendicular to the face of the slab.

(c) Determine the limiting form of your answer to parts a and b when d >> a.
Can you obtain these limiting values in some simple and direct way?
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5.19

5.20

5.21

5.22

5.23

A magnetically “hard” materialis in the shape of a right circular cylinder of length
L and radius a. The cylinder has a permanent magnetization Mo, uniform through-
out its volumeandparallel to its axis.

(a) Determine the magnetic field H and magnetic induction B at all points on the
axis of the cylinder, both inside and outside.

(b) Plot the ratios B/ugM,) and H/M, on the axis as functions of z for L/a = 5.

(a) Starting from the force equation (5.12) and the fact that a magnetization M
inside a volume V boundedbya surface S is equivalent to a volumecurrent

density Jy, = (V X M) and a surface current density (M x n), show thatin
the absence of macroscopic conduction currents the total magnetic force on
the body can be written

F= -| (V - M)B, d°x + I (M - n)B,da

where B,is the applied magnetic induction (not including that of the body in
question). The force is now expressedin termsof the effective charge densities
pm and oy. If the distribution of magnetization is not discontinuous, the sur-

face can beatinfinity and the force given by just the volumeintegral.

(b) A sphere of radius R with uniform magnetization has its center at the origin
of coordinates andits direction of magnetization making spherical angles 6p,
do. If the external magnetic field is the same as in Problem 5.11, use the
expression of part a to evaluate the components of the force acting on the
sphere.

A magnetostatic field is due entirely to a localized distribution of permanent
magnetization.

(a) Show that

| B-Hd*x =0

provided the integral is taken overall space.

(b) From the potential energy (5.72) of a dipole in an externalfield, show that for
a continuous distribution of permanent magnetization the magnetostatic en-
ergy can be written

w-"[nenar=—“ | Mona's

apart from an additive constant, which is independent of the orientation or
position of the various constituent magnetized bodies.

Show that in general a long, straight bar of uniform cross-sectional area A with
uniform lengthwise magnetization M, when placed withits flat end against an infi-
nitely permeable flat surface, adheres with a force given approximately by

F = 5 AM?

Relate your discussion to the electrostatic considerations in Section 1.11.

A right circular cylinder of length L and radius a has a uniform lengthwise mag-
netization M.
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(a) Show that, whenit is placed with its flat end against an infinitely permeable
plane surface, it adheres with a force

K(k) = E(k) _ K(k) ~ E(k)
k k,
 F= 2noaLw"}

where

2a a—— k=
4a? + L? ' Vai + L?

(b) Find the limiting form for the force if L >a.

5.24 (a) For the perfectly conducting plane of Section 5.13 with the circular hole init

5.25

5.26

and the asymptotically uniform tangential magnetic field Hp on oneside,cal-
culate the added tangential magnetic field H™ on the side of the plane with

H,. Show that its components for p > a are

 

 

WO 2Hoa xy
x 7 p* /p?— 2

HS = 2Hoa" y +o E 1 - o_ sin(2)y T ‘pe—2 1 \p po” p

(b) Sketch the lines of surface current flow in the neighborhood of the hole on

both sides of the plane.

A flat right rectangular loop carrying a constant current J, is placed near a long
straight wire carrying a current J,. The loopis oriented so that its center is a per-
pendicular distance d from the wire; the sides of length a are parallel to the wire
and the sides of length b make an angle a with the plane containing the wire and
the loop’s center. The direction of the current J, is the sameasthatof J, in the side

of the rectangle nearest the wire.

(a) Show that the interaction magnetic energy

Wo = [, ° A> d°x = Lk,

(where F; is the magnetic flux from J, linking the rectangular circuit carrying

I,), 1s

  
4d? + b* + 4d b cosa

4d? + b* — 4d b cosa
Wo = n|

(b) Calculate the force between the loop andthe wirefor fixed currents.

(c) Repeat the calculation for a circular loop of radius a, whose planeis parallel
to the wire and makes an angle a with respect to the plane containing the
center of the loop andthe wire. Show that the interaction energyis

Wo = MolLo d-Re {e’@ — V eve —_ a’/d*}

Find the force.

(d) For both loops, show that when d >> a,b the interaction energy reduces to
W.> ~ m- B, where m is the magnetic moment of the loop. Explain the sign.

A two-wire transmission line consists of a pair of nonpermeable parallel wires of
radii a and b separated by a distance d > a + b. A current flows down one wire
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5.27

5.28

5.29

5.30

 

and backthe other. It is uniformly distributed over the cross section of each wire.
Show that the self-inductance per unit length is

[Lo d*
L=— + —1 2 in(5 )|

A circuit consists of a long thin conducting shell of radius a and a parallel return
wire of radius b on axis inside. If the current is assumed distributed uniformly
throughout the cross section of the wire, calculate the self-inductance per unit
length. Whatis the self-inductance if the inner conductoris a thin hollow tube?

Show that the mutual inductance of two circular coaxial loops in a homogeneous
medium of permeability pu is

M, = ven}(2 - k)KW - 7 EO),

where

i2 = 4ab

(a + b*) + d?

and a, b are the radii of the loops, d is the distance between their centers, and K

and F are the completeelliptic integrals.
Find the limiting value when d << a, b anda = b.

The figure represents a transmission line consisting of two, parallel perfect conduc-

tors of arbitrary, but constant, cross section. Current flows down one conductor and

returns via the other.

Problem 5.29

Show that the product of the inductance per unit length L and the capacitance
per unit length is

LC = pe

where yw and € are the permeability and the permittivity of the medium surrounding
the conductors. (See the discussion about magnetic fields near perfect conductors
at the beginning of Section 5.13.)

(a) Showthat a surface current density K(¢) = I cos ¢/2R flowing in the axial
direction on right circular cylindrical surface of radius R producesinside the
cylinder a uniform magnetic induction By = pol/4R in a direction perpendic-
ular to the cylinder axis. Show that the field outside is that of a two-dimen-
sional dipole.

(b) Calculate the total magnetostatic field energy per unit length. Howis it divided
inside and outside the cylinder?

(c) What is the inductance per unit length of the system, viewed as a longcircuit
with current flowing up oneside of the cylinder and back the other?

Answer: L = wp./8.



5.31

5.32
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An accelerator bending magnetconsists of N turns of superconducting cable whose
current configuration can be described approximately by the axial current density

1.(p, $) = (aeo $ 8(p — R)

The right circular current cylinder is centered on the axis of a hollow iron cylinder
of inner radius R' (R' > R). The relative dimensions (R, R' a few centimeters and
a magnet length of several meters) permit the use of a two-dimensional approxi-
mation, at least away from the ends of the magnet. Assumethat the relative per-
meability of the iron can be takenasinfinite. [Then the outer radius of the iron is

irrelevant.|

(a) Show that the magnetic field inside the current sheath is perpendicular to the
axis of the cylinder in the direction defined by ¢@ = +a/2 and has the

magnitude

poNI R?
By = — + —>= (He) |

(b) Show that the magnetic energy inside r = R is augmented (andthat outside
diminished) relative to the values in the absence of the iron. (Comparepart b

of Problem 5.30.)

(c) Show that the inductance per unit length is

aL N? R?
—_ = Tho 1 + =
dz 8 R’

A circular loop of meanradius a is made of wire having a circular cross section of
radius b, with b < a. The sketch shows the relevant dimensions and coordinates

for this problem.

  

 

Problem 5.32

(a) Using (5.37), the expression for the vector potential of a filamentary circular
loop, and appropriate approximationsfor the elliptic integrals, show that the
vector potential at the point P near the wire is approximately

Ag = (Mol/27)[In(8a/p) — 2]

where p is the transverse coordinate shown in the figure and corrections are

of order (p/a)cos ¢ and (p/a)’.

(b) Since the vector potential of part a is, apart from a constant, just that outside
a straight circular wire carrying a current J, determine the vector potential
inside the wire (p < b) in the same approximation by requiring continuity of
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5.33

5.34

(c)

A, andits radial derivative at p = b, assuming that the current is uniform in

density inside the wire:

Ag = (Mol/4a)(1 — p*/b?) + (uol/27)[In(8a/b) — 2], p<b

Use (5.149) to find the magnetic energy, hencethe self-inductance,

L = poalin(8a/b) — 7/4] So

Are the corrections of order b/a or (b/a)*? What is the change in L if the
current is assumedto flow only on the surface of the wire (as occurs at high
frequencies whenthe skin depth is small compared to b)?

Consider two current loops (as in Fig. 5.3) whose orientation in space is fixed, but
whose relative separation can be changed. Let O, and O, beorigins in the two
loops, fixed relative to each loop, and x, and x, be coordinates of elements dl, and

dl,, respectively, of the loops referred to the respective origins. Let R betherelative
coordinate of the origins, directed from loop 2 to loop1.

(a)

(b)

Starting from (5.10), the expression for the force between the loops, show that
it can be written

Fi. = LVrM,(R)

where M,, is the mutual inductance of the loops,

- dl,
M,,(R) = He ¢ ahde

12( )= Ix,-xa

and it is assumedthat the orientation of the loops does not change with R.

Show that the mutual inductance, viewed as a function of R, is a solution of

the Laplace equation,

VrM,2(R) = 0

The importanceof this result is that the uniqueness of solutions of the Laplace
equation allows the exploitation of the properties of such solutions, provided
a solution can be foundfor a particular value of R.

Two identical circular loops of radius a are initially located a distance R apart on
a common axis perpendicular to their planes.

(a)

(b)

(c)

From the expression W,, = f d°x J,- A. and the result for A, from Problem

5.10b, show that the mutual inductanceof the loopsis

M.> = bona?| dk e-*®J7(ka)
0

Show that for R > 2a, M,, has the expansion,

3 5 7

oma [a a 75 (aM. = _ _ —_ + —{— +o...2 UF) 38) F(R) Oo
Use the techniques of Section 3.3 for solutions of the Laplace equation to
show that the mutual inductance for two coplanaridentical circular loops of
radius a whosecenters are separated by a distance R > 2ais

3 5 7
ota [a 9 fa 375 [a— _ — toys 4 2

{

— +...
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(d) Calculate the forces between the loops in the commonaxis and coplanar con-
figurations. Relate the answers to those of Problem 5.18.

5.35 An insulated coil is wound on the surface of a sphere of radius a in such a way as
to produce a uniform magnetic induction By in the z direction inside the sphere
and dipole field outside the sphere. The medium inside and outside the sphere has
a uniform conductivity o and permeability wp.

(a) Find the necessary surface current density K and show that the vector poten-
tial describing the magnetic field has only an azimuthal component, given by

A _ Boa? re .

op 2 rz
>

 

where r. (r.) is the smaller (larger) of r anda.

(b) Att =O the currentin the coil is cut off. [The coil’s presence may be ignored
from now on.] With the neglect of Maxwell’s displacement current, the decay
of the magnetic field is described by the diffusion equation, (5.160). Using a
Laplace transform and a spherical Bessel function expansion (3.113), show
that the vector potential at times t > 0 is given by

3B * 2 k
Ag = of sin 6 | ekjton(©) dk

7 0 a

where v = 1/y0a" is a characteristic decay rate andj,(x) is the spherical Bessel
function of order one. Show that the magnetic field at the center of the sphere
can be written explicitly in terms of the error function P(x) as

1 1 !BO, t) = Bs)oo] ea ep(-4)

(c) Show that the total magnetic energy at time t > 0 can be written

 

 

_ 6Bea°

ph

W.. | en2PKTT(kK)P dk

0

Show thatat long times (vt >> 1) the magnetic energy decays asymptotically

as

V27Bia°

mo 24u(vt)**

(d) Find a corresponding expression for the asymptotic form of the vector poten-
tial (at fixed r, 9 and vt > ~) and showthatit decays as (vt)~*” as well. Since
the energy is quadratic in the field strength, there seemsto be a puzzle here.
Show by numerical or analytic means that the behavior of the magneticfield
at time ¢ is such that, for distances small compared to R = a(vt)"” >> a, the
field is uniform with strength (Bo/67'”) (vt)~*”, and for distances large com-
pared to R, thefield is essentially the original dipole field. Explain physically.

5.36 The time-varying magnetic field for t > 0 in Problem 5.35 inducesanelectric field

and causes current to flow.

(a) What componentsofelectric field exist? Determine integral expressions for

the components of the electric field and find a simple explicit form of the
current density J = oE at t = 0*. Compareyourresult with the current density
of Problem 5.35a. Find the asymptotic behaviorof the electric fields in time.
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(b) With Ohm’s law andtheelectric fields found in part a, show that the total]

(c)

powerdissipated in the resistive medium can be written

12Béa°v [* ,
P=| eeKG(kK)? dk

bb 0

Note that the poweris the negative time derivative of the magnetic energy,
Win:

Because of Ohm’s law,the total electric energy is W. = €)P/2c. The total
energy is the sum of W, and W,,; its time derivative should be the negative of
the powerdissipation. Show that the neglect of the energyin theelectricfield
is the same order of approximation as neglect of the displacement currentin
the equations governing the magneticfield.



CHAPTER 6

Maxwell Equations,
Macroscopic Electromagnetism,
Conservation Laws

In the preceding chapters we dealt mostly with steady-state problemsin electric-

ity and in magnetism. Similar mathematical techniques were employed,but elec-

tric and magnetic phenomena were treated as independent. The only link
between them was that the currents that produce magnetic fields are basically
electrical in character, being charges in motion. The almost independent nature
of electric and magnetic phenomena disappears when we consider time-
dependent problems. Faraday’s discovery of induction (Section 5.15) destroyed
the independence. Time-varying magnetic fields give rise to electric fields and

vice versa. We then must speak of electromagnetic fields, rather than electric or
magnetic fields. The full import of the interconnection betweenelectric and mag-

netic fields and their essential sameness becomesclear only within the framework

of special relativity (Chapter 11). For the present we content ourselves with ex-
amining the basic phenomena and deducing the set of equations known asthe
Maxwell equations, which describe the behavior of electromagnetic fields. Vector
and scalar potentials, gauge transformations, and Green functions for the wave
equation are next discussed, including retarded solutionsforthefields, as well as
the potentials. There follows a derivation of the macroscopic equationsof elec-

tromagnetism. Conservation laws for energy and momentum andtransformation

properties of electromagnetic quantities are treated, as well as the interesting

topic of magnetic monopoles.

6.1 Maxwell’s Displacement Current; Maxwell Equations

The basic laws of electricity and magnetism we have discussed so far can be
summarized in differential form by these four (not yet Maxwell) equations:

COULOMB’S LAW V-D=p

AMPERE’S LAW (V- J = 0) VxH=J

OB 6.1
FARADAY’S LAW VxE+c op = 0 (6.1)

ABSENCE OF FREE MAGNETIC POLES V-B=0

Let us recall that all but Faraday’s law were derived from steady-state observa-
tions. Consequently, from a logical point of view there is no a priori reason to

237
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expect that the static equations will hold unchanged for time-dependentfields,
In fact, the equations in set (6.1) are inconsistent as they stand.

It required the genius of J. C. Maxwell, spurred on by Faraday’s observations,
to see the inconsistency in equations (6.1) and to modify them into a consistent

set that implied new physical phenomena,at the time unknownbutsubsequently
verified in all details by experiment. Forthis brilliant stroke in 1865, the modified
set of equationsis justly known as the Maxwell equations.

The faulty equation is Ampére’s law. It was derived for steady-state current
phenomena with V- J = 0. This requirementon the divergence of J is contained
right in Ampére’s law, as can be seen by taking the divergence of both sides:

V-J=V-(Vx HW) =0 (6.2)

While V- J = 0 is valid for steady-state problems, the general relation is given
by the continuity equation for charge and current:

dp
V-J+—=0 6.7 (6.3)

What Maxwell saw was that the continuity equation could be converted into a
vanishing divergence by using Coulomb’s law (6.1). Thus

0 oD
vise 2av.(s+ 2) <9 (6.4)

ot ot

Then Maxwell replaced J in Ampére’s law by its generalization

J—J+ oD
ot

for time-dependentfields. Thus Ampére’s law became

VxH=J+ ob (6.5)
ot

still the same, experimentally verified, law for steady-state phenomena, but now

mathematically consistent with the continuity equation (6.3) for time-dependent
fields. Maxwell called the added term in (6.5) the displacement current. Its pres-
ence means that a changing electric field causes a magnetic field, even without a
current—the converse of Faraday’s law. This necessary addition to Ampére’s law
is of crucial importancefor rapidly fluctuating fields. Without it there would be
no electromagnetic radiation, and the greatest part of the remainderof this book
would have to be omitted. It was Maxwell’s prediction that light was an electro-
magnetic wave phenomenon,and that electromagnetic wavesofall frequencies

could be produced, that drew the attention of all physicists and stimulated so
much theoretical and experimental research into electromagnetism during the
last part of the nineteenth century.

The set of four equations,

oD
V-D=p Vx H=J+ —

ot
+B (6.6)

V-B=0 VxE+—=0
ot
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known as the Maxwell equations, formsthe basis of all classical electromagnetic
phenomena. When combined with the Lorentz force equation and Newton’s sec-

ond law of motion, these equations provide a complete description of the classical

dynamics of interacting charged particles and electromagnetic fields (see Section
6.7 and Chapters 12 and 16). The range of validity of the Maxwell equationsis
discussed in the Introduction, as are questions of boundary conditions for the
normal and tangential components offields at interfaces between different me-
dia. Constitutive relations connecting E and B with D and H were touched on

in the Introduction and treated for static phenomena in Chapters 4 and 5. More
is said later in this chapter and in Chapter7.

The units employed in writing the Maxwell equations (6.6) are those of the
preceding chapters, namely, SI. For the reader more at homein otherunits, such

as Gaussian, Table 2 of the Appendix summarizes essential equations in the
commonersystems. Table 3 of the Appendix allows the conversion of any equa-

tion from Gaussian to SI units or vice versa, while Table 4 gives the corresponding

conversions for given amounts of any variable.

6.2 Vector and Scalar Potentials

The Maxwell equations consist of a set of coupled first-order partial differential

equations relating the various components of electric and magnetic fields. They

can be solved as they stand in simple situations. But it is often convenient to
introduce potentials, obtaining a smaller number of second-order equations,
while satisfying some of the Maxwell equationsidentically. We are already fa-
miliar with this concept in electrostatics and magnetostatics, where we used the

scalar potential ® and the vector potential A.
Since V- B = 0 still holds, we can define B in termsof a vector potential:

B=VxA (6.7)

Then the other homogeneous equationin (6.6), Faraday’s law, can be written

JA
V x (E+) <9 (6.8)

This means that the quantity with vanishing curl in (6.8) can be written as the
gradient of some scalar function, namely, a scalar potential ®:

a
ot

or (6.9)

E = —vo —
ot

The definition of B and E in terms of the potentials A and ® according to (6.7)
and (6.9) satisfies identically the two homogeneous Maxwell equations. The dy-
namic behavior of A and ® will be determined by the two inhomogeneous equa-
tions in (6.6).

At this stage it is convenient to restrict our considerations to the vacuum
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form of the Maxwell equations. Then the inhomogeneous equationsin (6.6) can

be written in termsof the potentials as __

0Vb + (V+ A) = ~ple, (6.10)

1 0°A 1 a®
VA - 3s -VIV-At+ s—] = -bod ,

cat? ( C? Mo (6.11)

Wehave now reduced the set of four Maxwell equations to two equations. But

they are still coupled equations. The uncoupling can be accomplished by exploit-

ing the arbitrariness involvedin the definition of the potentials. Since B is defined

through (6.7) in terms of A, the vector potential is arbitrary to the extent that

the gradient of somescalar function A can be added. Thus B is left unchanged
by the transformation,

A-A’=A+VA (6.12)
Forthe electric field (6.9) to be unchanged aswell, the scalar potential must be
simultaneously transformed,

OA
®—> P' = GP —- — (6.13)

ot

The freedom implied by (6.12) and (6.13) means that we can choosea set of
potentials (A, ®) to satisfy the Lorenz condition (1867),*

1 o@
V-A+>5— =0 6.142 a (6.14)

This will uncouple the pair of equations (6.10) and (6.11) and leave two inho-
mogeneous wave equations, one for ® and one for A:

1 a®
Vd — 2 “Ore = —pl€ (6.15)

1 A
VA — 2 “Ore = —Lod (6.16)

Equations (6.15) and (6.16), plus (6.14), form a set of equations equivalentin all
respects to the Maxwell equations in vacuum,as observed by Lorenz and others.

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge

The transformation (6.12) and (6.13) is called a gauge transformation, and the
invariance of the fields under such transformationsis called gauge invariance. To
see that potentials can always be foundto satisfy the Lorenz condition, suppose
that the potentials A, ® that satisfy (6.10) and (6.11) do notsatisfy (6.14). Then
let us make a gauge transformation to potentials A’, ®’ and demandthat A’, ®’

satisfy the Lorenz condition:

1 a®' 1 o® 1 WA
V-A’ + =0=V-At+>5—+WA-3S-— 17

Cc? Ot 0 Cc or C7 Ot? (6.17)
 

*L. V. Lorenz, Phil. Mag. Ser. 3, 34, 287 (1867). See also p. 294.



Sect. 6.3 Gauge Transformations, Lorentz Gauge, Coulomb Gauge 241

Thus, provided a gauge function A can be foundto satisfy

107A 1 0®
va 584 --(v-a+5%) (6.18)

the new potentials A’, ®’ will satisfy the Lorenz condition and the wave equations
(6.15) and (6.16).

Even for potentials that satisfy the Lorenz condition (6.14) there is arbitrar-
iness. Evidently the restricted gauge transformation,

A—-A++VA

(6.19)

®@ > ®P - oA
Ot

where

1 07A
VA -s=— =0 6.20C2 ar? ( )

preserves the Lorenz condition, provided A, © satisfy it initially. All potentials
in this restricted class are said to belong to the Lorenz gauge. The Lorenz gauge
is commonly used,first because it leads to the wave equations (6.15) and (6.16),
which treat ® and A on equivalent footings, and second becauseit is a concept
independentof the coordinate system chosen andsofits naturally into the con-
siderations of special relativity (see Section 11.9).

Another useful gauge for the potentials is the so-called Coulomb,radiation,

or transverse gauge. This is the gauge in which

V-A=0 (6.21)

From (6.10) we see that the scalar potential satisfies the Poisson equation,

 

VO = —ple (6.22)

with solution,

1 p@&’,t)@(x, t) = | d°x' 23
(x, 1) Ame, |x — x’| * (6.23)

Thescalar potential is just the instantaneous Coulomb potential dueto the charge
density p(x, t). This is the origin of the name ““Coulomb gauge.”

The vector potential satisfies the inhomogeneous wave equation,

1 0°A 1 _0®@
VA 2ap ~Hod + a Vo (6.24)

The term involving the scalar potential can, in principle, be calculated from

(6.23). Since it involves the gradient operator, it is a term thatis irrotational, that
is, has vanishing curl. This suggests that it may cancel a corresponding piece of
the current density. The current density (or any vector field) can be written as
the sum of two terms,
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where J, is called the longitudinal orirrotational current and~has V x J, = 0,
while J, is called the transverse or solenoidal current and has V - J, = 0. Starting
from the vector identity,

Vx (VxJ=VV-J-VI (6.26)

together with V7(1/|x — x’|) = —478(x — x’), it can be shownthat J, and J, can
be constructed explicitly from J as follows:

av} wetkxa (6.27)

leeft (6.28)
kx"

With the help of the continuity equation and (6.23) it is seen that

1 o® ©

Therefore the source for the wave equation for A can be expressed entirely in
terms of the transverse current (6.28):

1 0°A
VA — 55 = —Hod: (6.30)

This, of course, is the origin of the name “‘transverse gauge.”’ The name “‘radia-
tion gauge” stems from the fact that transverse radiation fields are given by the
vector potential alone, the instantaneous Coulombpotential contributing only to
the nearfields. This gaugeis particularly useful in quantum electrodynamics. A
quantum-mechanicaldescription of photonsnecessitates quantization of only the
vector potential.

The Coulombortransverse gauge is often used when no sourcesare present.
Then ® = 0, and A satisfies the homogeneous wave equation. Thefields are
given by

_ OA
ot (6.31)

B=VxA

In passing we note a peculiarity of the Coulomb gauge.It is well knownthat
electromagnetic disturbances propagate with finite speed. Yet (6.23) indicates
that the scalar potential “propagates” instantaneously everywhere in space. The
vector potential, on the other hand,satisfies the wave equation (6.30), with its
implied finite speed of propagation c. Atfirst glance it is puzzling to see how
obviously unphysical behavior is avoided. A preliminary remarkisthatit is the
fields, not the potentials, that concern us. A further observation is that the trans-
verse current (6.28) extends overall space, even if J is localized.*

*See O. L. Brill and B. Goodman, Am.J. Phys. 35, 832 (1967) for a detailed discussion of causality
in the Coulomb gauge. See also Problem 6.20.
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6.4 Green Functionsfor the Wave Equation

The wave equations (6.15), (6.16), and (6.30) all have the basic structure

2

vy — io” = —4f(x, ¢) (6.32)
Cc” ot

where f(x, ¢) is a Known source distribution. The factor c is the velocity of prop-
agation in the medium, assumedhereto be without dispersion.

To solve (6.32) it is useful to find a Green function, just as in electrostatics.
Weconsiderthe simple situation of no boundary surfaces and proceed to remove
the explicit time dependence by introducing a Fourier transform with respect to

frequency. We suppose that W(x, ¢) and f(x, t) have the Fourier integral
representations,

1 [~ |
W(x, t) = an [- W(x, wedw

1 of (6.33)

f(x, 1) = = | f(x, we" dw
27 J—x

with the inverse transformations,

W(x, w) = | W(x, te” dt

. (6.34)
f(x, w) = [- f(x, the’dt

Whenthe representations (6.33) are inserted into (6.32) it is found that the
Fourier transform W(x, w) satisfies the inhomogeneous Helmholtz wave equation

(V2 + K2)W(x, w) = —4af(x, w) (6.35)

for each value of w. Here k = w/c is the wave numberassociated with frequency
w. In this form, the restriction of no dispersion is unnecessary. A priori, any

connection between k and w is allowed, although causality imposes somerestric-

tions (see Section 7.10).
Equation (6.35) is an elliptic partial differential equation similar to the

Poisson equation to which it reduces for k = 0. The Green function G(x, x’)

appropriate to (6.35) satisfies the inhomogeneous equation

(V2 + k2)G,(x, x") = —4778(x — x’) (6.36)

If there are no boundary surfaces, the Green function can depend only on R =
x — x’, and must in fact be spherically symmetric, that is, depend only on

R = |R|. From the form of the Laplacian operator in spherical coordinates[see
(3.1)], it is evident that G,(R) satisfies

1 d’
Bape (RGu) + PG, = —478(R) (6.37)
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\
Everywhere except R = 0, RG;,(R)satisfies the homogeneous equation

2dap (RG) + (RG) = 0

with solution,

RG,(R) = Ae**® + Be~*®

Furthermore, the delta function in (6.37) has influence only at R — 0. In that
limit the equation reducesto the Poisson equation, since KR << 1. Wetherefore
know from electrostatics that the correct normalizationis

. 1
lim G;,(R) = R (6.38)
kR~>0

The general solution for the Green function is thus

 

G,(R) = AGY?(R) + BGO(R) (6.39)

where

etikR

G(R) = R (6.40)

with A + B = 1. With the convention of (6.33) for the time dependence,thefirst
term in (6.39) represents a diverging spherical wave propagating from theorigin,
while the second represents a converging spherical wave.

The choice of A and B in (6.39) depends on the boundary conditionsin time
that specify the physical problem.It is intuitively obvious that, if a source is
quiescent until some time ¢ = 0 and then begins to function, the appropriate
Green functionis the first term in (6.39), corresponding to waves radiated out-
ward from the source after it begins to work. Such a description is certainly
correct and also convenient, but is not unique or necessary. By suitable specifi-

cation of the wave amplitude at boundary times, it is possible to employ the
second term in (6.39), not the first, to describe the action of the source.

To understand the different time behaviors associated with GO” and GO”)
we need to construct the corresponding time-dependent Green functions that
satisfy

1 0
Vie - Sa IGO("™®,t: x’, ') = —478(x — x')8(t - 0 6.41)

c* at?

Using (6.34) we see that the source term for (6.35) is

—476(x — x’)e’"

Thesolutions are therefore G™(R)e’”". From (6.33) the time-dependent Green
functions are

ewikR1 [~ ;
G(R, 1) = an | Rr e'° dw (6.42)

Ts J—a

 

where 7 = t — @’ is the relative time appearing in (6.41). The infinite-space Green
function is thus a function of only the relative distance R and the relative time
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7 between source and observation point. For a nondispersive medium where
k = wic, the integral in (6.42) is a delta function. The Green functionsare

G(R, 7) = " (= + “) (6.43)

(ef)
[x — x’|

or, more explicitly,

 G(x,x’, ) = (6.44)

The Green function G“is called the retarded Green function becauseit exhibits
the causal behavior associated with a wave disturbance. The argument of the
delta function shows that an effect observed at the point x at time ¢ is caused by
the action of a source a distance R away at an earlier or retarded time, t’ =

t — Ric. The time difference Ric is just the time of propagation of the disturbance
from onepoint to the other. Similarly, G©is called the advanced Green function.

Particular integrals of the inhomogeneous wave equation (6.32) are

Px, t) = | | Gx, t; x’,f(x’, ) d°x’ dt'

To specify a definite physical problem, solutions of the homogeneous equation
may be added to either of these. We consider a source distribution f(x’, ¢’) that
is localized in time and space.It is different from zero only fora finite interval
of time around t’ = 0. Two limiting situations are envisioned. In thefirst it is

assumed that at time t — —© there exists a wave W;,(x, ¢) that satisfies the
homogeneous wave equation. This wave propagatesin time and space;the source

turns on and generates wavesof its own. The complete solution forthis situation
at all times is evidently

W(x, t) = Vin(x, 1) + | | G(x, tx’,f(x’, ') d’x' dt’ (6.45)

The presence of G‘*? guarantees that at remotely early times, ¢, before the source

has been activated, there is no contribution from the integral. Only the specified
wave V,,, exists. The second situation is that at remotely late times (t > +) the
waveis given as V,,,,,(x, ¢), a Known solution of the homogeneous wave equation.

Then the complete solution for all times1s

W(x, t) = Voulx, t) + | | G(x, t; x’, t')f(x’, ) d°x’ dt’ (6.46)

Now the advanced Green function assures that no signal from the sourceshall

exist explicitly after the source shuts off (all such signals are by assumptionin-
cluded in V,,,).

The commonestphysical situation is described by (6.45) with W;,, = 0. It is
sometimes written with the Green function (6.44) inserted explicitly:

V(x, 1) = |ee d3x' (6.47)
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The square bracket [ ],. meansthat the time ¢’ is to be evaluated at the retardeq
time, t’ = t — |x — x’/c.

Theinitial or final value problem atfinite times has been extensively studied
in one, two, and three dimensions. The reader may refer to Morse and Feshbach
(pp. 843-847) and also to the more mathematical treatment of Hadamard.

Retarded Solutionsfor the Fields: Jefimenko’s Generalizations
of the Coulomb and Biot-Savart Laws; Heaviside~-Feynman
Expressionsfor Fields ofPoint Charge

Use ofthe retarded solution (6.47) for the wave equations (6.15) and (6.16) yields

Ox, ) =F | ayi p(s". Yh ay
Aw) = 22 ev tere

where we have defined R = x — x’, with R = |x — x’| and (below) R = R/R.
These solutions werefirst given by Lorenz(op.cit.). In principle, from these two
equationsthe electric and magnetic fields can be computed,butit is often useful
to have retardedintegral solutionsfor the fields in terms of the sources.

Either directly from the Maxwell equations or by use of the wave equations
for ® and A, (6.15) and (6.16), and the definitions of the fields in terms of the
potentials, (6.7) and (6.9), we can arrive at wave equationsfor the fieldsin free
space with given charge and currentdensities,

1 WE 1 1 ad
VE-3s3~>-=-- —-Vp - = — 6.49

c* at? ( Pe2) (6.49)

and

1 B
VBoa = MoV X J (6.50)

The wave equation for each of the Cartesian field components is in the form
(6.32). The retarded solutions (6.47) for the fields can immediately be written in
the preliminary forms

1 | 1 1 oJE(x, = yf = Wp - = 51
% #) ATré, ax R vp Cc a) (6.51)
 

and

B(x, p=] ay tRLV! X Ire (6.52)

These preliminary expressions can becast into forms showing explicitly the static
limits and the corrections to them by extracting the spatial partial derivatives
from the retarded integrands. There is a subtlety here because V’[f]ret # [Vfrer
The meaning of V’ underthe retarded bracket is a spatial gradient in x’, with ¢’
fixed; the meaning outside the retarded bracketis a spatial gradient with respect
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to x’, with x and ¢ fixed. Since [f(x’, t’)]-c¢. = f(x’, t — Ric), it is necessary to
correct for the x’ dependenceintroduced through R whenthe gradient operator
is taken outside. Explicitly, we have

dp R dp
Vv’ = V’ — |— V'(t — Ric) = V' —-—|—[V’ pl ret [Pret ae) ( [c) [Pl ret c :2) (6.53)

and

Od[V! x Jee = VX Ther + 3
1 |oJ n

= Vv! »4 [Fret + Ei x R

ret
c or’

| x V(t — Ric)
ret (6.54)

If these expressions are substituted into the preliminary formsof the solutions
and an integration by parts is performed on the first (gradient or curl) term in
each case, we arrive at

 E(x, ¢) = R ee0)
R

J ave {f [D",eee + : |R cR ot ret (6.55)

— 1 od’, “)

c’R an

R Od (x’, t’ R
B(x, t) = uo | d°x' fice t'ret x R2 + ae x *} (6.56)

ret

If the charge and current densities are time independent, the expressions reduce
to the familiar static expressions (1.5) and (5.14). The terms involving the time
derivatives and the retardation provide the generalizations to time-dependent
sources. These two results, sometimes known as Jefimenko’s generalizations of

the Coulomb and Biot—Savart laws, were popularized in this author’s text,
(Jefimenko).

In passing, we note that because the integrandsare to be viewedas functions

of x, x’, and ¢, with ¢’ = t — |x — x’ |/c, the time derivatives in the integrands have

the property

4 TTEQ

and

eee t')
ot’
| = = Lf, (Ye (6.57)

This relation facilitates the specialization of the Jefimenko formulasto the Heav-
iside-—Feynman expressions for the fields of a point charge. With p(x’, ¢’) =

gé[x’ — ¥ro(t’)] and J(x’, t') = pv(t'), (6.55) and (6.56) specialize to

q R 9 R 0 VvE = * 4+ —

|

— — —

|

— 6.58
4 T7éo {hae cot Sl Cat |} (

Mog Vv X R a f[vxR
B = — + — 6.59

4a {| KR* |. cot KR | (

 

and
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Here R is the distance from the position of the charge to the observation point;
R is a unit vector from the charge toward the observation point; v is the charge’.
velocity; k = 1 — v- Ric isa retardationfactor. [See Problem 6.2.] It is important
to note that now thereis a difference between 9d[- - -],¢/dt and [d- - - /at],., because
x’ —> r)(t’), where rg is the position of the charge. The fields are functionsof x
and t, with ¢’ = ¢ — |x — r((¢’)|/c. Feynman’s expression for the electricfield is

  

 

qd R [R]ret 0 R 07 A

Etre Rel te al pe] tae [Ree 6.A trey le]. c at | Cat? [Rect (6.60)

while Heaviside’s expression for the magneticfield is

og {|v xR 1 alvxR
Be dn + a 6.

4m (| KR? I. CLR)ret ot K || ( 61)

The equivalence of the two sets of expressions for the fields follows from some
careful algebra.

6.6 Derivation of the Equations ofMacroscopic Electromagnetism

The discussion of electromagnetism in the preceding chapters has been based on
the macroscopic Maxwell equations,

V-B=0 VXE+ <0

(6.62)
dD

V-D=op VxH-—=3J

where E and B are the macroscopicelectric and magneticfield quantities, D and
H are corresponding derivedfields, related to E and B through the polarization
P and the magnetization M of the material medium by

D = &E + P, H--B-M (6.63)
Mo

Similarly, p and J are the macroscopic (free) charge density and current density,
respectively. Although these equations are familiar and totally acceptable, we
have yet to presenta serious derivation of them from a microscopicstarting point.
This deficiency is remedied in the present section. The derivation remains within
a classical framework even though atoms must be described quantum mechani-
cally. The excuse for this apparent inadequacy is that the quantum-mechanical
discussion closely parallels the classical one, with quantum-mechanical expecta-
tion values replacing the classical quantities in the formulas given below. The
reader can examinethestatistical mechanical treatments in the literature cited
at the end of the chapter.

Weconsider a microscopic world madeupof electrons and nuclei. For di-
mensions large compared to 10~™* m,the nuclei can be treated as point systems,
as can the electrons. We assume that the equations governing electromagnetic
phenomenafor these point charges are the microscopic Maxwell equations,

V-b=0, Vxe+ 7 =0

ts (6.64)
V-e= 7/6, Vx b—-s— = pj

c at
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where e and b are the microscopic electric and magnetic fields and 7 and j are

the microscopic charge and current densities. There are no correspondingfields

d and h becauseall the charges are included in 7 and j. A macroscopic amount
of matter at rest contains of the order of 10*°*° electrons and nuclei, all in in-
cessant motion because of thermal agitation, zero point vibration, or orbital mo-

tion. The microscopic electromagnetic fields produced by these charges vary
extremely rapidly in space and in time. The spatial variations occur overdistances
of the order of 10° ?° m orless, and the temporalfluctuations occur with periods
ranging from 107'*s for nuclear vibrations to 10'’s for electronic orbital motion.
Macroscopic measuring devices generally average over intervals in space and

time muchlarger than these. All the microscopic fluctuations are therefore av-
eraged out, giving relatively smooth and slowly varying macroscopic quantities,

such as appear in the macroscopic Maxwell equations.

The question of what type of averaging is appropriate must be examined

with somecare. At first glance one might think that averages over both space
and time are necessary. Butthis is not true. Only a spatial averaging 1s necessary.

(Parenthetically, we note that a time averaging alone would certainly not be
sufficient, as can be seen by considering an ionic crystal whose ions have small
zero point vibrations around well-defined and separatedlattice sites.) To delimit

the domain where we expect a macroscopic description of electromagnetic phe-

nomenato work, weobserve that the reflection and refraction ofvisible light are
adequately described by the Maxwell equations with a continuousdielectric con-
stant, whereas x-ray diffraction clearly exposes the atomistic nature of matter.It
is plausible therefore to take the length Ly) = 10°° m = 10° A as the absolute
lowerlimit to the macroscopic domain. The period ofoscillation associated with
light of this wavelength is Lo/c ~ 3 X 107!’ s. Ina volumeof Lg = 10°*m°there
are, in ordinary matter,still of the order of 10° nuclei and electrons. Thus in any
region of macroscopic interest with L >> Lo there are so many nuclei andelec-

trons that the fluctuations will be completely washed out by a spatial averaging.
On the other hand, because the time scale associated with L is actually in the
range of atomic and molecular motions, a time-averaging would not be appro-
priate. There is, nevertheless, no evidence after the spatial averaging of the mi-
croscopic time fluctuations of the medium.This is so because, in the absence of
special preparation and the establishment of ordering over macroscopic dis-
tances, the time variations of the microscopic fields are uncorrelated over dis-
tances of order L. All that survive are the frequency components corresponding
to oscillators driven at the external, applied frequencies.

Thespatial average of a function F(x, ¢) with respect to a test function f(x)

is defined as

(F(x, t)) = | d°x' f(x')F(x — x’, t) (6.65)

where f(x) is real, nonzero in some neighborhood of x = 0, and normalized to
unity over all space. It is simplest, though not necessary, to imagine f(x) to be
nonnegative. To preserve without bias directional characteristics of averaged
physical properties, we make f(x) isotropic in space. Two examples are

3 r<R

f(x) = )4aR”
0, r> R (6.66)

f(x) _ (mR?)32@IR
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Figure 6.1 Schematic diagram of test function f(x) used in the spatial averaging
procedure. The extent L of the plateau region, and also the extent AL of the region
where f falls to zero, are both large compared to the molecular dimensiona.

The first example, a spherical averaging volume of radius R, is a commononein
the literature. It has the advantage of conceptual simplicity, but the disadvantage
of an abrupt discontinuity atr = R. This leads to a fine-scale jitter on the averaged
quantities as a single molecule or group of molecules movesin or out of the
averaging volume. A smoothtest function, exemplified by the Gaussian, elimi-
nates such difficulties providedits scale is large compared to atomic dimensions,
Fortunately, the test function f(x) does not need to be specified in detail; all that
are needed are general continuity and smoothnessproperties that permit a rap-
idly converging Taylor series expansion of f(x) over distances of atomic dimen-
sions, as indicated schematically in Fig. 6.1. This is a great virtue.*

Since space and time derivatives enter the Maxwell equations, we must con-

sider these operations with respect to averaging according to (6.65). Evidently,
we have

0 _ 3, » OF , _ (oF
ax, (F(x, t)) | ax" f(x’) ax, (x x’, £)

OX;

and (6.67)

=, (F(x, ) = (
The operations of space and timedifferentiation thus commute with the aver-
aging operation.

We can now consider the averaging of the microscopic Maxwell equations

(6.64). The macroscopic electric and magneticfield quantities E and B are defined
as the averages of the microscopicfields e and b:

E(x, t) = (e(x, f)) (6.68)
B(x, t) = (b(x, 2)

Then the averages of the two homogeneous equations in (6.64) becomethe cor-

responding macroscopic equations,

(V-b)=0—-V-B=0 (6.69)

(vet ®) osu xe + Ba
ot ot

*Weare here following the development of G. Russakoff, Am. J. Physics 38, 1188 (1970).
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The averaged inhomogeneousequations from (6.64) become

EV: E = (n(x, t)) (6.70)

Av x B~ 6= (ix 0)
Lo ot

Comparison with the inhomogeneous pair of macroscopic equations in (6.62)

indicates the already known fact that the derived fields D and H are introduced
by the extraction from (7) and (j) of certain contributionsthat can be identified
with the bulk properties of the medium. The examination of (7) and (j) is there-

fore the nexttask.

Weconsider a medium made up of molecules composedof nuclei and elec-
trons and,in addition, ‘‘free’’ charges that are not localized aroundanyparticular
molecule. The microscopic charge density can be written as

n(x, ) = >. glx— x0] (6.71)

wherex,(f) is the position of the point charge q;. To distinguish the bound charges
from the free ones, we decompose 7 as

1] — tree + T}bound (6.72)

and write

tree — >» qj 5(x - X;)
j(free)

T}bound — > Nn(X, t)

n
(molecules)

where 7, is the charge density of the nth molecule,

MAX, t) = 2 qj O(X — X)) (6.73)
JV

In these and subsequent equations we suppress the explicit time dependence,

since the averaging is done at one instant of time. We proceed by averaging the

charge density of the nth molecule and then summingup the contributionsofall

molecules. It is appropriate to express the coordinates of the charges in the nth

molecule with respect to an origin at rest in the molecule. Let the coordinate of
that fixed point in the molecule (usually chosen as the center of mass) be x,(),
and the coordinate of the jth charge in the molecule be x,,(t) relative to that
origin, as indicated in Fig. 6.2. The average of the charge density of the nth

moleculeis

(nlx, )) =|dx"f0x") nlx — x1.
=» qj | d°x' f(x’) 6(x — x! — Xin — Xy) (6.74)

j(1)

— >» q; (x — X, Xin)

i(n)

Since x;, is of order atomic dimensions, the terms in the sum have arguments

differing only slightly from (x — x,on the scale over which f(x) changes appre-
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Figure 6.2 Coordinates for the nth molecule. The origin O’is fixed in the molecule
(usually it is chosen at the center of mass). The jth charge has coordinate Xjn relative to
O', while the molecule is locatedrelative to the fixed (laboratory) axes by the
coordinate X,,:

ciably. It is therefore appropriate to make a Taylor series expansion around
(x — x,) for each term. This gives

(n(x, t)) = 2 di\ f(X — Xn) — Xin me— Xn)

+ 5 (Xjn)o(Xin)B waax x, 1& 7 X,,) +:

The various sums over the charges in the molecule are just molecular multipole
moments:

MOLECULAR CHARGE

MOLECULAR DIPOLE MOMENT

Pn = > qj Xin (6.76)
y(n

MOLECULAR QUADRUPOLE MOMENT

(O))ap = 3 2 Dj (XinalXjn)p (6.77)
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In terms of these multipole moments the averaged charge density of the nth

molecule is

(nlX, 0) = Guf& — Xp) — Pu + VEX — x) (6.78)
1 oPf(x — Xn)+= ) s+
6 > (Qn)ap OXq IXg

If we attempt to view this equation as the direct result of the definition (6.65) of
the spatial averaging, we see thatthe first term can be thoughtof as the averaging
of a point charge density at x = x,, the second as the divergence of the average

of a point dipole density at x = x,, and so on. Explicitly,

(nf9) = {4864 — 4) ~¥ - (p,5(% — X,)) 6.79)
--> (Qh)apO(X — X,)) Fore
6 ap OXTe

 

Wethusfind that, as far as the result of the averaging process is concerned, we

can view the molecule as a collection ofpoint multipoles located at onefixed point

in the molecule. The detailed extent of the molecular charge distribution is im-

portant at the microscopic level, of course, but is replaced in its effect by a sum

of multipoles for macroscopic phenomena.
An alternative approachto the spatial averaging of (6.65) via Fourier trans-

forms gives a valuable different perspective. With the spatial Fourier transforms

defined by

1
|

g(x, t) = Qa | d°k &(k, t)e“™ and &(k, t) = | dx g(x, the*™

T
(6.80)

straightforward substitution into (6.65) leads to the expression for the average of

F(x, t),

(F(x, t)) = | d°k f(k, t)F(k, t)e*™ (6.81)
(27)

an illustration of the ‘‘faltung theorem”’ of Fourier transforms. The convolution
of (6.65) has a Fourier transform that is the product of the transforms of the

separate functions in the convolution. Thus

FT (F(x, t)) = f(k)F(k, 1) (6.82)

The notation FTis introduced to stand for the kernel multiplying the exponential

in the first integral above [FT g(x, t) = &(Kk,t)] to avoid a clumsy and confusing

use of thetilde.
A crucial aspect of f(k) is that (0) = 1, as can be seen from its definition

and from the fact that f(x) is normalized to unity. For the Gaussian test function,
the Fourier transform 1s

FT f(x) = f(k) =e*?" (6.83)

Evidently the Fourier transform (6.82) of the averaged quantity contains only
low wave numbers,up to butnotsignificantly beyond kya, = O(1/R), the inverse
of the length scale of the averaging volume. But because f(k) — 1 for wave
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numbers small comparedto the cutoff, the FT (F(x,t)) gives a true representation
of the long-wavelength aspects of F(x, t). Only the small-scale (large wave num.
ber) aspects are removed, as expected for the averaging.

Consider the averaging of the charge density of the nth molecule shown in
Fig. 6.2. The Fourier transform of the averaged quantity is

FT (n,(x, t)) = f(k)#,(k, ¢) (6.84)
where

A,(k, t) —_— | d>x' n(X’, te—%,)

Here we have taken the spatial Fourier transform relative to x,. The qualitative
behaviors of the two factors in (6.84) are sketched in Fig. 6.3. Since the support
for the product is confined to comparatively small wave numbers,itis appropriate
to make a Taylor series expansion of the Fourier transform Nr(k, t) for
small |k|,

fi(k, t) ~ #,(0, t) + k + Vy,(0, t) + ++

Explicitly, we have

nk, t) = | d°x' NX’, t){1 — ik - (x — X,) + .. ‘|

or

Tin(K, t) ~ q, — ik + p, + quadrupole and higher (6.85)

in terms of the molecule’s multipole moments. The averaged molecular charge
density can therefore be written as

 

(Tn(X, £)) = a | Pk eCF(k)g, — ik+ py, t---]

= nf(X — Xn) — Pre Vf(x — x,) + °°-

Wehavearrived at (6.78) by a different and perhaps longer route, but one with
the advantage of giving a complementary view of the averaging as a cutoff in
wave numberspace, a point of view stressed by Robinson.

The total microscopic charge density (6.72) consists of the free and bound

(6.86)

7k,t)  
Figure 6.3 Qualitative behavior of the Fourier transformsin (6.84) for the transform
of the averaged molecular charge density (7,,(x, t)).
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charges. Summing upoverall the molecules (which may be of different species)
and combining with the free charges, we find the averaged microscopic charge

density to be

 (n(x, t)) = p(x, t) — V+ P(x, 1) + S —— Oiplx+ (6.87)
ap OXq Xz

where p is the macroscopic charge density,

p(x, t) = >» qjO(x — Xj) + >» GnO(X — «.)] (6.88)
j(free) n

(molecules)

P is the macroscopic polarization,

P(x, f) = Sy p,d(x — «.)] (6.89)
n

(molecules)

and Qj, is the macroscopic quadrupole density,

1Oip(x, ) =< XY (Qsapd(x - «.)] (6.90)
(molecules)

When (6.87) is inserted in the first equation of (6.70), it gives

0 0s2fenen-S2ov+ far oon
a 0 a B dX

From (6.62) this means that the macroscopic displacement vector D is defined to

have components,

0 /

D. = @E, + P, — S eee +. (6.92)
p Xp

Thefirst two terms are the familiar result (6.63). The third and higher terms are
present in principle, but are almost invariably negligible.

To complete the discussion we must consider (j). Because of its vector nature
and the presence of velocities the derivation is considerably more complicated

than the earlier treatment of (7), even though no newprinciples are involved.
Wepresentonly the results, leaving the gory details to a problem for those read-

ers who enjoy such challenges. We begin with the microscopic current density,

j(x, ) = > qjvjO(x — x;(t)) (6.93)

where v; = dx,/dt is the velocity of the jth charge. Again the sum is divided into

one over the free charges and one over the molecules. The current density of the

nth molecule can be averagedjust as in (6.74) to give

(jnlX, t)) — > qj (Vin + Vn)f(x — X, Xin) (6.94)

Here we have assumed nonrelativistic motion by writing the velocity of the jth

charge as the sum ofan internalrelative velocity v;,, and the velocity v, = dx,/dt

of the origin O’ in the molecule. From this point on the development entails



256 Chapter6 Maxwell Equations, Macroscopic Electromagnetism, Conservation Laws—SI

Taylor series expansions and vector manipulations. A portion of the currentin-
volves the molecular magnetic moment,

qj

Mm, = >) 5 (Xin X Vin) (6.95)

Thefinal result for a componentof the averaged microscopic current densityis

0
ja(® )) = Jol% 0) + > [DalX, 1) — €oa(x, 1] + > Cubay, M,(x, t)

+ >» ax. ( >» [(Prdal¥n)e 7 (Pr)el(Vn)al d(x 7 "
B B n
2]

( > [(Qr)ap(Vn)y ~ (Qr)yeVnald(x — «)) +
(molecules)

 -25
By 7 OX,

(6.96)
The so-far undefined quantities in this rather formidable equation are the mac-
roscopic current density

J(x, t) = ( > qvj(x —x) + > quv,6(x — «)) (6.97)
j n

(free) (molecules)

and the macroscopic magnetization

M(x, t) = ( » m,6(x — «)) (6.98)

(molecules)

If the free ‘“‘charges” also possess intrinsic magnetic moments, these can bein-
cluded in the definition of M in an obvious way. Thelast terms in (6.96) involve
the electric molecular moments and molecular velocities and cannotbe given an
easy interpretation, except in special cases (see below).

When(j) is inserted in the second equation of (6.70), there results the mac-
roscopic Ampére—Maxwell equation of (6.62) with the derived magnetic field
quantity H given in terms of B and the properties of the medium as

(en) ~ M+ ( » (DX va 1 ~ %))
n

ey
(6.99)

6 >, Eapy ax; ( Dy (Qi)ap(Vn)yS(X — “)) "By6é
(molecules)

The first term of the right-hand side of (6.99) is the familiar result, (6.63). The
other terms are generally extremely small; first, because the molecular velocities

Vv, are small, typically thermal velocities in a gas or lattice vibrational velocities
in a solid and, second, because the velocities fluctuate and tend to average to
zero macroscopically. An exception occurs when the medium undergoes bulk

motion. For simplicity, suppose that the medium as a whole hasa translational
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velocity v. Neglecting any other motion of the molecules, we put v,, = v forall

n. Then (6.99) becomes, after a little manipulation,

+ B-H=M+(D—«E) xv (6.100)
Mo

where D is given by (6.92). This shows that for a medium in motiontheelectric
polarization P (and quadrupole density Q,,) enter the effective magnetization.

Equation (6.100) is the nonrelativistic limit of one of the equations of

Minkowski’s electrodynamics of moving media (see Pauli, p. 105).

The reader may consult the book by de Grootfor a discussion of the relativ-
istic corrections, as well as for a statistical-mechanical treatment of the averaging.

From the standpoint of logic and consistency there remains one loose end. In

defining the molecular quadrupole moment (Q,,),g by (6.77) we departed from
our convention of Chapter 4, Eq. (4.9), and left (Q;,).g with a nonvanishingtrace.
Since we made a point in Chapter4 of relating the five independent components

of the traceless quadrupole moment tensor to the (2/ + 1) spherical harmonics

for | = 2, we need to explain why six components enter the macroscopic Maxwell

equations. If we define a traceless molecular quadrupole moment (Q,)ag by
meansof (4.9), then we have

(Qi)ap = (Qn)ap + > qi (Xin)Sap (6.101)
j(n

Introducing a mean square charge radius 77, of the molecular charge distribution

by

ern — >» qj (Xin)
jn)

wheree is some convenient unit of charge, for example, that of a proton, we can

write (6.101) as

(On)ap — (On)ap + er,Gap

The macroscopic quadrupole density (6.90) thus becomes

6 n
(molecules)

1
Qop = Qap + 7 ( Dy erndap8(x — «))

where Q,, is defined in terms of (Q,,)4g just as in (6.90). The net result is that in
the averaged microscopic charge density (6.87) the traceless quadrupole density
Q.3 teplaces the density Q/, and the charge density p is augmented by an ad-

ditional term,

P > Piree + ( DS Ind(X — “.)] + s( er,d(x — “.)) (6.102)
n n

(molecules) (molecules)

The trace of the tensor Q/,, is exhibited with the charge density becauseit is an

/ = 0 contribution in terms of the multipole expansion. The molecular charge

and mean square radius terms together actually representthe first two termsin

an expansion of the / = 0 molecular multipole as we go beyondthestatic limit.

In the Fourier-transformed wave numberspace, they correspond to thefirst two
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terms in the expansion of the charge form factor in powers of k*. This can be
seen from the definition of the form factor F(k*) for a charge density p(x):

F(k*) — | d°x p(x)(e™™*)-o part

sin Ar

- J a’x p(x) kr
 

With the correspondence k <> —iV,the general equivalence of the form factor
expansion and (6.102) is established.

In an interesting monograph alluded to above, Robinson gives a discussion
of the connection between the microscopic equations and the macroscopic equa-
tions similar to ours. However, he makesa distinction between thespatial ay-
eraging (6.65) with the test function f(x), called “truncation” (of the wave
number spectrum) by him, andthestatistical-mechanical averaging over various
sorts of ensembles. Robinson holds that each macroscopic problem hasits own
appropriate lower limit of relevant lengths and thatthis sets the size of the test
function to be used, before any considerationsofstatistical averaging are made.

6.7 Poynting’s Theorem and Conservation ofEnergy
and Momentumfor a System of Charged Particles
and Electromagnetic Fields

The forms of the laws of conservation of energy and momentum are important
results to establish for the electromagnetic field. We begin by considering con-
servation of energy, often called Poynting’s theorem (1884). For a single charge
q the rate of doing work by external electromagnetic fields E and B is qv- E,
wherev is the velocity of the charge. The magneticfield does no work,since the
magnetic force is perpendicular to the velocity. If there exists a continuousdis-
tribution of charge and current, the total rate of doing work by the fields in a
finite volume is

| JE dx (6.103)
V

This power represents a conversion of electromagnetic energy into mechanical

or thermal energy. It must be balanced by a corresponding rate of decrease of

energy in the electromagnetic field within the volume V. To exhibit this conser-
vation law explicitly, we use the Maxwell equations to express (6.103) in other
terms. Thus we use the Ampére—Maxwell law to eliminate J:

| s-eax=[ fex np. 2| d°x (6.104)

If we now employ the vector identity,

V-(E x H) = H-(V xX E) —E-(V x H)
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and use Faraday’s law, the right-hand side of (6.104) becomes

6)3
—|d 105zB x (6.105)| J-Ed°x = -| vce xm) +e Pon,

V V ot

To proceed further we make two assumptions: (1) the macroscopic medium 1s

linear in its electric and magnetic properties, with negligible dispersion orlosses,

and (2) the sum of (4.89) and (5.148) represents the total electromagnetic energy
density, even for time-varying fields. With these two assumptions andthetotal

energy density denoted by

1
u=>(E-D+B-H) (6.106)

(6.105) can be written

0
-| s-Eax = | svc x Hy] a's (6.107)

V v ot

Since the volumeV is arbitrary, this can be cast into the form of a differential
continuity equation or conservation law,

0“+ VS =—5-E (6.108)

The vector S, representing energy flow, is called the Poynting vector.It is given

by
S=ExH (6.109)

and has the dimensionsof (energy/area X time). Since only its divergence appears
in the conservation law, the Poynting vector seemsarbitrary to the extent that

the curl of any vector field can be addedto it. Such an added term can, however,

have no physical consequences. Relativistic considerations (Section 12.10) show

that (6.109) is unique.
The physical meaning of the integral or differential form (6.107) or (6.108)

is that the time rate of change of electromagnetic energy within a certain volume,

plus the energy flowing out through the boundary surfaces of the volume per

unit time, is equal to the negative of the total work doneby the fields on the

sources within the volume. This is the statement of conservation of energy. ‘The
assumptionsthat follow (6.105) really restrict the applicability of the simple ver-
sion of Poynting’s theorem to vacuum macroscopic or microscopic fields. Even

for linear media, there is always dispersion (with accompanyinglosses). Then the
right-hand side of (6.105) does not have the simple interpretation exhibited in
(6.107). The morerealistic situation of linear dispersive media is discussedin the

next section.

The emphasis so far has been on the energy of the electromagnetic fields.

The work doneperunit time per unit volumebythefields (J + E) is a conversion
of electromagnetic energy into mechanical or heat energy. Since matteris ultt-

mately composedof chargedparticles (electrons and atomic nuclei), we can think
of this rate of conversion as a rate of increase of energy of the charged particles

per unit volume. Then we can interpret Poynting’s theorem for the microscopic

fields (E, B) as a statement of conservation of energy of the combined system of
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particles and fields. If we denote the total energy of the particles within the
volume V as E,,¢ch and assumethat no particles move outof the volume, we have

dE mech |——mech _ -Ed 6.1Ht J x (6.110)

Then Poynting’s theorem expresses the conservation of energy for the combined
system as

dk ad
dt — dt (Exnech + Egeta) — -> n-S da (6.111)

where the total field energy within Vis

Ese = | ud°x = | (E* + c’B*) d°x (6.112)
V 2 Jv

The conservation of linear momentum can besimilarly considered. Thetotal
electromagnetic force on a charged particleis

F = q(E+v xB) (6.113)
If the sum of all the momentaofall the particles in the volume V is denoted by
Pech, We Can write, from Newton’s secondlaw,

dPae = [, (pE + J x B) d3x (6.114)

where we have converted the sum overparticles to an integral over charge and
current densities for convenience in manipulation. In the same mannerasfor
Poynting’s theorem, we use the Maxwell equations to eliminate p and J from
(6.114):

p= 6V-E, J=-vxp—-e (6.115)
Lo ot

With (6.115) substituted into (6.114) the integrand becomes

JEex B= ofBE) + Bx Eon x vx B)|

Then writing

6)3JE A
—=-—(ExB)+Ex —

at atot
B x

and adding c*B(V - B) = 0 to the square bracket, we obtain

pE + J x B= &[E(V-E) + CB(V-B)
0~ EX (Vx E) — cB x (V x B)] — €)— (E x B)

The rate of change of mechanical momentum (6.114) can now be written

dk mech d | 3—_____ + —
.Ht ae €(E xX B) d°x (6.116)

= «| (ECVE) — Ex (Vx E) + CB(V- B) ~ eB x (V x BY] ax
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We maytentatively identify the volume integral on the left as the total electro-

magnetic momentum P,,.)4 in the volume V:

Preia = € | E xX B d°x = Mo€o I ExH d°x (6.117)

The integrand can be interpreted as a density of electromagnetic momentum.

Wenote that this momentum density is proportional to the energy-flux density

S, with proportionality constant c™*.
To complete the identification of the volumeintegral of

g= - (E x H) (6.118)

as electromagnetic momentum,andto establish (6.116) as the conservation law

for momentum, we must convert the volumeintegral on the right into a surface

integral of the normal component of something that can be identified as mo-

mentum flow. Let the Cartesian coordinates be denoted by x,, a = 1, 2, 3. The

a = 1 componentoftheelectric part of the integrandin (6.116)is given explicitly

by

[E(V -E) — E x (V X E)|;

OF E E OF E E— p,(2F1 , dhe , Ana +Fas
OX ” 0X3 OX, 0X5 0X3 OX,

,
=(ER) + 5(ExB) + 5~ (EvEs) ~ ~ (Ei + B3 + F3)

Xj X4

This means that we can write the ath componentas

0 =
[E(V-E) —- Ex (V x E)], = > on (EE, — E+E.) (6.119)

B

and have the form of a divergence of a second rank tensor on the right-hand

side. With the definition of the Maxwell stress tensor Tag as

Tap = €lEaEg + CBBg — 3(E+E + cB - B)b,,] (6.120)

we can therefore write (6.116) in component form as

d
dt (Pinech + Preiala = > v ax.Xp 1: d°x (6.121)

Application of the divergence theorem to the volumeintegral gives

d
dt (Pinech + Preiala = ¢ Ss) TgNg da (6.122)

t SB

where n is the outward normalto the closed surface S. Evidently, if (6.122) rep-

resents a statement of conservation of momentum, 2,7.gN, is the ath component

of the flow per unit area of momentum across the surface S into the volume V.

In other words,it is the force per unit area transmitted across the surface S and

acting on the combinedsystem of particles and fields inside V. Equation (6.122)

can therefore be used to calculate the forces acting on material objects in elec-

tromagnetic fields by enclosing the objects with a boundary surface S and adding

up the total electromagnetic force according to the right-handside of (6.122).
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The conservation of angular momentum of the combined system ofparticles
and fields can be treated in the same way as we have handled energy andlinear
momentum.This is left as a problem for the student (see Problem 6.10).

The discussion of electromagnetic momentum andthestress tensorin fluids
and solids entails analysis of interplay of mechanical, thermodynamic, andelec-
tromagnetic properties (e.g., de/dT and de/dp). We refer the reader to Landay
and Lifshitz, Electrodynamics of Continuous Media (Sections 10, 15, 16, 31, 35),

Stratton (Chapter 2), and, for a statistical mechanical approach, to de Groot (Sec-
tion 13). We note only that, although a treatment using the macroscopic Maxwell
equations leads to an apparent electromagnetic momentum, g = D X B (Min-
kowski, 1908), the generally accepted expression for a medium atrestis

1 18= GEXA = mek x H= 5S (6.123)

We note that g is the electromagnetic momentum associated with the fields,
There is an additional co-traveling momentum within the medium from the me-
chanical momentum ofthe electrons in the molecular dipoles in responseto the
incident traveling wave.* The Minkowski momentum of a plane waveis the
“pseudomomentum”of the wave vector (k = nw/c or hk = n(hw)/c for a photon).

6.8 Poynting’s Theorem in Linear Dispersive Media with Losses

In the preceding section Poynting’s theorem (6.108) was derived with therestric-
tion to linear media with no dispersionorlosses (i.e., D = eE and B = LH), with
e and y real and frequency independent. Actual materials exhibit dispersion and
losses. To discuss dispersion it is necessary to make a Fourier decomposition in
time of both E and D (and B and H). Thus, with

E(x, t) = | dw E(x, w)e'

D(x, ft) = | dw D(x, we"

the assumption oflinearity (and, for simplicity, isotropy) implies that D(x, w) =
e(w)E(x, w), where €(w) is the complex and frequency-dependentsusceptibility.
Similarly, B(x, @) = u(w)H(x, w). The reality of the fields implies that E(x, —)
= E*(x, w), D(x, —w) = D*(x, w), and e(—w) = €*(w). The presenceof dispersion
carries with it a temporally nonlocal connection between D(x, ft) and E(x, 2),
discussed in detail in Section 7.10. As a consequence, the term E - (dD/dt) in

(6.105) is not simply the time derivative of (E+ D/2).
Wewrite out E- (dD/dt) in terms of the Fourier integrals, with the spatial

dependence implicit,

E- — = | dw | dw'E*(')[—iwe(w)] - E(w)e“°-?™

*See R. E. Peierls, Proc. R. Soc. London 347, 475 (1976) for a very accessible discussion, of which
Problem 6.25is a simplified version. See also R. Loudon, L. Allen, and D. F. Nelson, Phys. Rev. E
55, 1071 (1997).
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Split the integrand into two equal parts and in one make the substitutions,
w— —w', w’ — — w, and usethe reality constraints to obtain

E - wp _!-| dw | dw'E*(w')[—iwe(w) + iw'e*(w')| + E(@)e“°° (6.124)

Wenow suppose that the electric field is dominated by frequency components
in a relatively narrow range compared to the characteristic frequency interval

over which €(w) changes appreciably. We may then expandthe factor iw’e*(w’)
in the square brackets around w’ = w to get

d
[- . | = 2 Im E(w) — i(w — w') — (we*(w)) +...

dw

Insertion of this approximation into (6.124) leads to

oD a
E-—= | dw | dw' E*(w') + E(w)w Im e(w)e“°°”

ot (6.125)

+ 2 | do | do! B%(w') + E(w) —[wer(w)Je
There is a corresponding expression for H - dB/ot with E — H and e — pw on the

right-hand side.

First of all note that if e and pare real and frequency independent we recover

the simple connection between the time derivative terms in (6.105) and du/dt,
with u given by (6.106). Second, the first term in (6.125) evidently represents the
conversion of electrical energy into heat (or more generally into different forms

of radiation*), while the second term must be an effective energy density. A more

transparent expression, consistent with our assumption of the dominance of E

and H byarelatively narrow range offrequencies can be obtained by supposing

that E = E(t) cos(wt + a), H = H(t) COS(Wot + 8), where E(t) and H(t)
are slowly varying relative to both 1/w, and the inverse of the frequency range

over which e(w) changes appreciably. If we substitute for the Fourier transforms
E(w) and H(w) and average both sides of the sum of (6.125) and its magnetic
counterpart over a period of the “‘carrier’’ frequency w,, we find (after some
straightforward manipulation),

(re oD +H- 2) = W Im €(@)(E(x, t) + E(x, t))

 

ot ot (6.126a)

0+ wy Im p(w)(H(x, t) « H(x, 0) + —

where the effective electromagnetic energy density is

d( we
Ute = 7 ReL9 (a)J t) + E(x, t))

(6.126b)

+3 Re| Soe) (on)| t) - H(x, t))

*For example, if the dominant frequencies are near an atomic resonance of the medium where ab-
sorption is important (Im e # 0), the re-emission of the radiation absorbed at w may beat w’, where

wo=o.
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The presence of the factors d(we)/dw and d(w)/do wasfirst noted by Brillouin
(see Brillouin, pp. 88—93). Our treatmentis similar to Landau andLifshitz, Elec-
trodynamics of Continuous Media (Section 80).

Poynting’s theorem in these circumstances reads

OUeee
—+V-S=-J-E — w Im e(a@)E(x, t) + E(x, t: yim eC yEGs, BOD) Og

= coy Im p(w)(x, t) + H(x, 1)
The first term on the right describes the explicit ohmic losses, if any, while the
next terms represent the absorptive dissipation in the medium, not counting con-
duction loss. If the conduction current contribution is viewed as part of the di-
electric response (see Section 7.5), the —J-E term is absent. Equation (6.127)
exhibits the local conservation of electromagnetic energy in realistic situations
where, as well as energy flow out of the locality (V- S # 0), there may belosses
from heating of the medium (Im e # 0, Im yw # 0), leading to a (presumed) slow
decay of the energyin thefields.

6.9 Poynting’s Theorem for Harmonic Fields;
Field Definitions ofImpedance and Admittance*

Lumpedcircuit concepts such as the resistance and reactance of a two-terminal

linear network occur in many applications, even in circumstances wherethesize

of the system is comparable to the free-space wavelength, for example, for a

resonant antenna.It is useful therefore to have a general definition based onfield
concepts. This follows from consideration of Poynting’s theorem for harmonic
time variation of the fields. We assumethatall fields and sources have a time
dependence e““, so that we write

E(x, t) = Re[E(x)e""'] = 5[E(x)e“ + E*(x)e™] (6.128)

The field E(x) is in general complex, with a magnitude and phase that change

with position. For product forms, such as J(x, t) « E(x, t), we have

I(x, t) + E(x, t) = g[J(xje"" + S*(xe"'] - [Exe+ E*(x)e] (6.129)
= 5 Re[J*(x) - E(x) + J(x) + E(x)e7]

For time averages of products, the convention is therefore to take one-half of

the real part of the product of one complex quantity with the complex conjugate

of the other.

For harmonicfields the Maxwell equations become

V-B=0, V X E — ioB = 0
(6.130)

V-D=p,, VxH+iaD=J

*The treatment of this section parallels that of Fano, Chu, and Adler (Sections 8.2 and 8.3). The
reader canfindin this book considerable further discussion of the connection between lumpedcircuit
and field concepts, examples of stray capacitances in inductors,etc. See also the first two chapters of
Adler, Chu, and Fano.



Sect. 6.9 Field Definitions of Impedance and Admittance 265

whereall the quantities are complex functions of x, according to the right-hand
side of (6.128). Instead of (6.103) we consider the volumeintegral

| «
— ~Ed
2 a *

whosereal part gives the time-averaged rate of work done bythefields in the

volume V. In a developmentstrictly paralleling the steps from (6.103) to (6.107),

we have

1 1
5 [aes ate 4 | ee iv x He ~ ted] as

4 2JIVv2 (6.131)

=5[ [Lv-« x H*) — io(E - D* — B- H*)] d°x

Wenowdefine the complex Poynting vector

S = 4(E x H*) (6.132)

and the harmonic electric magnetic energy densities,

w, = 7(E- D*), Wm = 7(B - H*) (6.133)

Then (6.131) can be written as

1
| Je Bd’ + 2io | (We — Wn) Bx + 9 S-nda=0 (6.134)
2 JV V s

This is the analog of (6.107) for harmonicfields. It is a complex equation whose

real part gives the conservation of energy for the time-averaged quantities and

whose imaginary part relates to the reactive or stored energy andits alternating

flow. If the energy densities w, and w,, have real volume integrals, as occurs

for systems with lossless dielectrics and perfect conductors, the real part of

(6.134) is

i Re(J* - E) d°x + p Re(S - n) da = 0

showing that the steady-state, time-averaged rate of doing work on the sources

in V by thefields is equal to the average flow of powerinto the volume V through

the boundary surface S, as calculated from the normal componentof ReS. This

is just what would be calculated from the earlier form of Poynting’s theorem
(6.107) if we assumethat the energy density u has a steady part and a harmoni-
cally fluctuating part. With losses in the components of the system, the second

term in (6.134) has a real part that accounts for this dissipation.
The complex Poynting theorem (6.134) can be used to define the input im-

pedance of a general, two-terminal, linear, passive electromagnetic system. We

imagine the system in the volume V surroundedby the boundary surface S, with

only its input terminals protruding, as shownin Fig. 6.4. If the complex harmonic

input current and voltage are J; and V;, the complex power input is 51° V;. This
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Figure 6.4 Schematic diagramsof arbitrary, two-terminal, linear, passive

electromagnetic systems. The surface S completely surrounds the system; only the input
terminals protrude. At these terminals, the harmonic input current and voltage are J,
and V;, with the input impedance Z defined by V; = ZJ,. The upper diagram applies at
low frequencies whereradiation losses are negligible, while the lower one withits
coaxial-line input permits discussion of radiation resistance.

can be written in terms of the Poynting vector by using (6.134) applied to all of
space on the outside of S as

STV; = -> S-nda (6.135)

where the unit normaln is outwardly directed, as shownin Fig. 6.4, and we have
assumed that the input powerflow is confined to the area S; (the cross section of
the coaxialline in the lower diagram of Fig. 6.4). By now considering (6.134) for
the volume V surroundedby the closed surface S, the right-handside of (6.135)
can be written in terms of integrals over the fields inside the volumeV:

51° V, _1}=| J*-E d’x + dio | (We — Wm) Ax + p , S-nda_ (6.136)

The surface integral here represents powerflow out of the volume V throughthe
surface S, except for the input surface S;. If the surface (S — S;) is takento infinity,
this integral is real and represents escaping radiation (see Chapter 9). At low
frequenciesit is generally negligible. Then no distinction need be made between

5; and S; the upper diagram in Fig. 6.4 applies.
The input impedance Z = R — ix (electrical engineers please read as Z =

R + jX!) follows from (6.136) with its definition, V; = Z/;. Its real and imaginary
parts are

1
R= ae {Re [4° Ed's +2$S: nda + 401m | (Win ~ wo ax}

(6.137)



Sect. 6.10 Transformation Properties of Electromagnetic Fields and Sources 267

1
X= 75 tw Re | (iv —w.) Bx — Im] J*- Bax

LI; | v v
(6.138)

In writing (6.137) and (6.138) we have assumed that the powerflow out through
S is real. The second term in (6.137) is thus the “radiation resistance,” important
at high frequencies. At low frequencies, in systems where ohmiclosses are the

only appreciable source of dissipation, these expressions simplify to

1
R= InP I Oo |E|? d>x (6.139)

4
X= TP I (Wm — We) ax (6.140)

Here is the real conductivity, and the energy densities w,, and w, (6.133) are
also real over essentially the whole volume. Theresistance is clearly the value

expected from consideration of ohmic heatloss in the circuit. Similarly, the re-
actance has a plausible form: if magnetic stored energy dominates, as for a

lumped inductance, the reactance is positive, etc. The different frequency de-
pendencesof the low-frequency reactance for inductances (X = wL) and capac-
itances (X = —1/wC) can betracedto the definition of L in terms of current and
voltage (V = L di/dt) on the one hand, and of C in terms of charge and voltage

(V = QI/C) on the other. The treatment of some simple examplesis left to the
problemsat the end of the chapter, as is the derivation of results equivalent to

(6.139) and (6.140) for the conductance and susceptance of the complex

admittance Y.

6.10 Transformation Properties ofElectromagnetic Fields
and Sources Under Rotations, Spatial Reflections,

and Time Reversal

The fact that related physical quantities have compatible transformation prop-

erties under certain types of coordinate transformation is so taken for granted

that the significance of such requirements and the limitationsthat can be thereby
placed on the form ofthe relations is sometimes overlooked.It is useful therefore
to discuss explicitly the relatively obvious properties of electromagnetic quanti-

ties underrotations, spatial inversions, and time reversal. The notions have direct

application for limiting phenomenological constitutive relations, and are applied

in the next section where the question of magnetic monopolesis discussed.

It is assumed that the idea of space and time coordinate transformations and
their relation to the general conservation laws is familiar to the reader from

classical mechanics(see, e.g., Goldstein). Only a summary of the main resultsis

given here.

A. Rotations

A rotation in three dimensions is a linear transformation of the coordinates

of a point such that the sum of the squares of the coordinates remainsinvariant.
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Such a transformationis called an orthogonal transformation. The transformeg
coordinates x, are given in termsof the original coordinates xg by

Xq = » Lapxzg (6.141)
B

The requirement to have (x’)* = (x)* restricts the real transformation coefficients
Aap to be orthogonal,

» Aeaplay = Opy (6.142)

The inverse transformation has (a~'),, = dg, and the square of the determinant
of the matrix (a) is equal to unity. The value det(a) = +1 correspondsto a proper
rotation, obtainable from the original configuration by a sequenceofinfinitesimal
steps, whereas det(a) = —1 represents an improperrotation, a reflection plus a
rotation.

Physical quantities are classed as rotational tensors of various ranks depend-
ing on howthey transform underrotations. Coordinatesx;,, velocities v,, momenta
p; have components that transform according to the basic transformation law
(6.141) and are tensors of rank one, or vectors. Scalar products of vectors, such
aS X; *X> OF Vj, * Ps, are invariant underrotations and so are tensors of rank zero,
or scalars. Groups of quantities that transform according to

ea = Dy AayAgsBys (6.143)
y,6

are called second-rank tensors or, commonly, tensors. The Maxwell stress tensor
is one such group of quantities. Higher rank tensor transformations follow
obviously.

In considering electromagnetic fields and other physical quantities, we deal
with one or more functions of coordinates and perhaps other kinematic variables.
There then arises the choice of an ‘‘active” or a “‘passive’’ view of the rotation.
We adopt the active view—the coordinate axes are considered fixed and the
physical system is imagined to undergo a rotation. Thus, for example, two
charged particles with initial coordinates x, and x, form a system that under a
rotation is transformed so that the coordinates of the particles are now x/ and
x}, as Shown in Fig. 6.5. The components of each coordinate vector transform
according to (6.141), but electrostatic potential is unchanged becauseit is a func-
tion only of the distance between the two points, R = |x, — x,|, and R? is asum
of scalar products of vectors and so is invariant underthe rotation. Theelectro-
static potential is one exampleof a scalar underrotations. In general, if a physical
quantity @, which is a function of various coordinates denoted collectively byx;
(possibly including coordinates such as velocities and momenta), is such that
whenthe physical system is rotated with x, > x}, the quantity remains unchanged,

b'(x;) = (x) (6.144)
then ¢ is a scalar function underrotations. Similarly, if a set of three physical
quantities V,(x;) (@ = 1, 2, 3) transform underrotation of the system according
to

 

Vi(x!) = > apVp(X;) (6.145)

then the V, form the components of a vector, and so on for higher rank tensors.
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 Figure 6.5 Active rotation of a system

of two charges.  x

Differential vector operations have definite transformation properties under

rotations. For example, the gradient of a scalar, V@, transforms as a vector, the

divergence of a vector, V « V, is a scalar, and the Laplacian operator V’ is ascalar

operator in the sense that its application to a function or set of functions does

not alter their rotational transformation properties.

Special mention must be madeof the cross product of two vectors:

A=BxC (6.146)

In component form this vector shorthand reads

A, = >) €apy Bg Cy
By

where €,,, = +1 for a = 1, B = 2, y = 3 andcyclic permutations, €,,, = —1 for

other permutations, and vanishes for two or more indices equal. Because of the

presence of two vectors on the right-handside, the cross product has someat-

tributes of a traceless antisymmetric second-rank tensor. Since such a tensor has
only three independent components, we treat it as a vector. This practice is jus-

tified, of course, only insofaras it transforms underrotations accordingto (6.141).
In actual fact, the transformation law for the cross product (6.146)is

Al. = det(a) >) dagAg (6.147)
B

Forproperrotations, the only kind we have consideredsofar, det(a) = +1; thus
(6.147) is in agreementwith the basic coordinate transformation (6.141). Under
properrotations, the cross product transformsas a vector.

B. Spatial Reflection or Inversion

Spatial reflection in a plane correspondsto changing the signs of the normal

componentsof the coordinate vectors of all points and to leaving the components

parallel to the plane unchanged. Thus, for reflection in the x-y plane, x; =
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(X;, Vi, Zi) > X; = (%;, yi, — Z;). Space inversion correspondsto reflection of al]
three components of every coordinate vector throughtheorigin, x; > x; = —xX,,

Spatial inversion or reflection is a discrete transformation that, for more than
two coordinates, cannot in general be accomplished by properrotations. It cor-
responds to det(a) = —1, and for the straightforward inversion operationis given
by (6.141) with ag = —8,,. It follows that vectors change sign underspatial]
inversion, but cross products, which behave according to (6.147), do not. We are

thus forced to distinguish two kinds of vectors (under general rotations):

Polar vectors (or just vectors) that transform according to (6.145) and for
xX; — x; = —x; behaveas

V-VvV=-V

Axial or pseudovectors that transform according to (6.147) and for x; > x} = —x,
behave as

A>~A'=A

Similar distinctions must be madefor scalars under rotations. We speakofscalars
or pseudoscalars, depending on whether the quantities do not or do changesign
under spatial inversion. The triple scalar product a-(b X c) is an example of a
pseudoscalar quantity, provided a, b, ¢ are all polar vectors. (We see here in
passing a dangerous aspect of our usual notation. The writing of a vector as a
does not tell us whether it is a polar or an axial vector.) The transformation
properties of higher rank tensors underspatial inversion can be deduceddirectly
if they are built up by taking products of components of polar or axial vectors.
If a tensor of rank N transforms underspatial inversion with a factor (—1)‘, we

call it a true tensor or just a tensor, while if the factor is (—1)‘*! wecall it a
pseudotensorof rank N.

C. Time Reversal

The basic laws of physics are invariant (at least at the classical level) to the

sense of direction of time. This does not mean that the equations are even in f,
but that, under the time reversal transformation t > ¢’ = —t, the related physical
quantities transform in a consistent fashion so that the form of the equationis

the same as before. Thus, for a particle of momentum andposition x moving
in an external potential U(x), Newton’s equation of motion,

dp— = —-VUHt (x)

is invariant under time reversal provided x — x’ = x and p— p’ = —p.Thesign
change for the momentum is, of course, intuitively obvious from its relation to

the velocity, v = dx/dt. The consequenceof the invariance of Newton’s laws under
time reversal is that, if a certain initial configuration of a system of particles

evolves underthe actionof various forces into somefinal configuration,a possible
state of motion of the system is that the time-reversed final configuration (all

positions the same,butall velocities reversed) will evolve over the reversed path
to the time-reversed initial configuration.

The transformation properties of various mechanical quantities under rota-
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Table 6.1. Transformation Properties of Various Physical Quantities under Rotations,
Spatial Inversion and Time Reversal’
 

 

Rotation
(rank of Space Inversion Time

Physical Quantity tensor) (name) Reversal

I. Mechanical
Coordinate x 1 Odd(vector) Even
Velocity Vv 1 Odd(vector) Odd
Momentum p 1 Odd(vector) Odd
Angular momentum L=xxXp 1 Even (pseudovector) Odd
Force F 1 Odd(vector) Even
Torque N=xxF 1 Even (pseudovector) Even
Kinetic energy p?/2m 0 Even (scalar) Even
Potential energy U(x) 0 Even(scalar) Even

II. Electromagnetic
Charge density p 0 Even (scalar) Even
Current density J 1 Odd(vector) Odd

Electric field E
Polarization P| 1 Odd(vector) Even

Displacement D
Magnetic induction B
Magnetization n| 1 Even (pseudovector) Odd

Magneticfield H
Poynting vector S-ExH 1 Odd(vector) Odd
Maxwell stress tensor Tap 2 Even (tensor) Even

 

‘For quantities that are functions of x and ¢, it is necessary to be very clear what is meant by

evenness or oddness underspace inversion or time reversal. For example, the magnetic induction is
such that underspace inversion, B(x, t) > B,(x, t) = +B(~—x, 1), while under timereversal,

B(x, t) — Br(x, t) = —B(x, —2).

tions, spatial inversion, and time reversal are summarizedin the first part of Table

6.1.

D. Electromagnetic Quantities

Just as with the laws of mechanics,it is true (i.e., consistent with all known

experimental facts) that the forms of the equations governing electromagnetic

phenomenaareinvariant underrotations, space inversion, and timereversal. This

implies that the different electromagnetic quantities have well-defined transfor-

mation properties under these operations.It is an experimentalfact that electric
charge is invariant under Galilean and Lorentz transformations andis a scalar

under rotations. It is natural, convenient, and permissible to assumethat charge

is also a scalar underspatial inversion and even undertime reversal. The point
here is that physically measurable quantities like force involve the product of

charge andfield. The transformation properties attributed to fields like E and B
thus depend on the convention chosen for the charge.

With chargea true scalar underall three transformations, charge density p 1s

also a true scalar. From thefact that the electric field is force per unit charge, we
see that E is a polar vector, even undertime reversal. This also follows from the
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Maxwell equation, V-E = p/eo, since both sides must transform in the same
manner under the transformations.

Thefirst term in the Maxwell equation representing Faraday’s law,

VxEt+ op _ 0
ot

transforms as a pseudovector under rotations and spatial inversion, and is even
undertime reversal. To preserve the invariance of form it is therefore necessary
that the magnetic induction B be a pseudovector, odd undertime reversal. The
left-hand side of the Ampére—Maxwell equation,

t Vx B-e or = J
Mo ot

can be seen to transform as a polar vector, odd undertime reversal. This implies
that the current density J is a polar vector, odd undertime reversal, as expected
from its definition in terms of charge timesvelocity.

Wehavejust seen that the microscopic fields and sources have well-defined
transformation properties underrotations, spatial inversion, and time reversal.
From the derivation of the macroscopic Maxwell equations in Section 6.6 and
the definitions of P, M,etc., it can be seen that E, P, D all transform in the same
way, as do B, M, H.The various transformation properties for electromagnetic
quantities are summarized in the second part of Table 6.1.

To illustrate the usefulness of arguments on the symmetry properties listed
in Table 6.1, we consider the phenomenological structure of a spatially local
constitutive relation specifying the polarization P for an isotropic, linear, non-
dissipative medium in a uniform, constant, external magnetic induction By. The
relationis first order in the electric field E, by assumption, but we require an
expansion in powersof By up to second order. Since P is a polar vector, and even
undertime reversal, the various terms to be multiplied by scalar coefficients must
transform in the same way. To zeroth order in Bo, only E is available. To first
order in Bo, possible terms involving E linearly are

dE vE
E X Bo, op Bo 5p Bo

All these are permitted by rotational and spatial inversion grounds, but only
those involving odd timederivatives transform properly under time reversal. For
the second orderin Bo, the possibilities are

OE
(Bo BoE, (E+ Bo)Bo, (By - Bo) =,

Here only the terms with zero or even time derivatives of E satisfy all the re-
quirements. The most general spatially local expression for the polarization, cor-
rect to second order in the constant magnetic field Bo, is thus

1 JE
a. P= XE + oP X Bo + X2(Bo + Bo)E + x3(E + Bo)Bo +--+ (6.148)
O

wherethe y; are real scalar coefficients and higher time derivatives of E can occur,
odd for the termslinear in By and even for the zeroth and second powers of Bo.
At low frequencies, the responseof essentially all material systemsis via electric
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forces. This means that at zero frequency there should be no dependence of P

on Bo, and a morerealistic form is

°E (<e1 JE
— P= yE + — X Bo + x3(Bo: Bo) = + X31 —> Xo xX at 0 x2(Bo 0) are X3 are B.)B (6.149)

where we have exhibited only the lowest order time derivatives for each power
of By. At optical frequencies this equation permits an understanding of the gy-

rotropic behavior of waves in an isotropic medium in a constant magneticfield.*
Another example, the Hall effect, is left to the problems.It, as well as ther-

mogalvanomagnetic effects and the existence of magnetic structurein solids, are

discussed in Landau and Lifshitz (op. cit.).
In certain circumstances the constraints of space-time symmetries must be

relaxed in constitutive relations. For example, the optical rotatory powerof chiral

molecules is described phenomenologically by the constitutive relations, P =

€XoK + €dB/dt and woM = xB + €é'dE/ot. The added terms involve pseudoscalar

quantities € and é’ that reflect the underlying lack of parity symmetryfor chiral

substances. (Quantum mechanically, nonvanishing € or é’ requires both electric

and magnetic dipole operators to have nonvanishing matrix elements between

the samepair of states, something that cannot occurfor states of definite parity.)

6.11 On the Question of Magnetic Monopoles

At the present time (1998) there is no experimental evidence for the existence
of magnetic charges or monopoles. But chiefly because of an early, brilliant the-

oretical argument of Dirac,’ the search for monopoles is renewed whenever a
new energy region is openedupin high-energy physics or a new source of matter,

such as rocks from the moon, becomes available. Dirac’s argument, outlined

below,is that the mere existence of one magnetic monopolein the universe would
offer an explanation of the discrete nature of electric charge. Since the quanti-

zation of charge is one of the most profound mysteries of the physical world,
Dirac’s idea has great appeal. The history of the theoretical ideas and experi-

mental searches up to 1990 are described in the resource letter of Goldhaber and
Trower.* Some other references appear at the end of the chapter.

There are some necessary preliminaries before examining Dirac’s argument.

One question that arises is whetherit is possible to tell that particles have mag-

netic as well as electric charge. Let us suppose that there exist magnetic charge
and current densities, p,, and J,,,, in addition to the electric densities, p, and Je.

The Maxwell equations would then be

V-D= p., Vx H= + Je

(6.150)

oD

t

oB
V-B=p,, —-VXE=—+ In

ot

*See Landau andLifshitz, Electrodynamics of Continuous Media, p. 334, Problem 3, p. 337.

‘Pp. A. M. Dirac, Proc. R. Soc. London A133, 60 (1931); Phys. Rev. 74, 817 (1948).

*A.S. Goldhaber and W. P. Trower, Resource Letter MM-1: Magnetic Monopoles, Am. J. Phys. 38,

429-439 (1990).
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The magnetic densities are assumed to satisfy the same form of the continuity
equation as the electric densities. It appears from these equationsthat the exis.
tence of magnetic charge and current would have observable electromagnetic
consequences. Consider, however, the following duality transformation*:

E = E’ cosé + ZH’ sing ZoD = Z,D’' cosé + B’ sin €
, (6.151)

ZoH = —E’ siné + ZH’ cos & B = —Z,D’ siné + B’ cosé

For a real (pseudoscalar) angle € such a transformation leaves quadratic forms
such as E X H, (E-D + B- BH), and the components of the Maxwell stress tensor
7g Mvariant. If the sources are transformed in the same way,

LoPe = ZoPe COSE + py, sin E, Loe = Zod. cosE + J, sin €
, (6.152)

Pm = —Zope SNE + py, cos €, Jn = —-ZoJ- siné + J,, cos é

then it is straightforward algebra to show that the generalized Maxwell equations
(6.150) are invariant, that is, the equations for the primedfields (K’, D’, B’, H’)
are the same as (6.150) with the primed sourcespresent.

The invariance of the equations of electrodynamics under duality transfor-
mations showsthatit is a matter of convention to speak of a particle possessing
an electric charge, but not magnetic charge. The only meaningful question is
whetherall particles have the same ratio of magnetic to electric charge.If they
do, then we can make a duality transformation, choosing the angle € so that
Pm = 9, Jin = 0. We then have the Maxwell equationsas they are usually known.

If, by convention, we choosethe electric and magnetic chargesof an electron
to be gq. = —e, g, = 0, then it is known that for a proton, g. = +e (with the
present limits of error being |q,(electron) + q,(proton)|/e ~ 107°) and
|@mn(nucleon)| < 2 x 107*4 Zoe.

This extremely small limit on the magnetic charge of a proton or neutron
follows directly from knowing that the average magnetic field at the surface of
the earth is not more than 10* T. The conclusion, to a very high degree of
precision,is that the particles of ordinary matter possess only electric charge or,
equivalently, they all have the same ratio of magnetic to electric charge. For
other, unstable, particles the question of magnetic charge is more open, but no
positive evidence exists.

The transformation properties of p,, and J,,, under rotations, spatial inver-
sion, and time reversal are important. From the known behavior of E and B in
the usual formulation we deduce from the secondline in (6.150) that

Pm tS a pseudoscalar density, odd undertime reversal, and

J, is a pseudovector density, even undertime reversal.

Since the symmetries of p,, under both spatial inversion and time reversal are
opposite to those of p,, it is a necessary consequenceofthe existenceof a particle
with both electric and magnetic charges that space inversion and time reversal
are no longer valid symmetries of the laws of physics. It is a fact, of course, that

*The presenceof the “impedanceoffree space,” Z) = V pio/€, in the transformationis a consequence
of the presence of the dimensionful parameters €) and fy in the SI system. Magnetic charge density
differs in dimensions from electric charge density in SI units. For users of Gaussian units, put Z,) — 1.
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these symmetry principles are not exactly valid in the realm of elementary par-
ticle physics, but present evidence is that their violation is extremely small and
associated somehow with the weak interactions. Future developments linking
electromagnetic, weak, and perhapsstrong, interactions may utilize particles car-
rying magnetic charge as the vehicle for violation of space inversion and time

reversal symmetries. With no evidence for monopoles, this remains speculation.
In spite of the negative evidence for the existence of magnetic monopoles,

let us turn to Dirac’s ingenious proposal. By considering the quantum mechanics
of an electron in the presence of a magnetic monopole, he showed that consis-
tency required the quantization condition,

eg ag on5 _ 78 _ = 0, +1, +2,... 6.153
4th Zoe 2 (n re) (

where e is the electronic charge, a = e7/47ehc is the fine structure constant

(a ~ 1/137), and g is the magnetic charge of the monopole. Thediscrete nature

of electric charge thus follows from the existence of a monopole. The magnitude

of e is not determined, except in terms of the magnetic charge g. The argument

can be reversed. With the known value of the fine structure constant, we infer

the existence of magnetic monopoles with charges g whose magnetic “‘fine struc-

ture’’ constant1s

 

4ouhc 4
Sg Ww (szs"*) _ 137,

e” 4"

Such monopoles are known as Dirac monopoles. Their coupling strength is enor-
mous, making their extraction from matter with dc magnetic fields and their

subsequent detection very simple in principle. For instance, the energy loss in
matter by a relativistic Dirac monopole is approximately the sameas that of a

relativistic heavy nucleus with Z = 137n/2. It can presumably be distinguished

from such a nucleusif it is brought to rest because it will not show an increase
in ionization at the end of its range (see Problem 13.11).

6.12 Discussion of the Dirac Quantization Condition

Semiclassical considerations can illuminate the Dirac quantization condition

(6.153). First, we consider the deflection at large impact parametersof a particle

of charge e and mass m bythefield of a stationary magnetic monopole of mag-

netic charge g. At sufficiently large impact parameter, the changein the state of
motion of the charged particle can be determined by computing the impulse of
the force, assuming the particle is undeflected. The geometry is shownin Fig.6.6.

The particle is incident parallel to the z axis with an impact parameter b and a

speed v andis acted on by the radially directed magnetic field of the monopole,
B = er/4mr°, according to the Lorentz force (6.113). In the approximation that
the particle is undeflected, the only force acting throughout the collision is a y

component,

eg ub
— Aq (b 1 yt?) (6.154)y — evB,
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Figure 6.6 Charged particle
& z passing a magnetic monopole at
O large impact parameter.

The impulse transmitted by this forceis

egub [~ dt eg
Ap, = SS == 6.dr I-02 (P+ VP? Ind (6.155)
 

Since the impulse is in the y direction, the particle is deflected out of the plane
of Fig. 6.6, that is, in the azimuthal direction. Evidently the particle’s angular
momentum is changed bythecollision, a result that is not surprising in the light
of the noncentral nature of the force. The magnitude of the change in angular
momentum is somewhatsurprising, however. There is no z componentof L ini-
tially, but thereis finally. The changein L,is

AL, = b Ap, = & (6.156)
277

The change in the z component of angular momentum ofthe particle is inde-

pendent of the impact parameter b and the speed v of the charged particle. It

depends only on the product eg andis a universal value for a charged particle
passing a stationary monopole, no matter how far away. If we assumethat any
change of angular momentum must occurin integral multiples of #, we are led

immediately to the Dirac quantization condition (6.153).*
The peculiarly universal character of the change in the angular momentum

(6.156) of a charged particle in passing a magnetic monopole can be understood
by considering the angular momentum contained in the fields of a pointelectric

charge in the presence of a point magnetic monopole. If the monopoleg is at

x = R and the charge e is at x = 0, as indicated in Fig. 6.7, the magnetic and

electric fields in all of space are

g 1 g nn e 1 e n
H=- Vi-|= —= E = — Vi-] = = (6.157

Ato (+) Amy r'?’ 4 Tre, (*) Ame 1° ( )

where 7’ = |x — R|, r = |x|, and n’ and n are unit vectors in the directions of
(x — R) andx, respectively. The angular momentum L.,,, is given by the volume
integral of x X g, where g = (E X H)/c’ is the electromagnetic momentum density.

    

  

*This argumentis essentially due to A. S. Goldhaber, Phys. Rev. 140, B1407 (1965).
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Figure 6.7

The total momentum ofthe fields P.,,, (volume integral of g) vanishes. This fol-
lows from the fact that P,.,,, is a vector and the only vector available is R. Thus

P.,,, = (R/R)P, where P is the volume integral of g-(R/R). But g-R «
R-(n X n’). Since R lies in the plane defined by the vectors n and n’, the triple
scalar product vanishes and so doesP,,,. This vanishing of the total momentum

meansthat the angular momentum

Lon = ! [x x (E x H) d*x (6.158)err 2

is independentof choice of origin. To evaluate L,,, one can first substitute from

(6.157) for the electric field:

4 1 1
+r, =e {tnx mx BHdx = ~e {+f nn] as
Mo r r

Using a vector identity from the front flyleaf, this can be expressed as

4qLemn = —e | (B- V)n d°x

where B = pwoH. Integration by parts gives

ts| n(V - B) d°x — e| n(B -n;) da
S

where the secondintegral is over a surface S at infinity and ng is the outward

normal to that surface. With B from (6.157) this surface integral reduces to
(g/4ar)f n dO = 0, since n is radially directed and has zero angular average. Since

B is caused by a point monopole at x = R,its divergence is V- B = g 6(x — R).
The field angular momentum 1s therefore*

Len = — (6.159)

*This result wasfirst stated by J. J. Thomson, Elements of the Mathematical Theory of Electricity and

Magnetism, Cambridge University Press, Section 284 of the third (1904) and subsequenteditions.
The argument of Section 284 is exactly the converse of ours. From the conservation of angular
momentum, Thomson deduces the magnetic part e(v < B) of the Lorentz force.
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It is directed along the line from the electric to the magnetic charge and hag
magnitude equal to the product of the charges (in SI units) divided by 47. If we
now think ofthe collision process of Fig. 6.6 and the total angular momentum of
the system, that is, the sum of the angular momentaof the particle and the

electromagneticfield, we see that the total angular momentumis conserved. The

change (6.156) in the angular momentum ofthe particle is just balanced by the
change in the electromagnetic angular momentum (6.159) caused by the reversal]
of the direction R. A systematic discussion of the classical and quantum-me-
chanical scattering problem, including the electromagnetic angular momentum,
is given by Goldhaber(loc. cit.).

The Thomson result (6.159) was used by Saha* and independently by
Wilson‘ to derive the Dirac condition (6.153) by semiclassical means. To get n/2
instead of n when only the field angular momentum is considered,itis necessary
to postulate half-integral quantization of L,,,,, a somewhat undesirable hypothesis
for the electromagneticfield.

Finally, we present a simplified discussion of Dirac’s original (1931) argument
leading to (6.153). In discussing the quantum mechanics of an electron in the
presence of a magnetic monopoleit is desirable to changeaslittle as possibleof
the formalism of electromagnetic interactions, and to keep, for example, the
interaction Hamiltonian in the standard form,

2e eHm =e -—p-A+—A-A
int © m? 2m

where ® and arethescalar and vector potentials of the external sources. To
do this with a magnetic chargeit is necessary to employanartifice. The magnetic
charge g is imaginedto be the end of a line of dipoles or a tightly wound solenoid
that stretches off to infinity, as shown in Fig. 6.8. The monopole andits attached
string, as the line of dipoles or solenoid is called, can then be treated moreor
less normally within the framework of conventional electromagnetic interactions

where B = V X A,etc. From (5.55) we see that the elemental vector potential
dA for a magnetic dipole element dm at x’is

1
dA(x) = -— dm xX (4) (6.160)

Thusfor a string of dipoles or solenoid whose location is given by the string L

the vector potential is

AL(x)=i} dl x (+3) (6.161)

Forall points except on thestring, this vector potential has a curl that is directed
radially outward from the end of the string, varies inversely with distance

squared, with total outward flux g, as expected for the B field of monopole g. On

the string itself the vector potential is singular. This singular behavior is equiv-

alent to an intensefield B’ inside the solenoid and bringing a return contribution
of flux (—g) in along the string to cancel the pole’s outward flow. So far we have

*M.N.Saha, Indian J. Phys. 10, 141 (1936); Phys. Rev. 75, 1968 (1949).

"H. A. Wilson, Phys. Rev. 75, 309 (1949).
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Figure 6.8 Tworepresentations of a magnetic monopole g, one as the termination of a
line of dipoles and the other as the end of a tightly wound solenoid, both “‘strings”’

stretching off to infinity.

just described a long thin solenoid. To exhibit the field of the monopole atone

we write

Bnonopole =VxA—B

where B’ exists only on the string (inside the solenoid). Dirac now argued that
to describe the interaction of the electron with a magnetic monopole, rather than

with a long thin solenoid, it is mandatory that the electron never “‘see” the sin-

gular field B’. He thus required the electronic wave function to vanish along the

string. This arbitrary postulate has been criticized, but discussion of such aspects

leads us toofar afield andis not central to our limited purpose. Dirac’s later work
(1948) treats the question of the unobservability of the strings in detail.

If (6.161) for A;(x) is accepted as the appropriate vector potential for a
monopoleandits string L, there remains the problem of the arbitrariness of the
location of the string. Clearly, the physical observables should not depend on

where the string is. We now showthat a choice of different string positions is
equivalent to different choices of gauge for the vector potential. Indeed, the

requirements of gauge invariance of the Schrédinger equation and single-val-

uedness of the wave function lead to the Dirac quantization condition (6.153).
Consider two different strings L and L’, as shownin Fig. 6.9. The difference of

the two vector potentials is given by (6.161) with the integral taken along the
closed path C = L’ — L around the area S. By Problem 5.1, this can be written

A(x) = A,(x) + ~ VO-(x) (6.162)

where (¢ is the solid angle subtended by the contour C at the observation point

x. Comparison with the gauge transformation equations, A — A’ = A + Wy,

© > ®’ = @ — (1/c)(dy/dt), shows that a change in string from L to L’ is equiv-
alent to a gauge transformation, vy = gQ-/47.
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7} \ Figure 6.9 Twodifferent strings 1,
P 7 { ! ' .

SS and L’ give monopole vector

x ~~ potentials differing by a gauge

transformation involving the gradient
of the solid angle 0O-(x) subtendedat
the observation point P by the
surface S spanning the contour C =

x L'- L.

  

It is well known in quantum mechanics* that a change in the gaugeof the
electromagnetic potentials leaves the form of the Schrédinger equation invariant,
provided the wave function is transformed according to

yy —> yy _— weer!

wheree is the charge of the particle and y is the gauge function. A changein the

location of the string from L to L’ must therefore be accompanied by a modifi-

cation of the phase of the wave function of the electron,

wy _» ip’ _— preteOcl4mh (6.163)

Since 0. changes suddenly by 477 as the electron crosses the surface S, the wave
function will be multiple-valued unless we require

eg
A,

This is the Dirac quantization condition (6.153). It follows from the generalre-
quirements of gauge invariance and single-valuedness of the wave function,in-

dependentof the location of the monopole’sstring.
The preceding discussion of magnetic monopoles presents only the most ba-

sic concepts. An extensive literature exists on modifications of the quantization
condition, attempts at a quantum electrodynamics with magnetic monopoles and

electric charges, and other aspects. The interested reader can pursue the subject
through the article by Goldhaber and Trower(op.cit.) and the referencesat the
end of the chapter.

=2nn (n=0,+1, +2,...)

6.13 Polarization Potentials (Hertz Vectors)

It is sometimes useful to utilize potentials other than the standard scalar and
vector potentials as auxiliary fields from which to determine the fundamental

electromagnetic fields. The most important of these are the polarization potentials

*The demonstration is very easy. See, for example, H. A. Kramers, Quantum Mechanics, North-
Holland, Amsterdam, (1957); Dover reprint (1964), Section 62.



Sect. 6.13 Polarization Potentials (Hertz Vectors) 281

or Hertz vectors, introduced by Hertz (1889) and Righi (1901). As the name
suggests, these potentials put the electric and magnetic polarization densities to

the fore. We considerlinear, isotropic media with sources of external polarization
densities, P.,, and M.,,, but no separate macroscopic charge or current. The me-

dia are described by electric and magnetic susceptibilities, € and yw. [The realistic
situation of frequency-dependent quantities can be abstracted by choosing a

unique sinusoidal time dependence and then using Fourier superposition.]
The macroscopic fields are written

D = €& + P.,; B = pH + pwoMaex (6.164)

Then with the standard definitions (6.7) and (6.9) of the fields in terms of the
scalar and vector potentials, the macroscopic Maxwell equations yield the wave

equations,

aN oP...
LE> VA = bb— + MoV X Maext (6.165a)

ot ot

o°@ 1
be zy Vp = —-V- Px: (6.165b)

ot €

with

a®
V-A+ ne =0

pe “at

as the Lorenz condition. Two vector polarization potentials, Il, and II,,, are

introduced by writing A and ® in a form paralleling the structures of the right-
hand sides of the wave equations (6.165), namely,

oll, 1
A= b+ MoV X Hn ®@ = —-V-Il, (6.166)

E

Whenwesubstitute these definitions into (6.165), we find that the Lorenz con-
dition is automatically satisfied. The wave equations becomethe following equa-

tions for II, andII,,:

2
T _

ve]VM = ne” -+ P.,,| =0 

   

at? |

(6.167a)

d il, II, |
lL a ha — pe op + Pax + pUoV X vn, — pe oP + M.., = 0

(6.167b)

From (6.167a) we find that the square-bracketed quantity can at most be equal
to the curl of some vector function, call it (4o/w)V. When this form is inserted

into (6.167b), we have a vanishing curl of a vector quantity that must therefore
be equal at most to the gradient of somescalar field, call it d/dt. The result is
that the Hertz vectors satisfy the wave equations,

 é°I1.pe 3° — WIT, = Pex Moy xv (6.168a)
wb

o-IL, ov ag
 — WI, = Mea: + — + V 6.168b
ot? ot ot ( )

be
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It 1s left to the problems (Problem 6.23) to show that the arbitrary functions y
and € may be removed bya gauge transformation on the polarization potentials
We may thus set V and € equal to zero with noloss of generality.

The electric and magnetic fields are given in terms of the Hertz vectors by

 

1 orl oll—-_wy. — = — uV x — ;E . (V- II.)

—

p WT [Lo OT (6 169a)

oll.
B = pV X “a Tt boV X V X IL, (6.169b)

Outside the source P,,, the wave equation (6.168a) can be used to express E in
a form analogousto (6.169b) for B with the roles of the electric and magnetic
Hertz vectors interchanged.

The wave equationsfor IT, and IT, have solutions that are particularly simple
if the external polarization densities are simple. For example, a time-dependent
magnetic dipole at the point xy has a magnetization density,

M.x, = m(t)d(x — Xo)

From the form of the wave equation (6.41) and its solution (6.47), we deduce
that the magnetic Hertz vectoris

m(t — VueR)
477R
 IT,.(x, £1) =

where R = |x — Xo].
Illustrations of the use of polarization potentials can be found in Born and

Wolf, in Stratton, and in Panofsky and Phillips, who discuss elementary multipole
radiation in terms of a Hertz vector. Wefind it adequate to work with the usual
potentials A and ® orthe fields themselves.

References and Suggested Reading

The conservation laws for the energy and momentum of electromagneticfields are
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electromagnetism, as well as of the thermodynamicsof electric and magnetic systems,is
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The derivation of the macroscopic Maxwell equationsfrom statistical-mechanical point
of view has long been the subject of research for a school of Dutch physicists. Their
conclusions are contained in two comprehensive books,

de Groot
de Groot and Suttorp

A treatment of the energy, momentum, and Maxwell stress tensor of electromagnetic
fields somewhat at variance with these authorsis given by

Penfield and Haus,

Haus and Melcher

For the reader who wishes to explore the detailed quantum-mechanical treatmentof
dielectric constants and macroscopic field equations in matter, the following are suggested:

S. L. Adler, Phys. Rev, 126, 413 (1962).

B. D. Josephson, Phys. Rev. 152, 21 (1966).
G. D. Mahan, Phys. Rev. 153, 983 (1967).

Symmetry properties of electromagnetic fields under reflection and rotation are dis-

cussed by
Argence and Kahan

The subject of magnetic monopoleshas an extensive literature. We have alreadycited
the paper by Goldhaberand his review with Trower, as well as the fundamental papers
of Dirac. The relevance of monopolesto particle physics is discussed by

J. Schwinger, Science 165, 757 (1969).
The interest in and status of searches for magnetic monopoles up to the 1980s can be

found in
R. A. Carrigan and W. P. Trower, Magnetic Monopoles, NATO Adv.Sci. Inst.
Series B, Physics, Vol. 102, Plenum Press, New York (1983).

The mathematical topics in this chapter center around the wave equation.Theinitial-
value problem in one, two, three, and more dimensionsis discussed by

Morse and Feshbach (pp. 843-847)
and, in more mathematical detail, by

Hadamard

Problems

6.1. In three dimensions the solution to the wave equation (6.32) for a point source in
space and time(alight flash at t’ = 0, x’ = 0) is a spherical shell disturbance of
radius R = ct, namely the Green function G‘*? (6.44). It may beinitially surprising
that in one or two dimensions, the disturbance possesses a “‘wake,”’ even though
the source is a “point” in space and time. The solutions for fewer dimensions than
three can be found by superposition in the superfluous dimension(s), to eliminate
dependence on such variable(s). For example, a flashing line source of uniform

amplitude is equivalent to a point source in two dimensions.

(a) Starting with the retarded solution to the three-dimensional wave equation
(6.47), show that the source f(x’, t’) = 5(x')6(y’)d(z’), equivalent to a t = 0
point source at the origin in two spatial dimensions, produces a two-dimen-

sional wave,

_ 2c@(ct — p)
W(x, y, t) = Vern

where p? = x” + y’ and @(€) is the unit step function [O(€) = 0 (1)if

E<(>)0.]
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6.2

6.3

(b) Showthat a “sheet” source, equivalent to a point pulsed source at the Origin
in One space dimension, produces a one-dimensional waveproportional to

W(x, t) = 2ac@(ct — |x|)

The charge and currentdensities for a single point charge g can be written formally
as

p(x’, t') = go[x’ — r(t')]; I(x’, ') = qv(t’)[x’ — r(¢’)]

where r(t’) is the charge’s position at time t’ and v(t’) is its velocity. In evaluating
expressions involving the retarded time, one must put t’ = t,., = t — R(t’)/c, where
R = x — r(¢’) (but R = x — x’ (#’) inside the delta functions).

(a) Asa preliminary to deriving the Heaviside-Feynmanexpressionsforthe elec.

tric and magnetic fields of a point charge, show that

[ ex 6[x’ — r(trer)] = .

where xk = 1 — v- Ric. Note that « is evaluated at the retarded time.

(b) Starting with the Jefimenko generalizations of the Coulomb and Biot—Savart
laws, use the expressionsfor the charge and currentdensities for a point charge
and the result of part a to obtain the Heaviside-Feynman expressionsfor the
electric and magneticfields of a point charge,

q R a |R d |v
E = 3 + —

|

— ~ 9,,] vn
ATE KR ret cot

|

KR ret cot LKR ret

x R x RB= Mog vxR 4 < vxR

Ar KR? ret Col KR |.

(c) In our notation Feynman’s expression for the electric field is

q R [Re 0 R ro.E=——j/—]| +2 /] + Yr},
4Tre, [| c ot R? ret ap| bre

while Heaviside’s expression for the magnetic field is

Mog vxR 1 a{/vxRB="-_— 2p2 + atAq KR ret C[R]ret ot K ret

Show the equivalence of the two sets of expressionsfor the fields.
References: O. Heaviside, Electromagnetic Theory, Vol. 3 (1912), p. 464, Eq.(214).

R. P. Feynman, The Feynman Lectures in Physics, Vol. 1 (1963), Chapter 28, Eq.
(28.3).

The homogeneousdiffusion equation (5.160) for the vector potential for quasi-static
fields in unbounded conducting media hasa solution to the initial value problem
of the form,

 

and

 

   

A(x, ft) = | d°x' G(x — x’, t)A(x’, 0)

where A(x’, 0) describes the initial field configuration and G is an appropriate
kernel.
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(a)

(b)

(c)

(d)
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Solve the initial value problem by use of a three-dimensional Fourier trans-
form in space for A(x, ¢t). With the usual assumptions on interchange of orders
of integration, show that the Green function has the Fourier representation,

1_ ek eKtwapik-(x—x’)

(27)° |
G(x — x’, t)

and it is assumed that t > 0.

By introducing a Fourier decomposition in both space and time, and perform-
ing the frequency integral in the complex w plane to recoverthe result of part
a, show that G(x—x’, ft) is the diffusion Green function that satisfies the in-

homogeneous equation,

0G 1— VG = 6x — x’')(2)
ot Lo

and vanishes for t < 0.

Show that if o is uniform throughout all space, the Green function is

3/2 _ orl

Supposethatat time ¢’ = 0, the initial vector potential A(x’, 0) is nonvanishing
only in a localized region of linear extent d around the origin. The time de-
pendenceofthe fields is observed at a point P far from the origin,i-e., |x| =
r >> d. Showthat there are three regimes of time,0 <t=7), 7% StS 7,

and t >> T,. Give plausible definitions of T, and T>, and describe qualitatively

the time dependenceat P. Showthat in the last regime, the vector potential
is proportional to the volume integral of A(x’, 0) times t~*”, assuming that
integral exists. Relate your discussion to those of Section 5.18.B and Problems

5.35 and 5.36.

 

A uniformly magnetized and conducting sphere of radius R and total magnetic
moment m = 47MR?/3 rotates about its magnetization axis with angular speed w
In the steady state no current flows in the conductor. The motionis nonrelativistic;

the sphere has no excess charge onit.

(a)

(b)

(c)

(d)

By considering Ohm’s law in the moving conductor, show that the motion
inducesanelectric field and a uniform volume charge density in the conductor,

p = —moa/mc?R?.

Because the sphere is electrically neutral, there is no monopole electric field

outside. Use symmetry arguments to show that the lowest possible electric
multipolarity is quadrupole. Show that only a quadrupole field exists outside
and that the quadrupole moment tensor has nonvanishing components,

O33 = —4mwR?/3c’, QO1, = Qn = —Q;,/2.

By considering the radial electric fields inside and outside the sphere, show
that the necessary surface-charge density o(@) is

1 4mo 5
= . . 1 _—- P.

(8) 4mR? 3c° 2 2(COs 0 |

The rotating sphere servesas a unipolar induction deviceif a stationarycircuit
is attached by a slip ring to the pole and a sliding contact to the equator. Show
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6.5

6.6

that the line integral ofthe electric field from the equator contact to the Pole
contact (by any path) is 6 = upma/4rR.

[See Landau andLifshitz, Electrodynamics of Continuous Media, p. 221, for an
alternative discussion of this electromotive force. ]

A localized electric charge distribution produces an electrostatic field, E = —Vo.
Into this field is placed a small localized time-independent current density J(x),
which generates a magnetic field H.

(a) Showthat the momentumofthese electromagnetic fields, (6.117), can be trans.
formed to

1
Preia = oe | OJ d°x

provided the product ®H falls off rapidly enough at large distances. How
rapidly is “‘rapidly enough’’?

(b) Assumingthat the currentdistribution is localized to a region small compared
to the scale of variation of the electric field, expand the electrostatic potential
in a Taylor series and show that

1
Preia = oe E(0) x m

where E(0)is the electric field at the currentdistribution and m is the magnetic
moment, (5.54), caused by the current.

(c) Suppose the current distribution is placed instead in a uniform electric field
FE)(filling all space). Show that, no matter how complicated is the localized J,
the result in part a is augmented by a surface integral contribution from infinity
equal to minus one-third of the result of part b, yielding

2
Pred = 32 KE, X m

Compare this result with that obtained by working directly with (6.117) and the
considerations at the end of Section 5.6.

(a) Consider a circular toroidal coil of mean radius a and N turns, with a small
uniform cross section of area A (both height and width small compared to a).
The toroid has a current J flowingin it and there is a point charge Q located
at its center. Calculate all the components of field momentum of the system;
show that the component alongthe axis of the toroid is

+HoQINA
Prieta): ~(Preia) Aaa?

where the sign depends on the sense of the current flow in the coil. Assume
that the electric field of the charge penetrates unimpededinto the region of
nonvanishing magneticfield, as would happenfor a toroid that is actually a
set of N small nonconducting tubes inside which ionized gas movesto provide
the currentflow.

Check that the answer conforms to the approximation of Problem 6.5b.

(b) If Q = 10°° C (~ 6 X 10”electronic charges), J = 1.0 A, N = 2000, A =
10°* m’, a = 0.1 m,find the electric field at the toroid in volts per meter, the
magnetic induction in tesla, and the electromagnetic momentum in newton-



6.7

6.8

6.9
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seconds. Compare with the momentum of a 10 yg insect flying at a speed of

0.1 m/s.

[Note that the system of charge and toroid is at rest. Its total momentum must
vanish. There musttherefore be a canceling ‘“‘hidden’’ mechanical momentum—see

Problem 12.8.]

The microscopic current j(x, t) can be written as

j(x, t) = 2 avj6(x — x)(0)
J

wherethe point charge q, is located at the point x,(t) and has velocity v, = dx,(t)/dt.
Just as for the charge density, this current can be brokenupinto a “‘free’’ (conduc-
tion) electron contribution and a bound (molecular) current contribution.

Following the averaging proceduresof Section 6.6 and assuming nonrelativistic
addition of velocities, consider the averaged current, (j(x, f)).

(a) Show that the averaged current can be written in the form of (6.96) with the

definitions (6.92), (6.97), and (6.98).

(b) Show that for a medium whoseinternal molecular velocities can be neglected,

but which is in bulk motion(i.e., v,, = v forall 7),

1
—B-H=M+ (D- 6&E) Xv
Mo

This showsthat a moving polarization (P) produces an effective magnetization

density.

Hints for part a: Consider quantities like (dp,/dt), (dQ,?/dt) and see what they
look like. Also note that

dfa OX 7 Xnlt)) = —¥n + VEE ~ XnlD))

A dielectric sphere of dielectric constant € and radius a is located at the origin.
There is a uniform applied electric field Ep in the x direction. The sphere rotates
with an angular velocity w about the z axis. Show that there is a magneticfield

H = —V®y,y, where
5

3 [€- & a
== Enwl — |-

Pav 5 (- +© wo(4) fe

where r, is the larger of r and a. The motionis nonrelativistic.
You may use the results of Section 4.4 for the dielectric sphere in an applied

field.

Discuss the conservation of energy and linear momentum for a macroscopic system
of sources and electromagnetic fields in a uniform, isotropic medium described by
a permittivity e« and a permeability 4. Show that in a straightforward calculation
the energy density, Poynting vector, field-momentum density, and Maxwell stress

tensor are given by the Minkowski expressions,

 

1
u = ~ (e€E* + wH”)

2

S=ExH

g = peE X H

T; = [eE.E; + wHH; — 36;;(€E? + pH")

What modifications arise if « and yw are functions of position?
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6.10 With the same assumptions as in Problem 6.9 discuss the conservation of angular

6.11

6.12

6.13

momentum. Showthat the differential and integral forms of the conservation lay
are

0 <
ey (Linech + Leia) +V-M=0

and

{l@ +E )a'x+ | nM da =0dt vA mech field xX 5

wherethe field angular-momentum density is

Sea = X X g = wex X (E X H)

and the flux of angular momentumis described by the tensor

M=Txx

Note: Here we have used the dyadic notation for M, and T,. A double-headed
arrow conveys a fairly obvious meaning. For example, n- M is a vector whosejth
component is 2n,M;;. The second-rank M can be written as a third-rank tensor,
Mix = T,X, — Tix, But in the indices j and k it is antisymmetric and so has only
three independent elements. Including the indexi, M,;, therefore has nine compo-
nents and can be written as a pseudotensor of the second rank, as above.

A transverse plane waveis incident normally in vacuum on perfectly absorbing
flat screen.

(a) From the law of conservation of linear momentum, show that the pressure
(called radiation pressure) exerted on the screen is equal to the field energy
per unit volume in the wave.

(b) In the neighborhoodof the earth the flux of electromagnetic energy from the
sun is approximately 1.4 kW/m’.If an interplanetary ‘“‘sailplane” hada sail of
mass 1 g/m? of area and negligible other weight, what would be its maximum
acceleration in meters per second squared dueto the solar radiation pressure?
How does this compare with the acceleration due to the solar ‘‘wind”’ (cor-
puscular radiation)?

Consider the definition of the admittance Y = G — iB of a two-terminallinear
passive network in terms of field quantities by means of the complex Poynting
theorem of Section 6.9.

(a) By considering the complex conjugate of (6.134) obtain general expressions
for the conductance G and susceptance B for the general case including
radiationloss.

(b) Showthat at low frequencies the expressions equivalent to (6.139) and (6.140)
are

 

1
= IV.P i, Oo |E |? d?x

4w

B=5 |, (em ~ we)ax
 

A parallel plate capacitor is formed of two flat rectangular perfectly conducting
sheets of dimensions a and b separated by a distance d small comparedto a or b.
Current is fed in and taken out uniformly along the adjacent edges of length b.



6.14

6.15
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With the input current and voltage defined at this end of the capacitor, calculate
the input impedance or admittance using the field concepts of Section 6.9.

(a) Calculate the electric and magnetic fields in the capacitor correct to second
order in powersof the frequency, but neglecting fringingfields.

(b) Show that the expansion of the reactance (6.140) in powersof the frequency
to an appropriate order is the same as that obtained for a lumpedcircuit
consisting of a capacitance C = e,ab/d in series with an inductance L =

peoad/3b.

Anidealcircular parallel plate capacitor of radius a and plate separation d < is
connected to a current source by axial leads, as shown in the sketch. The current

in the wire is [(t) = J,cos wt.

re) |

 

 

  

Problem 6.14

(a) Calculate the electric and magnetic fields between the plates to second order
in powersof the frequency (or wave number), neglecting the effects of fringing

fields.

(b) Calculate the volumeintegrals of w, and w,, that enter the definition of the

reactance X, (6.140), to second order in w. Show that in terms of the input
current J;, defined by J; = —iwQ, where is the total charge on oneplate,

these energies are

[ we ax = 1 |Zd [ = Holla (; , Se)
   

Amey wa’ 47 8 12¢

(c) Show that the equivalent series circuit has C ~ mea7/d, L ~ uod/87, and that

an estimate for the resonant frequencyof the system is a,., = 2V2 cla. Com-

pare with the first root of Jo(x).

If a conductor or semiconductor has current flowing in it because of an applied
electric field, and a transverse magneticfield is applied, there develops a component
of electric field in the direction orthogonal to both the applied electric field (direc-
tion of current flow) and the magnetic field, resulting in a voltage difference be-
tween the sides of the conductor. This phenomenonis knownas the Hall effect.

(a) Use the knownproperties of electromagnetic fields underrotations andspatial
reflections and the assumption of Taylor series expansions around zero mag-
netic field strength to show that for an isotropic medium the generalization of
Ohm’s law, correct to second order in the magnetic field, must have the form

E = pJ + R(x J) + BAI + B.(H- JH
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6.16

6.17

6.18

where ppis the resistivity in the absence of the magnetic field and R is calleg
the Hall coefficient.

(b) What about the requirements of time reversal invariance?

(a) Calculate the force in newtonsacting on a Dirac monopole of the minimum

magnetic charge located a distance 0.5 A from and in the median planeof 9
magnetic dipole with dipole moment equal to one nuclear magneton (eh/2m,),

(b) Compare the force in part a with atomic forces such as the direct electrostatic
force between charges (at the same separation), the spin-orbit force, the hy-

perfine interaction. Comment on the question of binding of magnetic mono.
poles to nuclei with magnetic moments. Assume that the monopole massis at
least that of a proton.

Reference: D. Sivers, Phys. Rev. D2, 2048 (1970).

(a) For a particle possessing both electric and magnetic charges, show that the
generalization of the Lorentz force in vacuum is

F = q.E + gdnB/mo + GeV X B - dmv X &E

(b) Show that this expression for the force is invariant under a duality transfor-
mation of both fields and charges, (6.151) and (6.152).

(c) Show that the Dirac quantization condition, (6.153), is generalized for two
particles possessing electric and magnetic chargese,, g, and é9, g», respectively,
to

€182 — €281
; = 27n

andthatthe relation is invariant undera duality transformation of the charges.

Consider the Dirac expression

dV X (x — x’Ag) =£ | S*@—*)AnJe |x — x’ |

for the vector potential of a magnetic monopole andits associated string L. Suppose

for definiteness that the monopoleis located at the origin and the string along the
negative Z axis.

(a) Calculate A explicitly and show that in spherical coordinates it has
components

g(1 — cos @) g 6A,=0, Ag = A, = 2<——— = (= tan( =a 0 0, * “dar sin 0 ar} "\9

(b) Verify that B = V x A is the Coulomb-like field of a point charge, except

perhaps at 6 = 7.

(c) With the B determined in part b, evaluate the total magnetic flux passing

through the circular loop of radius R sin 6 shownin the figure. Consider
0< a/2 and 6 > 7/2 separately, but always calculate the upward flux.

(d) From ¢ A- dl around the loop, determinethetotal magnetic flux through the

loop. Compare the result with that found in part c. Show that they are equal
for 0 < 6< 7/2, but have a constant difference for 7/2 < 6 < 1. Interpret this
difference.



6.19
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L Problem 6.18

(a) Apply space inversion to the monopole vector potential of Problem 6.18 and

show that the vector potential becomes

(1 + cos 6) g 6
Al = — ——— uq““€-- — —— t —

o~ 8 “dar sin 6 Amr\2

with the other components vanishing. Show explicitly that its curl gives the
magnetic field of a magnetic monopole, except perhaps at 6 = 0. [Remember
the space-inversion properties of the magnetic charge! |

(b) Show that the difference, SA = A’ — A, can be expressed as the gradient of

a scalar function, indicating that the original and space-inverted vector poten-

tials differ by a gauge transformation.

(c) Interpret the gauge function in termsof Fig. 6.9. [Hint: Choose the contour C
to be a rectangle lying in a plane containing the z axis, with three sidesat

infinity.|

An example of the preservation of causality and finite speed of propagation in spite
of the use of the Coulomb gauge is afforded by a dipole source thatis flashed on
and off at t = 0. The effective charge and current densities are

p(x, t) = 6(x)8(y)6'(z)6@)
T(x, t) = —8(x)8(y)6(z)6'()

where a prime meansdifferentiation with respect to the argument. This dipole is
of unit strength and it points in the negative z direction.

(a) Show that the instantaneous Coulombpotential (6.23) is

— a(t) =A47r€& r
 P(x, t) = —

(b) Show that the transverse current J, 1s

€ 3
J(x, t) = —d'(t) e500 — 3 + Aa n(€; ° ») 

wherethe factor of 2/3 multiplying the delta function comes from treating the

gradient of z/r? according to (4.20).
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(c) Show that the electric and magnetic fields are causal andthat the electricfielg
componentsare

E(x, t) =  
3 3 :c ae — ct) += 8(r - ct) - 5 &r - <0| sin 6 Cos 6 cosr rAirey r

E, is the sameas EF, with cos ¢ replaced by sin ¢, and

1 S(r-—ct) o&r-
Ex, t) = ine sineaor — ct) + (3 cos-6@ — 1) . ( (r : ct) _ o ")

Hint: While the answerin part b displays the transverse current explicitly, the less
explicit form

J(x, t) = -8'()| e560 + - V o (*) |
oz \r

can be used with (6.47) to calculate the vector potential and thefields for part c¢.
An alternative method is to use the Fourier transforms in time of J, and A,the

Green function (6.40) and its spherical wave expansion from Chapter 9.

6.21 An electric dipole of dipole momentp, fixed in direction, is located at a position
ro(t) with respect to the origin. Its velocity v = dr,/dt is nonrelativistic.

(a) Show that the dipole’s charge and current densities can be expressed formally

as

p(x, t) = —(p> V)d(x — n(t)); I(x, 1) = —v(p + V)5(K — (2)

(b) Showthat the off-center moving dipole gives rise to a magnetic dipole field
and an electric quadrupole field in addition to an electric dipole field, with
moments

m = 3p Xv
and

QO; = 3(XoiP; + XojPi) — 219° po;

[There are, of course, still higher moments.]

(c) Show that the quasi-static electric quadrupolefield is

1 1
E(x) = 7] [15n(m + to)+ p) — 3ro(m > p) — 3p(m + ro) — 3n(Fo - p)]

TE, I

where n is a unit vector in the radial direction.

6.22 (a) For the off-center, slowly moving, electric dipole of Problem 6.21, show that

the quasi-static vector potential produced by the current flow associated with
the dipole motion is

A(x) = BP) bo |DES , | pew) HDI

wherethe first term of the second form (antisymmetricin v and p)is the vector
potential of the magnetic dipole whose momentis given in Problem 6.21. The
added term is symmetric in v andp.

(b) Show that the magnetic field of the symmetric term is

_ 3Mo

Sar?
 Bum = n X [p(v-n) + v(p-n)]
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(c) By calculating its curl, show that B,,,, is consistent with being the quasi-static

magnetic field associated with the electric quadrupole field of Problem 6.21c.

(d) Show that the total magnetic field (computed from thefirst form of the vector

potential, i.e., the sum of B,,,, and the magnetic dipole field)is

p = Ho, x Bam:p) ~Pl
Aa r

Comment.

The wave equations (6.168) for the Hertz vectors contain arbitrary source terms
involving the functions V and & Consider the gauge transformations

0G
II, = Il, + woV X G — Vg; Hi, = Wn ~ ws

where G and g are well-behaved functions of space and time.

(a) Showthat, if G and g satisfy the wave equations

1
( 6? a —(V + Vé)
pbe—-—V = 1M

ot g 0

then the new polarization potentials II; and II, satisfy (6.168) with vanishing

V and &

(b) Show that the gauge transformation on the Hertz vectors is equivalent to a
gauge transformation on A and ®. Whatis the gauge function A of (6.19) in

terms of G and g?

A current distribution J(x, t) localized near the origin varies slowly in time.

(a) Use the Jefimenko expressions (6.55) and (6.56) for the retarded fields to
evaluate the quasi-static fields far from the currentdistribution. Assumingthat
there are noelectric multipole momentsand retaining only the magnetic di-
pole contributions, show that the magnetic and electric fields at the point
(x = fr, ft) to first order in an expansion in successive time derivatives are

Arr

— Bo 1, om(t — ric)
=FX
Avr ot

B=t ( + ©)3c — ric) - ¥)F — m(t — ric)|

(b) The construction and excitation of an infinite, straight, right circular solenoid

of radius a, with N turns per unit length, are such that its current /(¢) is the
same everywherealong its length and is changed very slowly in time. Show
that the fields far from the solenoid are approximately

al
B~0+0(

0 (3)
px Mo Nat=§

2 pe ot

where p is the perpendicular distance from the axis, provided max(|dI/dt/I|)
<< c/p. A long solenoid with a time-varying currenthasan electric field outside

it, in contrast to the static situation. Verify that Faraday’s law is satisfied.
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6.25 (a) Starting with the Lorentz force expression (6.114), show that in the dipole
approximation the force acting on a neutral atom at rest can be expressed ag

APatom =(d-V)E+dxBAt ( )

where d is the atomic dipole moment and E and are theelectric and Mag-
netic fields at the site of the atom.

(b) For a uniform plane wave of frequency w in a nonmagnetic tenuousdielectric
medium with index of refraction n(w), show that the time rate of change of
mechanical momentum per unit volumeg,,.., accompanying the electromag-

netic momentum g,,, (6.118) of the waveis

1 dA’mech _ 5 (n? _ 1) Sem

dt dt

[see Peierls (loc. cit.) for corrections for dense media and non-uniform waves,

Note of explanation:

The reader may bestartled to find (in all but the earliest printings) the association
of Danish physicist Ludvig V. Lorenz’s nameinstead of Dutch physicist Hendrik A. Lo-
rentz’s with the relation (6.14) between the scalar and vector potentials. Yetit is a fact
that in 1867 Lorenz, in a paper entitled ‘On the identity of the vibrations of light with
electrical currents,” (op. cit.) exploited the retarded solutions for the potentials, derived
(6.14) and equations equivalent to wave equationsforthe electric field, and discussed the
characteristics of light propagation in conductors and transparent media, contemporane-
ously with Maxwell. H. A. Lorentz has ample recognition in physics terminology without
the mis-attribution of (6.14) to him (by others, beginning around 1900). As Van Bladel*
observes, it is up to textbook authors to accord Lorenz his due.*

*J. Van Bladel, IEEE Antennas and Propagation Magazine 33, No. 2, 69 (April 1991).

"An earlier author who deplored the lack of recognition of Lorenz’s contributions is A. O’Rahilly,

Electromagnetic Theory, Dover Publications, New York (1965) [originally published as Electromag-
netics, Longman Green and Cork University Press (1938)], footnote, p. 184.



CHAPTER 7

Plane Electromagnetic Waves
and Wave Propagation

This chapter on plane wavesin unbounded, or perhaps semi-infinite, media treats
first the basic properties of plane electromagnetic waves in nonconducting me-
dia—their transverse nature, linear and circular polarization states. Then the
important Fresnel formulas for reflection and refraction at a plane interface are
derived and applied. This is followed by a survey of the high-frequency dispersion
properties of dielectrics, conductors, and plasmas. The richness of nature1sillus-
trated with a panoramic view (Fig. 7.9) of the index of refraction and absorption
coefficient of liquid water over 20 decades of frequency. Then comesa simplified

discussion of propagationin the ionosphere, and of magnetohydrodynamic waves
in a conducting fluid. The ideas of phase and group velocities and the spreading
of a pulse or wave packet as it propagates in a dispersive medium come next.

The important subject of causality and its consequences for the dispersive prop-
erties of a medium are discussed in somedetail, including the Kramers—Kronig
dispersion relations and various sum rules derived from them. The chapter con-
cludes with a treatment of the classic problem of the arrival of a signal in a
dispersive medium,first discussed by Sommerfeld and Brillouin (1914) but only
recently subjected to experimentaltest.

7.1 Plane Waves in a Nonconducting Medium

A basic feature of the Maxwell equations for the electromagnetic field is the
existence of traveling wave solutions which represent the transport of energy

from one point to another. The simplest and most fundamental electromagnetic
wavesare transverse, plane waves. We proceed to see how suchsolutions can be
obtained in simple nonconducting media described by spatially constant per-

meability and susceptibility. In the absence of sources, the Maxwell equations in
an infinite medium are

OB
V-B=0, VxErT = 0

oD
V-D= 0, Vx H-—=0

ot

Assuming solutions with harmonic time dependence e~“, from which we can
build an arbitrary solution by Fourier superposition, the equations for the am-
plitudes E(@, x), etc. read

V-B=0, V XE — iwB = 0

V-D=0, VxH+ ioD =0

(7.1)

295
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For uniform isotropic linear media we have D = eK, B = pH, where ¢ and Lu
may in general be complex functions of w. We assumefor the present that they
are real and positive (no losses). Then the equations for E and H are

V xX E — ioB = 0, VX B+ iwueE = 0 (7.2)

The zero-divergence equations are not independent, but are obtained by taking
divergencesin (7.2). By combining the two equations we get the Helmholtz wave
equation

(Vv? + pe’)| = 0 (7.3)

Consideras a possible solution a plane wavetraveling in the x direction, ei
From (7.3) we find the requirement that the wave numberk and the frequency
w are related by

k= V peo (7.4)

The phase velocity of the waveis

ro) 1 Cc wb €
v=-=-— = -, n= |—— 7.5

k Vee Nn Ho €o (75)

The quantity n is called the index of refraction and is usually a function offre-
quency. The primordial solution in one dimension is

u(x, t) = aelk*i@t 4. pemix-ier (7.6)

Using w = kv from (7.5), this can be written

u(x, t) _— geike-e) 4 beiketen)

If the medium is nondispersive (we independent of frequency), the Fourier su-
perposition theorem (2.44) and (2.45) can be usedto construct a general solution
of the form

u(x, t) = f(x — vt) + g(x + vf) (7.7)

where f(z) and g(z) are arbitrary functions. Equation (7.7) represents waves
traveling in the positive and negative x directions with speeds equal to the phase
velocity v.

If the medium is dispersive, the basic solution (7.6) still holds, but when we
build up a wave as an arbitrary function of x and ¢, the dispersion produces
modifications. Equation (7.7) no longer holds. The wave changes shape asit
propagates(see Sections 7.8, 7.9, and 7.11).

We nowconsider an electromagnetic plane wave of frequency w and wave
vector k = kn andrequire that it satisfy not only the Helmholtz wave equation
(7.3) but also all the Maxwell equations. The constraint imposed by (7.3) is es-
sentially kinematic; those imposed by the Maxwell equations, dynamic. With the
convention that the physical electric and magnetic fields are obtained by taking
the real parts of complex quantities, we write the plane wavefields as

E(x, t) = eiknxior (7.8)
B(x, t) — Peikn-x— ict
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where @, %, and n are constant vectors. Each component of E and satisfies

(7.3) provided

ePn-n = pew (7.9)

To recover(7.4) it is necessary that n be a unit vector such that n-n = 1. With
the wave equationsatisfied, there only remains the fixing of the vectorial prop-
erties so that the Maxwell equations (7.1) are valid. The divergence equations in

(7.1) demand that

n-€=0 and n- R= 0 (7.10)

This means that E and B are both perpendicular to the direction of propagation
n. Such a waveis called a transverse wave. The curl equations provide a further

restriction, namely

B= Vuenx S (7.11)

The factor Ve can be written we = nic, where n is the index of refraction

defined in (7.5). We thus see that cB and E, which have the same dimensions,
have the same magnitude for plane electromagnetic wavesin free space anddiffer
by the index of refraction in ponderable media. In engineering literature the

magnetic field H is often displayed in parallel to E instead of B. The analog of

(7.11) for H is

=n x S/Z (7.11')

where Z = ple is an impedance. In vacuum, Z = Zy = V Mo/€p ~ 376.7 ohms,

the impedanceof free space.
If n is real, (7.11) implies that and % have the same phase.It is then useful

to introduce a set of real mutually orthogonal unit vectors (€, €2, m), as shown
in Fig. 7.1. In terms of these unit vectors the field strengths @ and &% are

= €,Fo, B= €oV ME Eo (7.12)

OT

$ = ©Ky, B= —E, Vue Eo (7.12’)

where Ey and Ej are constants, possibly complex. The wave described by (7.8)
and (7.12) or (7.12') is a transverse wave propagating in the direction n. It rep-

 

  
Figure 7.1 Propagation vector k and two

x orthogonal polarization vectors €, and €).
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resents a time-averaged flux of energy given by the real part of the complex
Poynting vector:

1
S =-E xX H*

2

The energy flow (energy per unit area per unit time) is

1
$= 3 EIePe (7.13)

2Vu

The time-averaged energy density u is correspondingly

uj (age ++ B-pe)
4 be

This gives

€ 2

The ratio of the magnitude of (7.13) to (7.14) shows that the speed of energy
flow is v = 1/V/ue, as expected from (7.5).

In the discussion that follows (7.11) we assumed that n was real unit vector,
This does not yield the most general possible solution for a plane wave. Suppose
that n is complex, and written as n = ng + in;. Then the exponential in (7.8)
becomes

eikn-x— tot — eArexeknxiwt

The wave possesses exponential growth or decay in somedirections. It is then
called an inhomogeneous plane wave. The surfaces of constant amplitude and
constant phase arestill planes, but they are no longerparallel. The relations (7.10)
and (7.11) still hold. The requirement n-n = 1 has real and imaginaryparts,*

ne — nj = 1 (7.15)
Nre-n, = 0

The second of these conditions shows that nz and n, are orthogonal. The coor-
dinate axes can be oriented sothatng is in the x direction and n,in the y direction.
The first equation in (7.15) can be satisfied generally by writing

n = e, cosh@ + ie, sinh 0 (7.16)

where @ is a real constant and e, and e, are real unit vectors in the x and y
directions (not to be confused with €, and e€,!). The most general vector @ sat-
isfying n-@ = 0 is then

% = (ie, sinh 6 — e, cosh @)A + e,A’ (7.17)

where A and A’ are complex constants. For 6 # 0, @ in general has components
in the direction(s) of n. It is easily verified that for 6 = 0, the solutions (7.12) and
(7.12') are recovered.

We encounter simple examples of inhomogeneous plane wavesin the dis-
cussion of total internal reflection and refraction in a conducting medium later
in the chapter, although in the latter case the inhomogeneity arises from a com-

*Note that if m is complex it does not have unit magnitude,that is, n-m = 1 does not imply |n|? = 1.
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plex wave number, not a complex unit vector n. Inhomogeneous plane waves

form a general basis for the treatment of boundary-value problems for waves

and are especially useful in the solution of diffraction in two dimensions. The
interested reader can refer to the book by Clemmowfor an extensive treatment
with examples.

72 Linear and Circular Polarization; Stokes Parameters

The plane wave (7.8) and (7.12) is a wave with its electric field vector always in
the direction €,. Such a waveis said to be linearly polarized with polarization
vector €,. Evidently the wave described in (7.12') is linearly polarized with po-
larization vector €, and is linearly independentof the first. Thus the two waves,

E, — e,E,e**

 

E, — e,E,e**

with (7.18)

k X E,
B, = Vue CO j=1,2

can be combinedto give the most general homogeneousplane wave propagating

in the direction k = kn,

E(x, f) = (€,E, + &Fy)e** (7.19)

The amplitudes E, and E, are complex numbers, to allow the possibility of a
phase difference between wavesof different linear polarization.

If E, and E, have the same phase, (7.19) represents a linearly polarized wave,
with its polarization vector making an angle 6 = tan’ (E£,/E,) with €, and a
magnitude E = V Ej + E%, as shownin Fig. 7.2.

If E, and E, have different phases, the wave (7.19) is elliptically polarized.
To understand what this meanslet us consider the simplest case, circular polar-
ization. Then E, and E, have the same magnitude, but differ in phase by 90°.
The wave (7.19) becomes:

E(x, t) = E,(e, + ie)e™*™ (7.20)

with Ey the commonreal amplitude. We imagine axes chosen so that the wave
is propagating in the positive z direction, while €, and €, are in the x and y
directions, respectively. Then the componentsofthe actual electric field, obtained
by taking the real part of (7.20), are

E(x, t) = Ep cos(kz — oat(x, ¢) Eo ( ) (721)
E\(x, t) = +E, sin(kz — at)

oyOTiE

|
|
|
|
|

€oh |

- \ __| Figure 7.2. Electric field of a linearly polarized  
€1 Ei wave.
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At a fixed point in space, the fields (7.21) are such that the electric vector is
constant in magnitude, but sweeps aroundin circle at a frequency w,as Shown
in Fig. 7.3. For the upper sign (€, + ie), the rotation is counterclockwise when
the observeris facing into the oncoming wave. This waveiscalledleft circularly
polarized in optics. In the terminology of modern physics, however, such a wave
is said to have positive helicity. The latter description seems more appropriate
because such a wave hasa positive projection of angular momentum onthe 7
axis (see Problem 7.29). For the lowersign (€,; — i€,), the rotation of E is clock.
wise when looking into the wave; the waveis right circularly polarized (optics)
it has negative helicity.

The two circularly polarized waves (7.20) form an equally acceptable set of
basic fields for description of a general state of polarization. We introduce the
complex orthogonal unit vectors:

9

1
€. = —=(e, + le 7.22<= (€,

+

i€,) (7.22)

with properties

ex -e€. = 0

€; -€, = 0 (7.23)

e* ° €+ = 1

Then a general representation, equivalent to (7.19), is

E(x, t) = (E,e, + E_e_)e** (7.24)

where E., and F_ are complex amplitudes. If E, and E_ have different magni-
tudes, but the same phase, (7.24) represents an elliptically polarized wave with
principal axesof the ellipse in the directions of €, and €). The ratio of semimajor
to semiminoraxis is |(1 + r)/(1 — r)|, where E_/E, = r. If the amplitudes have
a phase difference between them, E_/E, = re’*, then it is easy to show that the
ellipse traced out by the E vector has its axes rotated by an angle (a@/2). Figure
7.4 showsthe general case ofelliptical polarization and theellipses traced out by
both E and B at a given pointin space.

For r = +1 weget back a linearly polarized wave.
The polarization content of a plane electromagnetic wave is knownifit can

be written in the form of either (7.19) or (7.24) with knowncoefficients (E,, E>)
or (E,, E_). In practice, the converse problem arises. Given that the waveis of
the form (7.8), how can we determine from observations on the beam thestate
of polarization in all its particulars? A useful vehicle for this are the four Stokes

J

_\

 

 Figure 7.3 Electric field of a circularly polarized
E(x,t) = Eo (€, + iegde'**~ +t wave.
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Figure 7.4 Electric field and magnetic induction for an elliptically polarized wave.

parameters, proposed by G. G. Stokes in 1852. These parameters are quadratic
in the field strength and can be determined through intensity measurementsonly,
in conjunction with a linear polarizer and a quarter-wave plate or equivalents.

Their measurement determines completely the state of polarization of the wave.

The Stokes parameters can be motivated by observing that for a wave prop-
agating in the z direction, the scalar products,

ce, - E, e,-E, ce" - E, e" -E (7.25)

are the amplitudes of radiation, respectively, with linear polarization in the x
direction, linear polarization in the y direction, positive helicity, and negative

helicity. Note that for circular polarization the complex conjugate of the appro-
priate polarization vector must be used, in accord with (7.23). The squares of

these amplitudes give a measure of the intensity of each type of polarization.

Phase information is also needed; this is obtained from cross products. We give
definitions of the Stokes parameters with respect to both the linearpolarization

and the circular polarization bases, in terms of the projected amplitudes (7.25)
and also explicitly in terms of the magnitudes and relative phases of the com-

ponents. For the latter purpose we define each of the scalar coefficients in (7.19)
and (7.24) as a magnitude times a phase factor:

Bis aes,  Ba~ ae 126
EE. = a,e'*, E_ = a_e’-

In terms of the linear polarization basis (€,, €2), the Stokes parameters are*

So = le, EP? + lee Ef? = af + a

s, = je,- EP — le,- El)? = aj —

Sy = 2 Re[(e, - E)*(€ + E)| = 2a,acos(d, — 6,)

s; = 2 Im[(e, - E)*(€, + E)] = 2a,a2 sin(d) — 6,)

If the circular polarization basis (€,, €_) is used instead, the definitions read

(7.27)

so = lex - EP + leX- EP =a + a

Ss; = 2 Re[(e% - E)*(e€* - E)] = 2a,a_ cos(6_ — 6.)

Sy = 2 Im[(e* - E)*(e* - E)] = 2a,a_ sin(6_ — 6,)

s; = |e*- EP — |e®- EP = a) — at

(7.28)

*The notation for the Stokes parameters is unfortunately not uniform. Stokes himself used (A, B,C,

D); other labelings are (I, Q, U, V) and (J, M, C, S). Our notationis that of Born and Wolf.
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The expressions (7.27) and (7.28) show an interesting rearrangementof roles of
the Stokes parameters with respect to the two bases. The parameter 5» measures
the relative intensity of the wave in either case. The parameters, gives the pre-

ponderance of x-linear polarization over y-linear polarization, while sy and 5, ip
the linear basis give phase information. We see from (7.28) that s3 has theinter.
pretation of the difference in relative intensity of positive and negative helicity,
while in this basis s; and s, concern the phases. The four Stokes parametersare

not independent, since they depend on only three quantities, a,, a>, and 6, ~ 5.
They satisfy the relation

86 = spit s5 + 83 (7.29)

Discussion of the operational steps needed to measure the Stokes parameters
and so determinethestate of polarization of a plane wave would take ustoo far
afield. We refer the reader to Section 13.13 of Stone for details. Also neglected,
except for the barest mention,is the important problem of quasi-monochromatic
radiation. Beamsof radiation, even if monochromatic enough for the purposes
at hand, actually consist of a superposition of finite wave trains. By Fourier’s
theorem they thus contain a range of frequencies and are not completely mono-
chromatic. One way of viewing this is to say that the magnitudes and phases
(a; 6;) in (7.26) vary slowly in time, slowly, that is, when comparedtothefre-
quency w. The observable Stokes parameters then becomeaverages overa rel-
atively long time interval, and are written as

So = 2(a,a> cos(d, —_ 6,))

for example, where the angle brackets indicate the macroscopic time average.
One consequence of the averaging process is that the Stokes parameters for a
quasi-monochromatic beam satisfy an inequality,

S6=zstts3 + 83

rather than the equality, (7.29). ‘“Naturallight,’ even if monochromatic to a high
degree, has s; = s. = s; = 0. Further discussion of quasi-monochromaticlight
and partial coherence can be found in Born and Wolf, Chapter10.

An astrophysical example of the use of Stokes parameters to describe the
state of polarization is afforded by the study of optical and radiofrequencyra-
diation from the pulsar in the Crab nebula. The optical light shows some small
amountof linear polarization, while the radio emission at w ~ 2.5 X 10’ s"! has
a high degree of linear polarization.* At neither frequencyis there evidence for
circular polarization. Information of this type obviously helps to elucidate the
mechanism of radiation from these fascinating objects.

7.3 Reflection and Refraction ofElectromagnetic Waves
at a Plane Interface Between Dielectrics

The reflection and refraction of light at a plane surface between two media of
different dielectric properties are familiar phenomena.Thevariousaspectsof the

phenomenadivide themselvesinto twoclasses.

*See The Crab Nebula and Related Supernova Remnants, eds. M. C. Kafatos and R. B. C. Henry,
Cambridge University Press, New York (1985).
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1. Kinematic properties:

(a) Angle of reflection equals angle of incidence.

(b) Snell’s law: (sin 7)/(sinr) = n’'/n, where i, r are the angles of incidence
and refraction, while n, n' are the corresponding indices of refraction.

2. Dynamic properties:

(a) Intensities of reflected and refracted radiation.

(b) Phase changes and polarization.

The kinematic properties follow immediately from the wave nature of the
phenomenaandfrom the fact that there are boundary conditionsto besatisfied.
But they do not depend on the detailed nature of the waves or the boundary
conditions. On the other hand, the dynamic properties depend entirely on the
specific nature of electromagnetic fields and their boundary conditions.

The coordinate system and symbols appropriate to the problem are shown
in Fig. 7.5. The media below and abovethe plane z = 0 have permeabilities and
permittivities uw, € and wp’, e’, respectively. The indices of refraction, defined
through (7.5), aren = V pe/poe and n' = V p'e'/uoe. A plane wave with wave

vector k and frequency is incident from medium yp,e. The refracted andre-
flected waves have wave vectors k’ and k", respectively, and n is a unit normal
directed from medium yp, € into medium p', e’.

According to (7.18), the three wavesare:

 

INCIDENT

E _ E,e**

kxE (7.30)

B= V pe
k

REFRACTED

E’ _ El eikxiat
a 0

k’ x E (7.31)
BI = Vue~

Me’

k” 
Figure 7.5 Incident wave k strikes plane interface between different media,giving rise

to a reflected wave k” and a refracted wave k’.



304 Chapter 7 Plane Electromagnetic Waves and Wave Propagation—SI

REFLECTED

E" _ Efexie

kk” x BK” (7.32
BR’ = Vpe i )

The wave numbers have the magnitudes

Ik| = |k"| =k = oVpe
r ' rt (7.33)Ik’) = k' = wV pe

The existence of boundary conditions at z = 0, which mustbesatisfiedatal]

points on the planeatall times, implies that the spatial (and time) variation of
all fields must be the same at z = 0. Consequently, we must have the phase factors
all equal at z = 0,

(K+ x)9 = (K’ + x),<9 = (K+ x)2n0 (7.34)
independentof the nature of the boundary conditions. Equation (7.34) contains
the kinematic aspects of reflection and refraction. We see immediately thatall
three wave vectors mustlie in a plane. Furthermore,in the notation of Fig. 7.5,

kK sini = k' sinr = k" sinr’ (7.35)

Since k" = k, we find i = r’; the angle of incidence equals the angle ofreflection.
Snell’s law is

sing k' [pe on— — — 7.36
snr k pe n (7.36)

 

The dynamic properties are contained in the boundary conditions—normal
components of D and are continuous; tangential components of E and H are
continuous. In terms of fields (7.30)—(7.32) these boundary conditions at z = 0
are:

[e(Ey + E>) — e’E{] -n = 0

[k x E, +k" x Ef —k’ x Ejj-n=0
(Ey + Ef — Ej) xn =0 (7.37)

1 1
ocx ey + RY xB) — Fae x Bs] x= 0

In applying these boundary conditionsit is convenient to consider two sep-

arate situations, one in which the incident plane waveis linearly polarized with

its polarization vector perpendicular to the plane of incidence (the plane defined
by k and n), and the otherin whichthe polarization vectoris parallel to the plane

of incidence. The general case of arbitrary elliptic polarization can be obtained
by appropriate linear combinationsof the two results, following the methodsof

Section 7.2.
Wefirst consider the electric field perpendicular to the plane of incidence,

as shown in Fig. 7.6a. All the electric fields are shown directed away from the
viewer. The orientations of the B vectors are chosen to give a positive flow of
energy in the direction of the wave vectors. Since the electricfieldsare all parallel



Sect. 7.3 Reflection and Refraction of Electromagnetic Waves at an Interface 305

 

 
 

 

B’

nh k

EK’

pe’
[Le

B B
7 aa

E E

k”

(a)

bk’ k

n A

r B’
ue’

[Le k

E | E
i]t _

B B’ .
Figure 7.6 Reflection and

k” refraction with polarization (a)
perpendicular and (5)parallel to

(b) the plane of incidence.

to the surface, the first boundary condition in (7.37) yields nothing. The third and
fourth equationsin (7.37) give

Ey + Et — E, =0
c ! —~ (7.38)
— (Ey — E>) cosi — [|— E6cosr = 0
pe pe

while the second, using Snell’s law, duplicates the third. The relative amplitudes
of the refracted and reflected waves can be found from (7.38). These are:

E PERPENDICULAR TO PLANE OF INCIDENCE

Eo 2n COs!

Eo _ pb <7;
ncosi + — Vn"? — n? sin’i

ur

 

(7.39)
_ ob —

| Ancosi — — Vn" — n’ sin*i
Eo Mo  

f. Me ur
n cosi + — Vn" — n? sin*i

pL

The square root in these expressionsis 1’ cos r, but Snell’s law has been used to
express it in terms of the angle of incidence. For optical frequenciesit is usually
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permitted to put u/p’ = 1. Equations (7.39), and (7.41) and (7.42) below,are
most often employed in optical contexts with real n and n’, but they are also
valid for complex dielectric constants.

If the electric field is parallel to the plane of incidence, as shownin Fig. 7.6b,
the boundary conditions involved are normal D, tangential E, and tangential Y

[the first, third, and fourth equations in (7.37)]. The tangential E and H contin.
uous demandthat

cosi(Ey — Eo) — cosr Eg = 0

; o (7.40)

pe pe

Normal D continuous, plus Snell’s law, merely duplicates the second of these
equations. The relative amplitudes of refracted andreflected fields are therefore

E PARALLEL TO PLANE OF INCIDENCE

 

 

 

 

 

  

Eo _ 2nn' COS i

Eo |
° £ n'* cosi + nVn" — n° sin?i

r (7.41)
) Fn? cosi — nVn® — re sii

Fo _ Fe
Ey | .

° £ n'’* cosi + nVn'* — n? sin?i
bb

For normal incidence (i = 0), both (7.39) and (7.41) reduce to

Fo 2 2n

Eyew te0
e+]

E
r (7.42)

e'

“ a 7 1 tEo Bie no—n

Ey Jaden0 ’ nN
re + J
bie

where the results on the right hold for wu’ = yw.For the reflected wave the sign
convention is that for polarization parallel to the plane of incidence. This means
that ifn’ > n there is a phasereversal for the reflected wave.

7.4 Polarization by Reflection and Total Internal Reflection;
Goos-Hanchen Effect

Two aspects of the dynamical relations on reflection and refraction are worthy

of mention. Thefirst is that for polarization parallel to the plane of incidence
there is an angle of incidence, called Brewster’s angle, for which there is no re-

flected wave. With w’ = pw for simplicity, we find that the amplitude of the re-
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flected wave in (7.41) vanishes when the angle of incidence is equal to Brewster’s

angle,

n'

fp = tan '{ — 7.43ip an (") ( )

For a typical ratio n'/n = 1.5, ig = 56°. If a plane wave of mixed polarizationis

incident on a plane interface at the Brewster angle, the reflected radiation is
completely plane-polarized with polarization vector perpendicularto the plane of

incidence. This behavior can beutilized to produce beams of plane-polarized
light but is not as efficient as other means employing anisotropic properties of

somedielectric media. Even if the unpolarized waveis reflected at angles other
than the Brewster angle, there is a tendency for the reflected wave to be pre-
dominantly polarized perpendicular to the plane of incidence. The success of dark

glasses that selectively transmit only one direction of polarization depends on

this fact. In the domain of radiofrequencies, receiving antennas can beoriented
to discriminate against surface-reflected waves (and also wavesreflected from
the ionosphere)in favor of the directly transmitted wave.

The second phenomenonis called total internal reflection. The word “‘inter-

nal’’ implies that the incident and reflected waves are in a medium oflarger index
of refraction than the refracted wave (n > n’). Snell’s law (7.36) showsthat,if
n> n', then r > i. Consequently, r = 7/2 when i = ip, where

, _ fn= — 7.44io sin (") (7.44)

For waves incident at i = ip, the refracted wave is propagated parallel to the

surface. There can be no energy flow across the surface. Henceat that angle of
incidence there must betotal reflection. What happensif i > i)? To answerthis
wefirst note that, for i > ig, sinr > 1. This means that r is a complex angle with

a purely imaginary cosine.

 

- «\2

cosr =i (S24) — 1] (7.45)
S1N Ip

The meaning of these complex quantities becomes clear when weconsider the

propagation factor for the refracted wave:

eik' x _ eik' (xsinr+ zcosr) _ ok’ [(sini/sinig)?—1]"'7z gik’ (sinilsinig)x (7.46)

This showsthat, for i > ip, the refracted wave is propagated only parallel to the
surface and is attenuated exponentially beyond the interface. The attenuation

occurs within a very few wavelengths of the boundary, except for 7 = Jp.
Even thoughfields exist on the other side of the surface there is no energy

flow through the surface. Hence total internal reflection occurs for i = ip. The

lack of energy flow can beverified by calculating the time-averaged normal com-
ponent of the Poynting vector just inside the surface:

S-n= - Re[n + (E’ X H’*)| (7.47)
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D Figure 7.7 Geometrical interpretation of the Goos_

Hancheneffect, the lateral displacement of a totally

internally-reflected beam of radiation becauseof the
penetration of the evanescent wave into the region
of smaller index refraction. 

with H’ = (k’ X E’)/w’'a,wefind

S.n = —— Rel(n- k’) |E%)"
2op'

But n-k’ = k’ cosr is purely imaginary, so that S-n = 0.

The purely imaginary value (7.45) of cos r, times n’, is the appropriate quan-
tity to replace the square root appearingin the Fresnel formula, (7.39) and (7.41).
Inspection showsthat the ratios F¢/E are now of modulus unity, as is expected
physically for total internal reflection. The reflected wave does, however, suffer
a phase change thatis different for the two kinds of incidence and depends on
the angle of incidence and on (n/n'). These phase changes can beutilized to
convert one kind of polarization into another. Fresnel’s rhombus is one such
device, whereby linearly polarized light with equal amplitudes in the plane of
incidence and perpendicular to it is converted by two successive internalreflec-
tions, each involving a relative phase changeof45°,into circularly polarizedlight
(see Born and Wolf, p. 50).

The evanescent wave penetrating into the region z > 0 has an exponential
decay in the perpendicular direction, e~*’°, where 5-' = k\V/sin’i — sin7i,. The
penetration of the waveinto the “forbidden”region is the physical origin of the
Goos—Hanchen effect: If a beam of radiation having a finite transverse extent
undergoestotalinternalreflection, the reflected beam emergesdisplacedlaterally
with respect to the prediction of a geometricalray reflected at the boundary.*If
we imagine that the beam is reflected from the plane a distance 5 beyond the
boundary, as indicated in Fig. 7.7, the beam should emerge with a transverse
displacement of D ~ 26 sini. More careful calculation (see Problem 7.7) shows
that this naive result is modified somewhat, with D dependent onthestate of
polarization of the radiation. Thefirst-order expressions for D for the twostates
of linear polarization are

_ 3,

p,-" ; — <a? D, = D,_- —37 Vsin'i—sin’,
where A is the wavelength in the medium of higher index of refraction.

The phenomenonof internal reflection is exploited in many applications
where it is desired to transmit light without loss in intensity. In nuclear and

 
 7.48

[sin*i — cos*i - sin7io] (7.48)

*F. Goos and H. Hanchen, Ann. Phys. (Leipzig) (6) 1, 333-346 (1947). For an extensive discussion
of the effect, with many references, see the four-part article, H. K. V. Lotsch, Optik, 32, 116-137,
189-204, 299-319, 553-568 (1970).
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particle physics, plastic “light pipes” are used to carry light from scintillators
(excited by the passage of a charged particle or energetic photon) to photomul-
tipliers, where the light is converted into useful electrical signals. If the light pipe
is large in cross-sectional dimension compared to the wavelength of the light
involved, the considerations presented here for a plane interface have approxi-

mate validity. In telecommunications, optical fibers exploit total internal reflec-

tion for transmission of modulated light signals over long distances. The various

transverse dimensionsof a multilayered fiber are not always very large compared

to a wavelength. Then the precise geometry must be taken into account, the
language of modes in a waveguide may be more appropriate—see Chapter8.

7.5 Frequency Dispersion Characteristics ofDielectrics,

Conductors, and Plasmas

In Section 7.1 we saw that in the absence of dispersion an arbitrary wavetrain

(7.7) travels without distortion. In reality all media show somedispersion. Only
over a limited range of frequencies, or in vacuum,can the velocity of propagation
be treated as constant in frequency. Of course,all the results of the preceding
sections that involve a single frequency componentare valid in the presence of

dispersion. The values of w and € need only be interpreted as those appropriate
to the frequency being considered. Where a superposition of a range of frequen-
cies occurs, however, new effects arise as a result of the frequency dependence

of ce and uw. To examine someof these consequences, we need to developatleast

a simple modelof dispersion.

A. Simple Modelfor €(w)

Almost all of the physics of dispersion is illustrated by an extension to

time-varying fields of the classical model described in Section 4.6. For simplicity
we neglect the difference between the applied electric field and the local field.
The modelis therefore appropriate only for substancesof relatively low density.
[This deficiency can be removedby use of (4.69), if desired.] The relative per-
meability will be taken equal to unity. The equation of motion for an electron of

charge —e bound by a harmonic force (4.71) and acted on by anelectric field

E(x,f) is

m[x + yx + wox] = —eE(x, 2) (7.49)

where y measures the phenomenological damping force. Magnetic force effects

are neglected in (7.49). We makethe additional approximation that the ampli-
tude of oscillation is small enough to permit evaluation of the electric field at the
average position of the electron. If the field varies harmonically in time with
frequency w as e‘“’, the dipole moment contributed by oneelectronis

2

p = -ex = — («8 — w — iwy)E (7.50)

If we suppose that there are N molecules per unit volume with Z electrons per

molecule, and that, instead of a single binding frequency for all, there are f;
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electrons per molecule with binding frequency w; and damping constant y;, then
the dielectric constant, €/ep = 1 + y,, is given by

2

@) _, Ne Dd, fi(wF — @&— iw) (7.51)Egm j

where the oscillator strengths f, satisfy the sum rule,

» fi =Z (7.52)
J

With suitable quantum-mechanical definitions of fj, y;, and @,;, (7.51) is an ac-
curate description of the atomic contribution to the dielectric constant.

B. Anomolous Dispersion and Resonant Absorption

The damping constants y, are generally small compared with the binding or
resonant frequencies w;. This means that e(w) is approximately real for most
frequencies. The factor (w; — w*)~' is positive for w < w; and negative for w >
w;. Thus, at low frequencies, below the smallest w;, all the terms in the sum in
(7.51) contribute with the same positive sign and e(w) is greater than unity. As
successive w,; values are passed, more and more negative terms occurin the sum,
until finally the whole sum is negative and e(@) is less than one. In the neigh-
borhood of any w,, of course, there is rather violent behavior. Thereal part of
the denominator in (7.51) vanishes for that term at w = ; andthe term is large
and purely imaginary. The general features of the real and imaginary parts of
e(w) around twosuccessive resonant frequencies are shownin Fig. 7.8. Normal
dispersion is associated with an increase in Re e(w) with w, anomalous dispersion
with the reverse. Normal dispersion is seen to occur everywhere except in the
neighborhoodof a resonant frequency. And only where there is anomalousdis-
persion is the imaginary part of € appreciable. Since a positive imaginarypart to
€ represents dissipation of energy from the electromagnetic wave into the me-
dium, the regions where Im is large are called regions of resonant absorption.*

The attenuation of a plane wave is most directly expressed in terms of the
real and imaginary parts of the wave numberk. If the wave numberis written as

a
k=Btis (7.53)

then the parameter @ is knownas the attenuation constant or absorption coef-
ficient. The intensity of the wavefalls off as e“*. Equation (7.5) yields the con-
nection between(a, 8) and (Re «, Im e):

2
2 a W

——=- Re é€/e
PO ae ° (7.54)

Ba = —~ Im €/€

“If Im e < 0, energy is given to the wave by the medium; amplification occurs, as in a maserorlaser.
See M. Borenstein and W. E. Lamb, Phys. Rev. A5, 1298 (1972).
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Figure 7.8 Real and imaginary parts of the dielectric constant €(w)/€ in the
neighborhood of two resonances. The region of anomalousdispersionis also the

frequency interval where absorption occurs.

 
If a < B, as occurs unless the absorption is very strong or Re is negative, the
attenuation constant a can be written approximately as

_ Im e(o)
a= T (0) B (7.55)

where B = VRe(e/€,) w/c. The fractional decrease in intensity per wavelength
divided by 277 is thus given bytheratio, Im €/Ree.

C. Low-Frequency Behavior, Electric Conductivity

In the limit w — 0 there is a qualitative difference in the response of the
medium depending on whetherthe lowest resonant frequencyis zero or nonzero.
For insulators the lowest resonant frequencyis different from zero. Then at w =
0 the molecular polarizability is given by (4.73), corresponding to the limit w =
0 in (7.51). The elementary aspects of dielectrics in the static limit have been

discussed in Section 4.6.
If some fraction f) of the electrons per molecule are “free” in the sense of

having w, = 0, the dielectric constant is singular at w = 0. If the contribution of
the free electrons is exhibited separately, (7.51) times €) becomes

Ne’f
E(w) = €,(@) + nay (7.56)
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where €,(w) is the contribution of all the other dipoles. The singular behavior
can be understood if we examine the Maxwell-Ampére equation

dD
Vx H=J+—

dt

and assume that the medium obeys Ohm’s law, J = oE and has a “‘norma]”
dielectric constant €,. With harmonic time dependence the equation becomes

VxH= -ia6 + 2) (7.57)
W

If, on the other hand, we did not insert Ohm’s law explicitly but attributed instead
all the properties of the medium to the dielectric constant, we would identify the
quantity in brackets on the right-handside of (7.57) with e(w). Comparison with
(7.56) yields an expression for the conductivity:

2

= —ioNe (7.58)
M(Yo — iw)

This is essentially the model of Drude (1900) for the electrical conductivity, with
foN being the numberof free electrons per unit volume in the medium. The
damping constant yo/fyo can be determined empirically from experimental data
on the conductivity. For copper, N ~ 8 X 10°8 atoms/m? and at normal temper-
atures the low-frequency conductivity is o =~ 5.9 X 10’ (Q.- m)~’. This gives yo/f,
= 4 X 10s~'. Assuming that fy) ~ 1, this shows that up to frequencies well
beyond the microwave region (w = 10'' s~') conductivities of metals are essen-
tially real (i.e., current in phase with the field) and independentof frequency. At
higher frequencies (in the infrared and beyond) the conductivity is complex and
varies with frequency in a way described qualitatively by the simple result (7.58).
The problem of electrical conductivity is really a quantum-mechanical one in
which the Pauli principle plays an important role. The free electrons are actually
valence electrons of the isolated atoms that become quasi-free and moverela-
tively unimpeded through thelattice (provided their energieslie in certain inter-
vals or bands) when the atomsare broughttogether to form a solid. The damping
effects come from collisions involving appreciable momentum transfer between
the electrons andlattice vibrations, lattice imperfections, and impurities.*

The foregoing considerations show that the distinction betweendielectrics
and conductors is an artificial one, at least away from w = 0. If the medium
possesses free electronsit is a conductor at low frequencies; otherwise, an insu-
lator." But at nonzero frequencies the “conductivity” contribution to €(@) (7.51)
merely appears as a resonant amplitudelike the rest. The dispersive properties
of the medium can beattributed as well to a complex dielectric constant as to a
frequency-dependent conductivity and a dielectric constant.

*See R. G. Chambers, Electrons in Metals and Semiconductors, Chapman & Hall, New York (1990),

or G. Lehmann and P. Ziesche, Electronic Properties of Metals, Elsevier, New York (1990).

"In terms of the quantum-mechanical bandstructure of the solid, the conductor has someelectrons
in a partially filled band, while the insulator has its bands filled to the full extent permitted by the
Pauli principle. A ‘‘free’’ electron must have nearby energy-conserving quantum states to whichit
can move.In a partially filled band there are suchstates, but a filled band has, by definition, no such
states available.
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D. High-Frequency Limit, Plasma Frequency

At frequencies far above the highest resonant frequency the dielectric con-
stant (7.51) takes on the simple form

2

 

E(w) WpAYa=1-s |- > (7.59)

where

NZe*
we = mm (7.60)

The frequency w,, which depends only on the total number NZ of electrons per
unit volume,is called the plasma frequency of the medium. The wave number1s

given in the limit by

ck = Va — ow, (7.61)

Sometimes (7.61) is expressed as w = a, + c’k’, and is called a dispersion
relation or equation for w = w(k). In dielectric media, (7.59) applies only for
w” >> w;. The dielectric constant is then close to unity, although slightly less,
and increases with frequency somewhatas the highest frequencypartof the curve
shown in Fig. 7.8. The wave numberis real and varies with frequency as for a
modein a waveguide with cutoff frequency w,. (See Fig. 8.4.)

In certain situations, such as in the ionosphere or in a tenuous electronic
plasma in the laboratory, the electrons are free and the dampingis negligible.
Then (7.59) holds over a wide range of frequencies, including w < w,. Forfre-
quencies lower than the plasma frequency, the wave number(7.61) is purely
imaginary. Such wavesincident on a plasma arereflected and thefields inside
fall off exponentially with distance from the surface. At w = O the attenuation
constant1s

2W
— (7.62)Qplasma =

P C

Onthe laboratory scale, plasma densitiesare of the order of 10'* — 10” electrons/
m°. This means w, ~ 6 X 10'°-6 X 10’ s“', so that typically attenuation lengths
(a') are of the order of 0.2 cm to 2 X 107° cm forstatic or low-frequencyfields.

The expulsion of fields from within a plasma 1s a well-knowneffect in controlled
thermonuclear processes and is exploited in attempts at confinement of hot
plasma.

The reflectivity of metals at optical and higher frequencies is caused by es-
sentially the same behavior as for the tenuous plasma. The dielectric constant of
a metalis given by (7.56). At high frequencies (w >> yo) this takes the approx-
imate form,

2

€(w) ~ e,(0) — 3 &
where w;, = ne*/m*e, is the plasma frequency squared of the conduction elec-
trons, given an effective mass m* to include partially the effects of binding. For
w << w, the behaviorof light incident on the metal is approximately the same
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as for the plasma described by (7.59). The light penetrates only a very short
distance into the metal andis almost entirely reflected. But when the frequency
is increased into the domain where e(w) > 0, the metal suddenly can transmit
light andits reflectivity changes drastically. This occurs typically in the ultraviolet
and leads to the terminology “ultraviolet transparency of metals.” Determination
of the critical frequency gives information on the density or the effective mass
of the conduction electrons.*

E. Index ofRefraction and Absorption Coefficient
ofLiquid Water as a Function ofFrequency

As an example of the overall frequency behavior of the real part of the index
of refraction and the absorption coefficient of a real medium,wetake theubig-
uitous substance, water. Our intent is to give a broad view and to indicate the
tremendous variations that are possible, rather than to discuss specific details.
Accordingly, we showin Fig. 7.9, on a log-log plot with 20 decadesin frequency
and 11 decades in absorption, a compilation of the gross features of n(w) =
Re V pe/Ho€ and a(w) = 2Im Vue @ for liquid water at NTP. The upperpart
of the graph showstheinteresting, but not spectacular, behavior of n(w). At very
low frequencies, n(w) = 9, a value arising from the partial orientation of the
permanent dipole moments of the water molecules. Above 10'° Hz the curvefalls
relatively smoothly to the structure in the infrared. In the visible region, shown
by the vertical dashed lines, n(w) ~ 1.34, with little variation. Then in the ultra-
violet there is more structure. Above 6 X 10'° Hz (hv = 25 eV) there are no data
on the real part of the index of refraction. The asymptotic approach to unity
shownin the figure assumes(7.59).

Much moredramatic is the behavior of the absorption coefficient a. At fre-
quencies below 10° Hz the absorption coefficient is extremely small. The data
seem unreliable (two different sets are shown), probably because of variations
in sample purity. As the frequency increases toward 10’! Hz, the absorption
coefficient increases rapidly to a ~ 10* m™', corresponding to an attenuation
length of 100 ym in liquid water. This is the well-known microwave absorption
by water. It is the phenomenon(in moist air) that terminated the trend during
World War II toward better and better resolution in radar by going to shorter
and shorter wavelengths.

In the infrared region absorption bandsassociated with vibrational modesof
the molecule and possibly oscillations of a molecule in the field of its neighbors
cause the absorption to reach peak values of a ~ 10° m™!. Then the absorption
coefficient falls precipitously over 75 decades to a value of a <3 X 10°! m7!in
a narrow frequency range between 4 x 10'* Hz and 8 x 1014 Hz.It thenrises
again by more than 8 decades by 2 X 10'° Hz. This is a dramatic absorption
window in what wecall the visible region. The extreme transparency of water
here hasits origins in the basic energy level structure of the atoms and molecules.
The reader may meditate on the fundamental question of biological evolution
on this water-soaked planet, of why animal eyes see the spectrum from red to

*See Chapter 4 of D. Pines, Elementary Excitations in Solids, W. A. Benjamin, New York (1963), for
a discussion of these and other dielectric properties of metals in the optical and ultraviolet region.
Moregenerally, see F. Wooten, Optical Properties of Solids, Academic Press, New York (1972) and
Handbookof Optical Constants of Solids, ed. E. D. Palik, Academic Press, Boston (1991).
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Figure 7.9 The index of refraction (top) and absorption coefficient (bottom) for liquid
water as a function of linear frequency. Also shown as abscissas are an energy scale
(arrows) and a wavelength scale (vertical lines). The visible region of the frequency
spectrum is indicated by the vertical dashedlines. The absorption coefficient for
seawateris indicated by the dashed diagonalline at the left. Note that the scales are
logarithmic in both directions.

violet and of why the grass is green. Mother Nature has certainly exploited her
window!In the very far ultraviolet the absorption has a peak value of a = 1.1
10° m7! at y= 5 X 10° Hz (21 eV). This is exactly at the plasmon energy hw,,
correspondingto a collective excitation of all the electrons in the molecule. The
attenuation is given in order of magnitude by (7.62). At higher frequencies data
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are absent until the photoelectric effect, and then Compton scattering and other
high-energy processes take over. There the nuclear physicists have studied the
absorption in detail. The behavioris basically governed by the atomic properties
and the density, not by the fact that the substance is water.

At the low-frequency end of the graph in Fig. 7.9 we have indicated the
absorption coefficient of seawater. At low frequencies, seawater has anelectrical

conductivity o ~ 4.4 Q7' m“'. From (7.57) wefind that below about 10° Hz a =~
(2490). The absorption coefficient is thus proportional to Vw and becomes
very small at low frequencies. The line shown is a (m~'’) = 8.4 X 1073Vv(Hz).
At 10° Hz, the attenuation length in seawater is a ' ~ 10 meters. This means
that 1% of the intensity at the surface will survive at 50 meters below the surface.
If one had a large fleet of submarines scattered throughout the oceans of the

world and wished to be able to send messages from a land base to the submerged
vessels, one would be led to consider extremely low-frequency (ELF) commu-

nications. The existence of prominent resonancesof the earth-ionospherecavity
in the range from 8 Hz to a few hundredhertz (see Section 8.9) makesthat region
of the frequency spectrum specially attractive, as does the reduced attenuation.
With wavelengths of the order of 5 x 10° km, very large antennas are needed
(still small compared to a wavelength!).*

7.6 Simplified Model ofPropagation in the Ionosphere
and Magnetosphere

The propagation of electromagnetic waves in the ionosphere is described in
zeroth approximation by the dielectric constant (7.59), but the presence of the
earth’s magnetic field modifies the behavior significantly. The influenceof static
external magneticfield is also present for many laboratory plasmas. Toillustrate
the influence of an external magnetic field, we consider the simple problem of a
tenuouselectronic plasma of uniform density with a strong, static, uniform, mag-

netic induction By and transverse waves propagating parallel to the direction of
B,. (The more general problem of an arbitrary direction of propagation is con-
tained in Problem 7.17.) If the amplitude of electronic motion is small and col-
lisions are neglected, the equation of motion is approximately

mx — eBy X x = —eEe (7.63)

where the influence of the B field of the transverse wave has been neglected

comparedto the static induction By and the electronic charge has been written
as —e. It is convenient to consider the transverse wavesas circularly polarized.
Thus we write

E = (e, + ie,)E (7.64)

and a similar expression for x. Since the direction of By is taken orthogonalto €,
and €5, the cross product in (7.63) has components only in the direction e, and

*For detailed discussion of ELF communications, see the conference proceedings, ELF/VLF/LFRa-
dio Propagation and Systems Aspects, (AGARD-CP-529), Brussels, 28 September—2 October, 1992,

AGARD,Neuilly sur Seine, France (1993).
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€, and the transverse components decouple. The steady-state solution of (7.63)
is

x =——_"___E (7.65)
mo(@ + @z)

where w, is the frequency of precession of a charged particle in a magneticfield,

eBo
Op = (7.66)

The frequency dependenceof (7.65) can be understood by the transformation of

(7.63) to a coordinate system precessing with frequency w, aboutthe direction
of B,. The static magnetic field is eliminated; the rate of change of momentum
there is caused by a rotating electric field of effective frequency (w + wa), de-
pending on the sign of the circular polarization.

The amplitude of oscillation (7.65) gives a dipole momentfor each electron
and yields, for a bulk sample, the dielectric constant

2
62)

(7.67)_lé, = 1 - ———,
€=/€0 w(@ + Wz)

The uppersign correspondsto a positive helicity wave (left-handed circular po-
larization in the optics terminology), while the loweris for negative helicity. For
propagation antiparallel to the magnetic field Bo, the signs are reversed. This is
the extension of (7.59) to include a static magnetic induction.It is not completely
general, since it applies only to waves propagating alongthestatic field direction.
But even in this simple example we see the essential characteristic that waves of
right-handed and left-handed circular polarizations propagate differently. The
ionosphere is birefringent. For propagation in directions other than parallel tc
the static field B, it is straightforward to show that, if terms of the order of w%
are neglected compared to w” and wwz,, the dielectric constantis still given by

(7.67). But the precession frequency (7.66) is now to be interpreted as that due
to only the componentof By parallel to the direction of propagation. This means
that w, in (7.67) is a function of angle—the medium is notonly birefringent, but
also anisotropic (see Problem 7.17).

For the ionosphere a typical maximum density of free electrons is 10'°-10””
electrons/m”, corresponding to a plasma frequencyof the order of w, ~ 6 X 10°
—6 X 10’s~'. If we take a value of 30 wT as representative of the earth’s magnetic
field, the precession frequency is w, ~ 6 X 10°s7?.

Figure 7.10 shows e../€, as a function of frequency for two valuesof the ratio
of (w,/w,). In both examples there are wide intervals of frequency where one of
€, Or €_ 1s positive while the other is negative. At such frequencies onestate of
circular polarization cannot propagate in the plasma. Consequently a wave of
that polarization incident on the plasmawill be totally reflected. The other state
of polarization will be partially transmitted. Thus, whena linearly polarized wave
is incident on a plasma,the reflected wave will be elliptically polarized, withits
major axis generally rotated away from the direction of the polarization of the
incident wave.

The behavior of radio waves reflected from the ionosphereis explicable in
terms of these ideas, but the presence of several layers of plasma with densities
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Figure 7.10 Dielectric constants as functions of frequency for model of the ionosphere
(tenuouselectronic plasmain a static, uniform magnetic induction). €.(@) apply to the
right and left circularly polarized waves propagating parallel to the magnetic field. wz, is
the gyration frequency; w, is the plasma frequency. The two sets of curves correspond
to w,/w, = 2.0, 0.5.

and relative positions varying with height and time makesthe problem consid-
erably more complicated than our simple example. The electron densities at var-
ious heights can be inferred by studying the reflection of pulses of radiation
transmitted vertically upwards. The numbernp of free electrons per unit volume
increases slowly with height in a given layer of the ionosphere, as shown in Fig.
7.11, reaches a maximum,and thenfalls with further increase in height. A pulse
of a given frequency @, enters the layer without reflection because of the slow
change in No. Whenthe density no is large enough, however, w,(hy) = w,. Then

the dielectric constants (7.67) vanish and the pulseis reflected. The actual density
No Wherethereflection occursis given by the roots of the right-handsideof(7.67).
By observing the time interval between the initial transmission and reception of
the reflected signal the height h, corresponding to that density can be found. By
varying the frequency w, and studying the changein timeintervals, the electron
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density as a function of height can be determined.If the frequency «,is too high,
the index of refraction does not vanish and very little reflection occurs. The
frequency above which reflections disappear determines the maximum electron
density in a given layer. A somewhat more quantitative treatment using the
Wentzel—Kramers—Brillouin (WKB) approximation is sketched in Problem 7.14.

The behavior of €_(w) at low frequencies is responsible for a peculiar mag-
netospheric propagation phenomenoncalled ‘“‘whistlers.’’ As w — 0, e_(@) tends
to positive infinity as €_/ey ~ w;/@w,. Propagation occurs, but with a wave num-
ber (7.5), .

w @P
k Oe a

Cc Wp

This corresponds to a highly dispersive medium. Energy transport is governed
by the group velocity (7.86)—see Section 7.8—whichis

V WpW

P

 U,(w) = 2u,(@) = 2c

Pulses of radiation at different frequencies travel at different speeds: the lower
the frequency, the slower the speed. A thunderstorm in one hemisphere gener-
ates a wide spectrum of radiation, some of which propagates moreorless along
the dipole field lines of the earth’s magnetic field in a fashion described approx-
imately by (7.67). The higher frequency components reach the antipodal point
first, the lower frequency oneslater. This gives rise at 10° Hz and below to whis-
tlers, so namedbecausethesignal, as detected in an audio receiver, is a whistlelike

sound beginning at high audio frequenciesandfalling rapidly through the audible
range. With the estimates given above for w, and w, and distancesof the order
of 10* km,the reader can verify that the time scale for the whistlers is measured
in seconds. Further discussion on whistlers can be found in the reading sugges-
tions at the end of the chapter and in the problems.

7.7 Magnetohydrodynamic Waves

In the preceding section we discussed in terms of a dielectric constant the prop-
agation of wavesin a dilute plasma in an external magnetic field with negligible
collisions. In contrast, in conducting fluids or dense ionized gases, collisions are
sufficiently rapid that Ohm’s law holds for a wide range of frequencies. Under
the action of applied fields the electrons and ions movein such a waythat, apart
from high-frequencyjitter, there is no separation of charge, although there can
be currentflow. Electric fields arise from external charges, current flow,or time-

varying magnetic fields. At low frequencies the Maxwell displacement currentis
usually neglected. The nonrelativistic mechanical motionis described in termsof
a single conducting fluid with the usual hydrodynamic variables of density, ve-
locity, and pressure, with electromagnetic and gravitational forces. The combined
system of equations describes magnetohydrodynamics (MHD).

The electromagnetic equations are those of Section 5.18, with the Ohm’s law
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in (5.159) generalized for a fluid in motion to J = o(E + v x B), in accord With
the discussion of Section 5.15. The generalization of (5.160), but for the magnetic
induction,is

OB 1
—=Vx (vx B)+— VBa YX (VX B) i” (7.68)

wherefor simplicity we have assumed that the conductivity and permeability are
independentofposition.

Consider the idealization of a compressible, nonviscous, “perfectly conduct-
ing” fluid in the absenceof gravity, but in an external magneticfield. By perfectly
conducting we meanthat the conductivity is so large that the second term onthe
right-handside of (7.68) can be neglected—the diffusion time (5.161) is very long
compared to the timescale of interest. The hydrodynamic equations are

d
+ V+ (py) =0
at (7.69)

0

p— + plv+V)v
1

—Vp ——B x (Vv xX B)
ot bb

Thefirst equation is conservation of matter; the second is the Newton equation
of motion with the mechanical pressure force density and the magnetic force
density, J x B, in which J has been replaced by V x H. The magnetic force can
be written as

1 1
—— Bx (V x B) = -v(5 8) +-—(B-V)B

bb 2M 2

The first term represents the gradient of a magnetic pressure; the secondis an
additional tension. Equation (7.69) must be supplemented by an equation of
State.

In the absence of a magnetic field, the mechanical equations can describe
small-amplitude, longitudinal, compressional (sound) waves with a speed s, the
square of which is equal to the derivative of the pressure p with respect to the
density p at constant entropy. With the adiabatic gas law, p = Kp”, where y 1s
the ratio of specific heats, s* = ypo/p. By analogy, we anticipate longitudinal
MHD wavesin a conducting fluid in an external field By, with a Speed squared
of the order of the magnetic pressure divided by the equilibrium density,

VmHp = OV Bo/2upo

To exhibit these waves we consider the combined equations of motion (7.68) and
(7.69), with the neglect of the V7B/uo term in (7.68), with an unperturbed con-
figuration consisting ofa spatially uniform, time-independent magnetic induction
B, throughouta stationaryfluid of constant equilibrium density pp. We then allow
for small-amplitude departures from equilibrium,

B = Bo + B,(x, t)

P = po + p,(x, 2) (7.70)
Vv = v,(x,7)
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If equations (7.69) and (7.68) are linearized in the small quantities, they become:

Op1
— + pV > = 0at Po V1

0 B

ot a

OB
= 7 VX (v1 X Bo) = 0

where s” is the square of the sound velocity. These equations can be combined
to yield an equation for v, alone:

0°v, 7
Sp V(V evi) + va X VX [VX (v1 X va] = 0 (7.72)

where we have introduceda vectorial Alfvén velocity:

Bo
v4=

V Po

The wave equation (7.72) for v,; is somewhatinvolved, but it allows simple
solutions for waves propagating parallel or perpendicular to the magneticfield

direction.* With v(x, f) a plane wave with wave vector k and frequency aw:

v(x, t) = veh* (7.74)

(7.73)

equation (7.72) becomes:

—w’v, + (s* + v4)(kK+ vk + v4-K[(v4 - k)v, (7.75)

— (v4 * V¥,)kK — (k- y,)v,4] = 0

If k is perpendicular to v, the last term vanishes. Then the solution for vy, is a

longitudinal magnetosonic wave with a phase velocity:

Uiong = VS* + U4 (7.76)

Note that this wave propagates with a velocity that depends on the sum ofhy-
drostatic and magnetic pressures, apart from factors of the order of unity. If k is
parallel to v4, (7.75) reduces to

2

(k°u%, — w’)v, + (s — 1). -v,)v, = 0 (7.77)
A

There are two types of wave motion possible in this case. There is an ordinary

longitudinal wave(vy, parallel to k and v,) with phase velocity equal to the sound
velocity s. But there is also a transverse wave (v,° V4 = 0) with a phase velocity

equal to the Alfvén velocity v,. This Alfvén waveis a purely magnetohydrody-
namic phenomenon,which depends only on the magnetic field (tension) and the
density (inertia).

For mercury at room temperature the Alfvén velocity is 7.67 By (tesla) m/s,

*The determination of the characteristics of the waves for arbitrary direction of propagationisleft

to Problem 7.18.
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Figure 7.12 Magnetohydrodynamic waves.

compared with the sound speed of 1.45 X 10° m/s. Atall laboratoryfield strengths
the Alfvén velocity is much less than the speed of sound. In astrophysical prob-
lems, on the other hand, the Alfvén velocity can become very large because of

the much smaller densities. In the sun’s photosphere, for example, the density is
of the order of 10~* kg/m* (~6 x 10” hydrogen atoms/m*)so that v4 ~ 10° B(T)
m/s. Solar magnetic fields appear to be of the order of 1 or 2 X 10°“ T at the
surface, with much larger values around sunspots. For comparison, the velocity
of soundis of the orderof 10* m/s in both the photosphere and the chromosphere.

The magnetic fields of these different waves can be found from the third
equation in (7.71):

(k
—_ U1Bo for k L Bo
@

B, = {0 for the longitudinal k || By (7.78)

—— Bov, for the transverse k || Bp
@L 

The magnetosonic wave moving perpendicular to By causes compressions and

rarefactionsin the lines of force without changing their direction, as indicated in
Fig. 7.12a. The Alfvén wave parallel to By causes the lines of force to oscillate
back and forth laterally (Fig. 7.125). In either case the lines of force are ‘‘frozen
in’ and move with the fluid.

Inclusion of the effects of fluid viscosity, finite, not infinite, conductivity, and

the displacement current add complexity to the analysis. Some of these elabo-
rations are treated in the problems.

7.8 Superposition of Waves in One Dimension; Group Velocity

In the preceding sections plane wave solutions to the Maxwell equations were

found and their properties discussed. Only monochromatic waves, those with a

definite frequency and wave number,weretreated. In actual circumstances such

idealized solutions do notarise. Even in the most monochromatic light source or
the most sharply tuned radio transmitter or receiver, one deals with finite (al-
though perhaps small) spread of frequencies or wavelengths. This spread may
originate in the finite duration of a pulse, in inherent broadeningin the source,
or in many other ways. Since the basic equationsare linear, it is in principle an
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elementary matter to make the appropriate linear superposition of solutions with

different frequencies. In general, however, several new featuresarise.

1. If the mediumis dispersive (i.e., the dielectric constant is a function of the
frequency of the fields), the phase velocity is not the same for each frequency
component of the wave. Consequently different components of the wave
travel with different speeds and tend to change phase with respect to one
another.

2. Ina dispersive medium the velocity of energy flow may differ greatly from

the phase velocity, or may even lack precise meaning.

3. Ina dissipative medium, a pulse of radiation will be attenuatedasit travels
with or without distortion, depending on whetherthe dissipative effects are
or are not sensitive functions of frequency.

The essentials of these dispersive and dissipative effects are implicit in the

ideas of Fourier series and integrals (Section 2.8). For simplicity, we consider

scalar waves in only one dimension. Thescalar amplitude u(x, t) can be thought
of as one of the components of the electromagnetic field. The basic solution to
the wave equation has been exhibited in (7.6). The relationship between fre-
quency w and wave numberk is given by (7.4) for the electromagneticfield.
Either w or k can be viewed as the independent variable when one considers
makinga linear superposition. Initially we will find it most convenient to use k

as an independent variable. To allow for the possibility of dispersion we will
consider w as a general function of k:

w = w(k) (7.79)

Since the dispersive properties cannot depend on whether the wavetravels to
the left or to the right, w must be an even function of k, w(—k) = w(k). For most
wavelengths w is asmoothly varying function of k. But, as we have seen in Section

7.5, at certain frequencies there are regions of “‘anomalous dispersion” where w

varies rapidly over a narrow interval of wavelengths. With the general form
(7.79), our subsequent discussion can apply equally well to electromagnetic
waves, sound waves, de Broglie matter waves, etc. For the present we assume

that k and w(k)are real, and so exclude dissipative effects.

From the basic solutions (7.6) we can build up a general solution of the form

1 7 es
u(x, t) = Vaan i A(k)e*10dk (7.80)

The factor 1/\/27r has beeninserted to conform with the Fourierintegral notation
of (2.44) and (2.45). The amplitude A(k) describes the properties of the linear
superposition of the different waves. It is given by the transform of the spatial
amplitude u(x, t), evaluated at ¢ = 0*:

A(k) = u(x, Oedx (7.81)
1 |”

V27 J-%

If u(x, 0) represents a harmonic wave e“ for all x, the orthogonality relation
(2.46) shows that A(k) = V27 6(k — ko), corresponding to a monochromatic

*The following discussion slights somewhattheinitial-value problem. For a second-orderdifferential

equation we must specify not only u(x, 0) but also du(x, 0)/dt. This omission is of no consequence for

the rest of the material in this section. It is remedied in the following section.
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traveling wave u(x, t) = eC", as required. If, however, at t = 0, u(x,0)
represents a finite wave train with a length of order Ax, as shownin Figure 7.13,
then the amplitude A(k) is not a delta function. Rather,it is a peaked function
with a breadth of the order of Ak, centered around a wave number ko, whichis

the dominant wave number in the modulated wave u(x, 0). If Ax and Ak are
defined as the rms deviations from the average values of x and k [defined in terms
of the intensities |u(x, 0) and |A(k)|’], it is possible to draw the general
conclusion:

Ax Ak = 3 (7.82)

The reader mayreadily verify that, for most reasonable pulses or wave packets
that do not cut off too violently, Ax times Ak lies near the lower limiting value
in (7.82). This means that short wave trains with only a few wavelengths present
have a very wide distribution of wave numbers of monochromatic waves, and

conversely that long sinusoidal wave trains are almost monochromatic. Relation
(7.82) applies equally well to distributions in time and in frequency.

The next question is the behaviorof a pulse orfinite wavetrain in time. The
pulse shown at ¢t = 0 in Fig. 7.13 begins to moveas time goes on. The different
frequency or wave-number components in it move at different phase velocities.
Consequently there is a tendency for the original coherence to be lost and for
the pulse to become distorted in shape. At the very least, we might expectit to
propagate with a rather different velocity from, say, the average phase velocity

of its component waves. The general case of a highly dispersive medium or a
very sharp pulse with a great spread of wave numberspresentis difficult to treat.
But the propagation of a pulse which is not too broad in its wave-numberspec-
trum, or a pulse in a medium for which the frequency depends weakly on wave
number, can be handled in the following approximate way. The waveat timef
is given by (7.80). If the distribution A(k) is fairly sharply peaked around some
value ko, then the frequency w(k) can be expanded aroundthatvalueof k:

w(k) = wy + i‘ (k — ko) t+ (7.83)

u(x, 0)

 

 

A (k)

—_~ Figure 7.13. A harmonic wavetrain of

k—> finite extent and its Fourier spectrum in
wave number.
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and the integral performed. Thus

eilko(doldk)lo— wot

V20

From (7.81) andits inverse it is apparent that the integral in (7.84) is just u(x’, 0),
where x’ = x — (daldk)|p t:

 u(x, t) = | A(k)ei®Gedobolk dk (7.84)

dk  
u(x, t) = u(: ~ , ae , 0etait (7.85)

0

This shows that, apart from an overall phase factor, the pulse travels along un-
distorted in shape with a velocity, called the group velocity:

_ da
cE (7.86)U

 0
If an energy density is associated with the magnitude of the wave (orits absolute

square), it is clear that in this approximation the transport of energy occurs with
the group velocity, since that is the rate at which the pulse travels along.

For light waves the relation between w and k is given by

ck
w(k) = n(k) (7.87)

where c is the velocity of light in vacuum, and n(k) is the index of refraction
expressed as a function of k. The phase velocity is

_ ok) _ _¢
Up k n(k) (7.88)

and is greater or smaller than c depending on whether n(k) is smaller or larger
than unity. For most optical wavelengths n(x) is greater than unity in almostall
substances. The group velocity (7.86) is

C

"8 ~ n(w) + w(dnidw)
 (7.89)

In this equation it is more convenient to think of n as a function of w than of k.
For normal dispersion (dn/dw) > 0, and also n > 1; then the velocity of energy
flow is less than the phase velocity and also less than c. In regions of anomalous
dispersion, however, dn/dw can become large and negative as can be inferred

from Fig. 7.8. Then the group velocity differs greatly from the phase velocity,
often becoming larger than c or even negative. The behavior of group and phase
velocities as a function of frequency in the neighborhoodof a region of anoma-
lous dispersion is shown in Fig. 7.14. There is no cause for alarm that our ideas
of special relativity are violated; group velocity is generally not a useful concept
in regions of anomalous dispersion. In addition to the existence of significant
absorption (see Fig. 7.8), a large dn/dw is equivalent to a rapid variation of w
with k. Consequently the approximations madein (7.83) and following equations
are no longer valid. Usually a pulse with its dominant frequency components in

the neighborhood of a strong absorption line is absorbed and distorted asit
travels. As shown by Garret and McCumber,* however, there are circumstances

*C. G. B. Garrett and D. E. McCumber, Phys. Rev. A 1, 305 (1970).
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in which “‘group velocity” can still have meaning, even with anomalous disper-
sion. Other authors* subsequently verified experimentally what Garrett and
McCumber showed theoretically: namely, if absorbers are not too thick, a
Gaussian pulse with a central frequency near an absorption line and with support
narrow compared to the width of the line (pulse wide in time compared to 1/y)
propagates with appreciable absorption, but moreorless retainsits shape, the
peak of which movesat the group velocity (7.89), even when that quantity is
negative. Physically, what occurs is pulse reshaping—the leading edge of the
pulse is less attenuated than the trailing edge. Conditions can be such that the
peak of the greatly attenuated pulse emerges from the absorber before the peak
of the incident pulse has entered it! (That is the meaning of negative group
velocity.) Since a Gaussian pulse does not have a sharply defined front edge,
there is no question of violation of causality.

Some experiments are described as showing that photons travel faster than
the speed oflight through optical ‘“‘band-gap”’ devices that reflect almost all of
the incident flux over a restricted range of frequencies. While it is true that the
centroid of the very small transmitted Gaussian pulse appears slightly in advance
of the vacuum transit time, no signal or information travels faster than c. The
main results are explicable in conventional classical terms. Some aspects are ex-
amined in Problems 7.9-7.11. A review of these and other experiments has been
given by Chiao andSteinberg.’

7.9 Illustration of the Spreading of a Pulse as It Propagates
in a Dispersive Medium

To illustrate the ideas of the preceding section and to show the validity of the
concept of group velocity, we now consider a specific model for the dependence

*S. Chu and S. Wong, Phys. Rev. Letters 48, 738 (1982); A. Katz and R. R. Alfano, Phys. Rev. Letters,
49, 1292 (1982); S. Chu, and S. Wong,ibid, 1293. B. Ségard and B. Macke,Phys. Lett. 109A, 213 (1985).
"R. Y. Chiao and A. M. Steinberg, in Progress in Optics, Vol. 37, ed. E. Wolf, Elsevier, Amsterdam
(1997), p. 347-406.
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of frequency on wave number and calculate without approximations the propa-

gation of a pulse in this model medium. Before specifying the particular model

it is necessary to state the initial-value problem in more detail than was donein

(7.80) and (7.81). As noted there, the proper specification of an initial-value
problem for the wave equation demandstheinitial values of both function u(x,0)
and time derivative du(x, 0)/ot. If we agree to take the real part of (7.80) to obtain

u(x, t),

1 1 ” ao,
u(x, t) = 3 Van [_ A(k)e**10" dk + c.c. (7.90)

then it is easy to show that A(k) is given in termsofthe initial values by:

i awA(k) = = {- mute O) + w(K) at (x, 0) dx (7.91)

Wetake a Gaussian modulated oscillation

 

u(x, 0) = e*?™ cos kox (7.92)

as the initial shape of the pulse. For simplicity, we will assume that

05, (x, 0) =0 (7.93)

This means that at times immediately before t = 0 the wave consisted of two

pulses, both moving toward the origin, such that at t = 0 they coalesced into the
shape given by (7.92). Clearly at later times we expect each pulse to reemerge
on the other side of the origin. Consequently the initial distribution (7.92) may
be expected to split into two identical packets, one moving to the left and one
to the right. The Fourier amplitude A(k) for the pulse described by (7.92) and
(7.93) is

co

> _ V2 2

e Ke PL" cos kox dx
1
V2 I= (7.94)
L_ i [oe(L712k— ko)” 4 eo(L712k+ko)"

A(k) =

The symmetry A(—k) = A(k) is a reflection of the presence of two pulses trav-
eling away from the origin, as is seen below.

To calculate the waveform at later times, we must specify w = w(k). As a
model allowing exact calculation and showingthe essential dispersive effects, we

assume

 w(k) = (1 + “) (7.95)

where v is a constant frequency, and a is a constant length that is a typical wave-

length where dispersive effects become important. Equation (7.95) is an approx-
imation to the dispersion equation of the tenuous plasma,(7.59) or (7.61). Since
the pulse (7.92) is a modulated wave of wave number k = ko, the approximate
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arguments of the preceding section imply that the two pulses will travel with the
group velocity

dw
Ug = dk (Ko) = va'k (7.96)

and will be essentially unaltered in shape provided the pulse is not too narrow
in space.

The exact behavior of the waveas a function of time is given by (7.90), with

(7.94) for A(k):

L “ 2 2 2 2 : : 24-2u(x, t) = Re | e /2)(k—ko) 4 e /2)(k+ko) eikx—ivq{l + (a k*/2)] dk(1) = -=Re || |
(7.97)

The integrals can be performed by appropriately completing the squaresin the
exponents. Theresult is

 

 

 

   

u(x, t) =

(x — va’kot)
exp] — °

ia’ vt
2L7{1 +

ipa | ( L* . . a’k6
5Re Put 2 exp] ikox — ivi 1 + a t} + (ky > —Ko)

(+ a)
\ J

(7.98)

Equation (7.98) represents two pulses traveling in opposite directions. The peak

amplitude of each pulse travels with the group velocity (7.96), while the modu-
lation envelop remains Gaussian in shape. The width of the Gaussian is not
constant, however, but increases with time. The width of the envelope is

on-[e
Thus the dispersive effects on the pulse are greater (for a given elapsed time),

the sharper the envelope. The criterion for a small change in shapeis that
L >> a. Of course, at long times the width of the Gaussian increaseslinearly with
time

(7.99)

ar vt

L(t) >

=

— (7.100)

but the time of attainment of this asymptotic form depends on the ratio (L/a).
A measure of howrapidly the pulse spreads is provided by a comparison of L(t)
given by (7.99), with v,t = va*kot. Figure 7.15 shows two examples of curves of

the position of peak amplitude (v,t) and the positions v,t + L(t), which indicate
the spread of the pulse, as functions of time. On the left the pulse is not too

narrow compared to the wavelength kj ' and so doesnot spread too rapidly. The
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Figure 7.15 Change in shape of a wave packetasit travels_The broad packet,
containing many wavelengths (kjL >> 1), is distorted comparativelylittle, while the

narrow packet (koL =< 1) broadensrapidly.

 

pulse on the right, however, is so narrowinitially that it is very rapidly spread
out and scarcely represents a pulse after a short time.

Although the results above have been derived for a special choice (7.92) of
initial pulse shape and dispersion relation (7.95), their implications are of a more
general nature. We saw in Section 7.8 that the average velocity of a pulse is the
group velocity v, = dwi/dk = w'. The spreading of the pulse can be accounted
for by noting that a pulse with aninitial spatial width Ax) must have inherent in
it a spread of wave numbers Ak ~ (1/Ax,). This means that the group velocity,
when evaluated for various k values within the pulse, has a spread in it of the
order

w”

Av, ~ w" Ak ~ —— 7.101An (7.101)

At a time f this implies a spread in position of the order of Au,t. If we combine
the uncertainties in position by taking the square root of the sum of squares, we

obtain the width Ax(t) at time ¢:

Ax(t) = |(Axo)? + (= (7.102)
0

 

Wenote that (7.102) agrees exactly with (7.99) if we put Ax) = L. The expression
(7.102) for Ax(t) shows the generalresult that, if w” # 0, a narrow pulse spreads
rapidly becauseof its broad spectrum of wave numbers, andvice versa. All these

ideas carry over immediately into wave mechanics. They form the basis of the
Heisenberg uncertainty principle. In wave mechanics, the frequencyis identified
with energy divided by Planck’s constant, while wave number is momentum di-
vided by Planck’s constant.

The problem of wave packets in a dissipative, as well as dispersive, medium
is rather complicated. Certain aspects can be discussed analytically, but the an-

alytical expressions are not readily interpreted physically. Except in special cir-
cumstances, wave packets are attenuated and distorted appreciably as they prop-

agate. The reader mayrefer to Stratton (pp. 301-309) for a discussion of the

problem,including numerical examples.
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7.10 Causality in the Connection Between D and E;
Kramers—Kronig Relations

A. Nonlocality in Time

Another consequence of the frequency dependence of €(w) is a temporally
nonlocal connection between the displacement D(x, ft) and the electric field
E(x,t). If the monochromatic components of frequency w are related by

D(x, w) = €(@)E(x, w) (7.103)

the dependence on time can be constructed by Fourier superposition. Treating

the spatial coordinate as a parameter, the Fourier integrals in time and frequency
can be written

1 * |
D(x, t) = Vax [- D(x, we" dw

and (7.104)

D(x, w) = I [ D(x, t’)e’" dt'
V20 J-»

with corresponding equations for E. The substitution of (7.103) for D(x, w) gives

D(x, t) = E(w)E(x, we“ dw
1 |”

V 217 J—%

Wenowinsert the Fourier representation of E(x, w) into the integral and obtain

1 [(~ an ie a
D(x, t) = a7 [- dw e(w)e‘ {- dt' e'’ E(x, t')

With the assumption that the orders of integration can be interchanged,thelast
expression can be written as

D(x, t) = efBO t) + | G(7)E(x, t — 7) ar| (7.105)

where G(r) is the Fourier transform of x. = €(w)/€) — 1:

1 [{~ |
G(T) = = | [e(w)/eg — 1]e”” dw (7.106)

TT J—oa

Equations (7.105) and (7.106) give a nonlocal connection between D and E,in
which D at time ¢ depends ontheelectric field at times other than 1.* If €(w) is

*Equations (7.103) and (7.105) are recognizable as an example of the faltung theorem of Fourier
integrals: if A(t), B(t), C(t) and a(w), b(w), c(w) are two sets of functions related in pairs by the
Fourier inversion formulas (7.104), and

c(w) = a(w)b(@)

then, undersuitable restrictions concerning integrability,

C(t) = = [- A(t')B(t — t’) dt’
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independent of w for all w, (7.106) yields G(r) ~ 6(7) and the instantaneous
connection is obtained, but if €(w) varies with w, G(r) is nonvanishing for some
values of 7 different from zero.

B. Simple Modelfor G(7), Limitations

To illustrate the character of the connection implied by (7.105) and (7.106)
we consider a one-resonance version of the index of refraction (7.51):

E(w)ley — 1 = 03(@ — @&— iyo)! (7.107)

The susceptibility kernel G(r) for this model of €(w)is

2 oo —{WT
Wn e

G(T) = an 5 dw (7.108)
TJ-»2 Wy — w — iyw
 

The integral can be evaluated by contourintegration. The integrand haspoles in

the lower half-w-plane at

i 2 » YYm2 = 5 + VY, where 19 = wp — 4 (7.109)

For + < 0 the contour can be closed in the upperhalf-plane withoutaffecting the
value of the integral. Since the integrand is regular inside the closed contour,

the integral vanishes. For 7 > 0, the contouris closed in the lowerhalf-plane and
the integral is given by —27i times the residues at the two poles. The kernel

(7.108) is therefore

SIN VoT
G(r) = we? —— (7) (7.110)

0

where @(7) is the step function [6(7) = 0 for 7 < 0; 6(7) = 1 for 7 > OJ. For the
dielectric constant (7.51) the kernel G(r) is just a linear superposition of terms
like (7.110). The kernel G(r) is oscillatory with the characteristic frequency of
the medium and damped in time with the damping constant of the electronic
oscillators. The nonlocality in time of the connection between D and is thus
confined to times of the order of y~'. Since y is the width in frequency of spectral
lines and these are typically 10’-10° s~', the departure from simultaneity is of
the order of 10~’7-10~° s. For frequencies above the microwave region many
cycles of the electric field oscillations contribute an average weighed by G(r) to
the displacement D at a given instant of time.

Equation (7.105) is nonlocal in time, but not in space. This approximation is

valid provided the spatial variation of the applied fields has a scale that is large
comparedwith the dimensionsinvolvedin the creation of the atomic or molecular
polarization. For bound chargesthe latter scale is of the order of atomic dimen-
sions or less, and so the concept of a dielectric constant that is a function only of

w can be expected to hold for frequencies well beyond the visible range. For

conductors, however, the presence of free charges with macroscopic meanfree

paths makes the assumption of a simple e€(w) or o(w) break down at much lower

frequencies. For a good conductor like copper we have seen that the damping

constant (corresponding to a collision frequency) is of the order of yo ~ 3 X 10°

s-' at room temperature. At liquid helium temperatures, the damping constant

may be 10-3 times the room temperature value. Taking the Bohr velocity in
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hydrogen (c/137) as typical of electron velocities in metals, we find mean free
paths of the order L ~ c/(137y)) ~ 10°* m at liquid helium temperatures. On
the other hand, the conventional skin depth 6 (5.165) can be muchsmaller, of
the order of 10°’ or 107° m at microwave frequencies. In such circumstances,

Ohm/’s law must be replaced by a nonlocal expression. The conductivity becomes
a tensorial quantity depending on wave numberk and frequency w. Theassoci-

ated departures from the standard behavior are knowncollectively as the anom-
alous skin effect. They can be utilized to map out the Fermisurfaces in metals,*
Similar nonlocal effects occur in superconductors where the electromagnetic
properties involve a coherence length of the order of 10°~° m.+ With this brief
mention of the limitations of (7.105) and the areas where generalizations have
been fruitful we return to the discussion of the physical content of (7.105).

C. Causality and Analyticity Domain of €(w)

The most obvious and fundamental feature of the kernel (7.110) is that it
vanishes for 7 < 0. This meansthatat time t only valuesof the electric field prior
to that time enter in determining the displacement, in accord with our funda-
mental ideas of causality in physical phenomena. Equation (7.105) can thus be
written

D(x, t) = elBOs t) + | G(T)E(x, t — 7) ir} (7.111)

This is, in fact, the most general spatially local, linear, and causal relation that

can be written between D and E in a uniform isotropic medium.Its validity
transcends any specific model of €(w). From (7.106) the dielectric constant can
be expressed in terms of G(7) as

E(w)/Ey = 1 + | G(r)e'" dr (7.112)
0

This relation has several interesting consequences. From thereality of D, E, and
therefore G(r) in (7.111) we can deduce from (7.112) that for complex w,

E(—w)/e, = €*(w*)/E (7.113)

Furthermore,if (7.112) is viewed as a representation of €(w)/é) in the complex
w plane, it shows that €(w)/€9 is an analytic function of w in the upperhalf-plane,
provided G(r) is finite for all 7. On the real axis it is necessary to invoke
the “physically reasonable” requirement that G(r) — 0 as r—> © to assurethat
€(w)/€ is also analytic there. This is true for dielectrics, but not for conductors,
where G(7) > o/é) as T > & and €()/ey has a simple pole at w = 0 (€ > ia/w
as w — 0). Apart, then, from a possible pole at w = 0, the dielectric constant

€(w)/€o is analytic in w for Im w = 0 as a direct result of the causalrelation (7.111)

*A. B. Pippard, in Reports on Progress in Physics 23, 176 (1960), and the article entitled “The Dy-
namics of Conduction Electrons,” by the same author in Low-Temperature Physics, Les Houches
Summer School (1961), eds. C. de Witt, B. Dreyfus, and P. G. de Gennes, Gordon and Breach, New

York (1962). The latter article has been issued separately by the same publisher.

"See, for example,the article ‘“Superconductivity” by M. Tinkham in Low Temperature Physics, op.
cit.
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between D and E. These properties can be verified, of course, for the models
discussed in Sections 7.5.A and 7.5.C.

The behavior of €(w)/é€) — 1 for large w can be related to the behavior of
G(r) at small times. Integration by parts in (7.112) leads to the asymptoticseries,

E(w)/E, — 1, ~O_ SO | vee
W W

where the argumentof G and its derivatives is 7 = 0°. It is unphysical to have

G(0-) = 0, but G(0") # 0. Thus thefirst term in the series is absent, and
e(w)/é) — 1 falls off at high frequencies as w*, just as was found in (7.59) for the
oscillator model. The asymptotic series shows,in fact, that the real and imaginary
parts of €(w)/€) — 1 behavefor large real w as

Refe(w)/e) — 1] = o(4). Im €(w)/e) = o(4) (7.114)

These asymptotic forms depend only upon the existence of the derivatives of
G(r) around 7 = 0°.

D. Kramers—Kronig Relations

The analyticity of €(@)/e, in the upper half-w-plane permits the use of Cau-

chy’s theorem to relate the real and imaginary part of €(w)/e€, on the real axis.
For any point z inside a closed contour C in the upper half-w-plane, Cauchy’s

theorem gives

ad= + ——E(Z)/Ey9 1 -
271

le(w' leg — 1
w — Zz
 dw’

The contour C is now chosento consist of the real w axis and a great semicircle

at infinity in the upper half-plane. From the asymptotic expansion just discussed
or the specific results of Section 7.5.D, we see that €/é€) — 1 vanishessufficiently
rapidly at infinity so that there is no contribution to the integral from the great
semicircle. Thus the Cauchy integral can be written

 1 [~ "Vlég — 1
E(Z)/€o = [+ J| Le(@ ) o dw’ (7.115)

271 J—o Ww — Z

where z is now anypoint in the upperhalf-plane and the integralis taken along
the real axis. Taking the limit as the complex frequency approachesthereal axis

from above, we write z = w + i6 in (7.115):

E(w)/ey = 1 + 1 [ [e(w')/eo — 1
271 J—0 w' — w— 10
 du’ (7.116)

For real w the presence of the i6 in the denominator is a mnemonic for the
distortion of the contour along the real axis by giving it an infinitesimal semicir-

cular detour below the point w’ = w. The denominator can be written formally
as

 1 1
———. = ( ; + 7id(w' — w) (7.117)
w' — w— 10 w' —- @
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where P meansprincipal part. The delta function serves to pick up the contrj-
bution from the small semicircle going in a positive sense halfway aroundthe
pole at w' = w. Use of (7.117) and a simple rearrangementturns (7.116) into

 

 

1 ” ‘ley — 1
e(w)lé9 = 1 + — P | le(o eo U gy (7.118)

Tl — e0 @w — W

The real and imaginaryparts of this equation are

1 “J ")/
Re e(w)/ep = 1 + — P| €(w’ dw

T 4-2 @ ~ w (7.119)

1 ~ [R ‘ley — 1
Im e(w)/e9 = —— P | [Re e( Meo dw’

WT 00 wo — W

These relations, or the ones recorded immediately below,are called Kramers-

Kronig relations or dispersionrelations. They werefirst derived by H. A. Kramers

(1927) and R.de L. Kronig (1926) independently. The symmetry property (7.113)
shows that Re e(w) is even in w, while Im e(w) is odd. The integrals in (7.119)
can thus be transformed to span only positive frequencies:

 

 

2 [* w' Im €(a’)/Re e(w)/e9 =1 += P| wo Im eo’ Veo 4,
mT Jo wl? —w@ (7.120)

2w [* [Re €(w')/ey — 1
Im €(w)/e9 = = P| [Re E(w <0 do

TT 0 @W — @

In writing (7.119) and (7.120) we havetacitly assumed that €(w)/e, was regular
at w = 0. For conductors the simple pole at w = 0 can be exhibited separately

with little further complication.

The Kramers—Kronig relations are of very general validity, following from
little more than the assumption of the causal connection (7.111) between the
polarization and theelectric field. Empirical knowledge of Im €(w) from absorp-
tion studies allows the calculation of Re e(@) from the first equation in (7.120).
The connection between absorption and anomalousdispersion, shownin Fig. 7.8,
is contained in the relations. The presence of a very narrow absorption line or
band at w = w, can be approximated by taking

K
Im €(@') = 5 d(w' — @) + °°:

0

where is a constant and the dots indicate the other (smoothly varying) contri-
butions to Im e. The first equation in (7.120) then yields

K
Re e(w) = € + ———5 (7.121)

Wo — @W

for the behavior of Re €(w) near, but not exactly at, w = wo. The term € represents
the slowly varying part of Re € resulting from the more remote contributions to
Im e. The approximation (7.121) exhibits the rapid variation of Re e(@) in the
neighborhoodof an absorption line, shownin Fig. 7.8 for lines of finite width. A
more realistic description for Im e would lead to an expression for Re € in com-
plete accord with the behavior shown in Fig. 7.8. The demonstration of this 1s
left to the problemsat the end of the chapter.
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Relations of the general type (7.119) or (7.120) connecting the dispersive and
absorptive aspects of a process are extremely useful in all areas of physics. Their
widespread application stems from the very small number of physically well-
founded assumptions necessary for their derivation. References to their appli-
cation in particle physics, as well as solid-state physics, are given at the end of
the chapter. We end with mention of two sum rules obtainable from (7.120). It
was shownin Section 7.5.D, within the context of a specific model, that the di-
electric constant is given at high frequencies by (7.59). The form of (7.59) is, in
fact, quite general, as shown above(Section 7.10.C). The plasma frequency can
therefore be defined by meansof (7.59) as

w, = lim{w*[1 — €(w)/e]}

Provided the falloff of Im €(w) at high frequencies is given by (7.114),the first
Kramers—Kronig relation yields a sum rule for a;:

P

9 co

wo =— | w Im €(w)/é) dw (7.122)
qT J0

This relation is sometimes knownas the sum rule for oscillator strengths. It can
be shown to be equivalent to (7.52) for the dielectric constant (7.51), but is ob-
viously more general.

The second sum rule concerns the integral over the real part of €(w)
and follows from the second relation (7.120). With the assumption that
[Re e(w')/ey — 1] = —@3/w’? + O(1/w"") for all w' > N,it is straightforward to
show that for w > N

2 N
2 Wp ! , 1Im €(@)/e) = — {- 4 I [Re €(w’)/e, — 1] dw | + (5)

It was shown in Section 7.10.C that, excluding conductors and barring the un-

physical happening that G(0*) # 0, Im €(w) behavesat large frequencies as w°.
It therefore follows that the expression in curly brackets must vanish. We are
thus led to a second sum rule,

2
1” Ws,
N I Re €(w)/ép5 dw = 1 + nN? (7.123)

which, for N— ~, states that the average value of Re €(w)/€, overall frequencies
is equal to unity. For conductors, the plasma frequency sum rule (7.122) still
holds, but the second sum rule (sometimes called a superconvergence relation)
has an added term —7ra/2€)N,on the right hand side (see Problem 7.23). These
optical sum rules and several others are discussed by Altarelli et al.*

7.11 Arrival of a Signal After Propagation Through
a Dispersive Medium

Someof the effects of dispersion have been considered in the precedingsections.
There remains one important aspect, the actual arrival at a remote point of a

*M. Altarelli, D. L. Dexter, H. M. Nussenzveig, and D. Y. Smith, Phys. Rev. B6, 4502 (1972).
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wavetrain thatinitially has a well-defined beginning. How doesthe signal build

up? If the phase velocity or group velocity is greater than the velocity of light in
vacuum for important frequency components, does the signal propagate faster

than allowed by causality and relativity? Can the arrival time of the disturbance

be given an unambiguousdefinition? These questions were examined authori-

tatively by Sommerfeld and Brillouin in papers published in Annalen der Physik
in 1914.* The original papers, plus subsequent workby Brillouin, are contained

in English translation in the book, Wave Propagation and Group Velocity, by

Brillouin. A briefer accountis given in Sommerfeld’s Optics, Chapter HI. A com-

plete discussion is lengthy and technically complicated.’ Wetreat only the qual-

itative features. The reader can obtain more detail in the cited literature or the

second edition of this book, from which the present accountis abbreviated.

For definiteness we consider a plane wave train normally incident from vac-
uum on a semi-infinite uniform medium of index of refraction n(@)filling the

region x > 0. From the Fresnel equations (7.42) and Problem 7.20, the amplitude
of the electric field of the wave for x > 0 is given by

—_ ° 2 ik(w)x—iwtu(x, t) = i ; ; lature dw (7.124)

where

1 f[~ .
A(w) = — | u;(0, t)e’*’ dt (7.125)

277 J—«

is the Fourier transform of the real incident electric field u,(x, t) evaluatedjust
outside the medium, at x = 0~. The wave numberk(a)is

k(w) = ~ n(0) (7.126)

and is generally complex, with positive imaginary part corresponding to absorp-

tion of energy during propagation. Many media are sufficiently transparentthat

the wave numbercan betreated as real for most purposes, but there is always

some dampingpresent. [Parenthetically we observe that in (7.124) frequency,not

wave number,is used as the independent variable. The change from the practice

of Sections 7.8 and 7.9 is dictated by the present emphasis on the time develop-

ment of the wave at a fixed point in space.|
We supposethat the incident wave hasa well-defined front edge that reaches

x = 0 not before t = 0. Thus u(0, t) = 0 for t < 0. With additional physically

reasonable mathematical requirements,this condition on u(0, ft) assures that A(@)

is analytic in the upper half-w-plane [just as condition (7.112) assured the anal-

yticity of e(w) there]. Generally, A(w) will have singularities in the lowerhalf-w-

plane determinedby the exact form of u(x, t). We assume that A(@)is bounded

for |a| > ©,
The index of refraction n(w) is crucial in determining the detailed nature of

the propagation of the wave in the medium. Some generalfeatures follow, how-

*A Sommerfeld, Ann. Phys (Leipzig) 44, 177 (1914). L. Brillouin, Ann. Phys. (Leipzig) 44, 203 (1914).

*An exhaustive treatment is given in K. E. Oughstun and G. C. Sherman, Electromagnetic Pulse

Propagation in Causal Dielectrics, Springer-Verlag, Berlin (1994).
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ever, from the global properties of n(w). Just as e(w) is analytic in the upperhalf-
w-plane, so is n(w). Furthermore, (7.59) shows that for |w| > », n(w) —
1 — w3/2@*. A simple one-resonance model of n(w) based on (7.51), with resonant
frequency w, and damping constant y, leads to the singularity structure shown in
Fig. 7.16. The poles of e(w) become branchcuts in n(w). A multiresonance ex-
pression for € leads to a much more complexcut structure, but the upper plane
analyticity and the asymptotic behavior for large | | remain.

The proof that no signal can propagate faster than the speed of light in

vacuum, whateverthe detailed properties of the medium,is now straightforward.
Weconsiderevaluating the amplitude (7.124) by contourintegration in the com-
plex w plane. Since n(w) — 1 for |w| — %, the argument of the exponential in
(7.124) becomes

id(w) = i[k(w)x — wt] >ed

for large |w|. Evidently, we obtain a vanishing contribution to the integral by
closing the contour with a great semicircle at infinity in the upper half-plane for

x > ct and in the lowerhalf-plane for x < ct. With n(w) and A(w) both analytic
in the upper half-w-plane, the whole integrandis analytic there. Cauchy’s theo-
rem tells us that if the contour is closed in the upper half-plane (x > ct), the

integral vanishes. We have therefore established that

u(x, t) = 0 for (x — ct) > 0 (7.127)

provided only that A(w) and n(w) are analytic for Im w > 0 and n(@) — 1 for
|w| > «©. Since the specific form of n(w) does not enter, we have a general proof
that no signal propagates with a velocity greater than c, whatever the medium.

For ct > x, the contour is to be closed in the lower half-plane, enveloping
the singularities. The integral is dominated by different singularities at different
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Figure 7.16 Branch cuts defining the singularities of a simple one-resonance modelfor
the index of refraction n(w). For transparent media the branch cuts lie much closer to
(but still below) the real axis than shown here. Morerealistic models for n(w) have
more complicated cut structures,all in the lower half-w-plane. The crosses mark the

possible locations of singularities of A(w).
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times. Brillouin and Sommerfeld used the method of steepest descent* to eval.
uate (7.124) in various regimes. Wesketch the chief aspects using the concepts
of the less rigorous methodofstationary phase. The methodofstationary phase
is based on the idea that the phase #(@)in an integral such as (7.124)is generally
large and rapidly varying. The rapid oscillations of e’* over most of the range of
integration meanthat the integrand averages almost to zero. Exceptionsto the
cancellation occur only when ¢(w) is “‘stationary,” that is, when ¢(w) has an
extremum. The integral can therefore be estimated by approximatingthe integra]

at each of the points of stationary phase by a Taylor series expansion of f(a)
and summing these contributions.

We use the idea of stationary phase to discuss the qualitative aspects of
the arrival of the signal without explicit use of the integration formulas. With
d(w) = k(w)x — wt and k(@) given by (7.126), the stationary phase condition
dd/dw = 0 becomes

dk d
ca n(w) + @ 7 = 7 for t > to = x/c (7.128)

The earliest part of the wave occurs whenf/f is infinitesimally larger than unity.
From the global properties of n(w) we see that the point of stationary phaseis
at |w| — %, where n — 1. Explicitly, we have

dk Wt
(tota for t = fo

showing that the frequency of stationary phase w, ~ w,/V2(t/tp — 1) depends
only on ¢/t) and w;, a global property of the index of refraction. The incident
wave’s A(w,) is presumably very small. The earliest part of the signal is therefore
extremely small and of very high frequency, bearing no resemblanceto thein-

cident wave. This part of the signalis called the first or Sommerfeld precursor.
At somewhat later times, the frequency w, slowly decreases; the signal grows
very slowly in amplitude, andits structure is complex.

Only when t/t) in (7.128) reaches n(0) is there a qualitative change in the
amplitude. Because w = 0 is now a pointof stationary phase, the high frequency
of oscillation is replaced by much lower frequencies. More importantis the fact
that d*k(w)/dw = 0 at w = 0. In such circumstances the stationary phase
approximation fails, giving an infinite result. One must improve the approxi-
mation to include cubic terms in the Taylor series expansion of ¢(w) around
w = w,. The amplitude is expressible in terms of Airy integrals (of rainbow
fame). The wave becomesrelatively large in amplitude and of long period for
times t = n(O)t). This phase of developmentis called the second or Brillouin

precursor.

Atstill later times, there are several points of stationary phase. The wave
depends in detail on the exact form of n(w). Eventually, the behavior of A()
begins to dominate the integral. By then the main part of the wave has arrived
at the point x. The amplitude behavesin timeasif it were the initial wave prop-
agating with the appropriate phase velocity and attenuation.

The sequence ofarrival of the tiny, high-frequency Sommerfeld precursor,
the larger and sloweroscillating Brillouin precursor, and then the mainsignal,

*See Jeffreys and Jeffreys (Section 17.04) or Born and Wolf (Appendix III) for a discussion ofthis
method,originally developed by P. Debye.
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and indeed their detailed appearance, can differ greatly depending upon the

specifics of n(@), A(w), and the position x of observation. A textbook example
can be found in Oughstun and Sherman (op.cit., Fig. 9.10, p. 383).
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7.2

 

F. Stern, in Solid State Physics, Vol. 15, eds. F. Seitz and D. Turnbull, Academic
Press, New York (1963), pp. 299-408.

For each set of Stokes parameters given below deduce the amplitude ofthe electric
field, up to an overall phase, in both linear polarization andcircular polarization
bases and makean accurate drawing similar to Fig. 7.4 showing the lengths ofthe
axes of one ofthe ellipses andits orientation.

(a) 89 = 3, 5s, = I, Sz = 2, 83 = —2;

(b) so = 25, s, = 0, Sy = 24, 83 = 7.

A plane waveis incident on a layered interface as shownin thefigure. Theindices
of refraction of the three nonpermeable media are n,, no, 3. The thickness of the
intermediate layer is d. Each of the other mediais semi-infinite.

(a) Calculate the transmission and reflection coefficients (ratios of transmitted
and reflected Poynting’s flux to the incident flux), and sketch their behavior
as a function of frequency for n,; = 1, n. = 2, n; = 3; n, = 3, m = 2, n3 = 1;

and n, = 2,n. = 4,n3 = 1.

Problem 7.2

(b) The medium n, is part of an optical system (e.g., a lens); medium nz is aif

(nz = 1). It is desired to put an optical coating (medium n,) on the surface so
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that there is no reflected wave for a frequency w». What thickness d and index

of refraction nz are necessary?

Twoplane semi-infinite slabs of the same uniform, isotropic, nonpermeable,lossless
dielectric with index of refraction n are parallel and separated by anair gap (n = 1)
of width d. A plane electromagnetic wave of frequency w is incident on the gap
from one of the slabs with angle of incidence7. For linear polarization both parallel

to and perpendicular to the plane of incidence,

(a) calculate the ratio of power transmitted into the secondslab to the incident

powerandtheratio of reflected to incident power;

(b) fori greater than the critical angle for total internal reflection, sketch the ratio
of transmitted power to incident poweras a function of d measured in units
of wavelength in the gap.

A plane-polarized electromagnetic wave of frequency w in free space is incident
normally on the flat surface of a nonpermeable medium of conductivity o and di-
electric constante.

(a) Calculate the amplitude and phase of the reflected waverelative to the inci-
dent wave for arbitrary o and e«.

(b) Discuss the limiting cases of a very poor and a very good conductor, and show
that for a good conductorthe reflection coefficient (ratio of reflected to inci-
dentintensity) is approximately

R~1-2°%8
Cc

where 61s the skin depth.

A plane polarized electromagnetic wave E = E,e“*"“”is incident normally on a
flat uniform sheet of an excellent conductor (0 >> we) having a thickness D. As-
suming that in space and in the conducting sheet p/p = €/eo = 1, discuss the

reflection and transmission of the incident wave.

(a) Show that the amplitudes of the reflected and transmitted waves, correct to

the first order in (€9@/o)"”, are:

. —(1 — e*)

E, (l-e») +701 +e”)

Oy  

 

Ey 2ye*

E; (Q-e*)+ yi +e”)

where

ZEW wd— [60% , _ 7 OP _ |wea-)=Sa-5
A= (1 -a)D/6

and 6 = V2/q@o is the penetration depth.

(b) Verify that for zero thickness and infinite thickness you obtain the proper

limiting results.

(c) Show that, except for sheets of very small thickness, the transmission coeffi-

cient is

8(Re y)re20

1 — 2e°-??” cos(2D/8) + e-4?
 T=

Sketch log T as a function of (D/8), assuming Re y = 107’.
Define “‘very small thickness.”’
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7.6

7.7

7.8

A plane waveof frequency is incident normally from vacuum on a semi-infinite
slab of material with a complex index of refraction n(w) [n?(w) = €(w)/€o].

(a) Show that the ratio of reflected powerto incident poweris

2

1 — n(o)

© TS no)

  

while the ratio of power transmitted into the medium to the incident Power
is

_ 4 Re n(@)

1 + n(w)?

(b) Evaluate Re[i#(E -D* — B-H*)/2] as a function of (x, y, z). Show thatthis
rate of change of energy per unit volume accounts fortherelative transmitted
powerT.

(c) For a conductor, with n* = 1 + i(o/we,), o real, write out the results of Parts
a and b in the limit e0 <<a. Express your answerin terms of 6 as much as
possible. Calculate ; Re(J* - E) and comparewith the result of part b. Do both
enter the complex form of Poynting’s theorem?

A ribbon beam of plane-polarized radiation of wavelength A is totally reflected
internally at a plane boundary between two nonpermeable media with indices of
refraction n and n’ (n' <n). As discussed in Section 7.4, the ratio of the reflected
to incident amplitudesis a complex numberof modulus unity, E"/E) = expliP(i,ip)]
for the angle of incidence i > ip, where sin iy = n'/n.

(a) Show that for a “monochromatic” ribbon beam ofradiation in the z direction
with an electric field amplitude, E(x)e“**~”, where E(x) is smooth andfinite
in transverse extent (but many wavelengths broad), the lowest order approx-
imation in terms of plane wavesis

E(x, x» t) —e€E | dk A(k)e*Tiketot

where e€ is a polarization vector, and A(x) is the Fourier transform of E(x),
with support in x around « = 0 small comparedto k. The finite beam consists
of plane waves with a small range of angles of incidence, centered around the
geometrical optics value.

(b) Consider the reflected beam and show thatfor i > iy the electric field can be
expressed approximately as

E(x, z, t) = €"E(x" — dx) exp[ik” - x — iwt + id(i, ip)]

where e”is a polarization vector, x” is the x coordinate perpendicularto k”,
the reflected wave vector, and 6x = —(1/k)[dd(i,ip)/di].

(c) With the Fresnel expressionsof Section 7.3 for the phases (i, ig) for the two
states of plane polarization, show that the lateral displacements of reflected
beams with respect to the geometric optics position are

r sin i sino
D,.=--— — and D, = D, -

* a (sin?i — sin?ip)"? *
 

 

[sin*i — cos’i - sin*io]

The displacementis known as the Goos—Hancheneffect (op.cit.).

A monochromatic plane wave of frequency w is incident normally on a stack of
layers of various thicknesses t; and lossless indices of refraction n;. Inside the stack,
the wave has both forward and backward moving components. The changein the
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wave through any interface and also from oneside of a layer to the other can be
described by means of 2 X 2 transfer matrices. If the electric field is written as

E = E,e* + E_e™

in each layer, the transfer matrix equation E’ = TEis explicitly

(i) _ (*" ye)

(a) Showthat the transfer matrix for propagation inside, but across, a layer of

index of refraction n,; and thicknessf; is

elk L 0

0 ett
Thayer (Nj t;) = ( =I] cos(k,t;) + 103 sin(k,t;)

where k; = njw/c, I is the unit matrix, and o, are the Pauli spin matrices of

quantum mechanics. Show that the inverse matrix is 7*.

(b) Show that the transfer matrix to cross an interface from n, (x < Xo) to

Ny (x > Xo) is

:( n+1 OP) = 1EPOB
Tin erface 2, l)=-intertace(2, 1) 5 ~(n-1) n+1 2 2

where n = n/N».

(c) Show that for a complete stack, the incident, reflected, and transmitted waves

are related by

_ det(T) (4
Fetrans — Fines Even = 7 Fine

Ino oy)

 

where ¢, are the elements of 7, the product of the forward-going transfer
matrices, including from the materialfilling space on the incidentside into the
first layer and from the last layer into the medium filling the space on the

transmitted side.

A stack of optical elements consists of N layers with index of refraction n and
thickness t,, separated by air gaps (m2 = 1) of thickness t,. A monochromatic plane
waveis incident normally. With appropriate thicknesses, a modest numberoflayers
can cause almosttotal reflection of a given range of frequencies, even for normal

n values(e.g., 1.3 <n < 1.8).

(a) Show the transfer matrix for the stack is Tytack = T’ (1 cos ay — ig3 Sin a),

where a, = wt,/c, and the single air gap plus foil transfer matrix is

T = (1/4n){[(n + 1)? cos(a, + a2) — (n — 1)* cos(a, — a2)]/

+ ios[(n + 1)? sin(a, + a) + (n — 1)* sin(a, — a,)]

+ 20,(n* — 1) sin a, sin a,

— 20,(n* — 1) sin a, cos a5}

with a, = not,/c.

(b) If all the layers (both air gaps and foils) have optical thicknesses of a quarter-

wavelength of the incident wave, show that

T = —exp(—Ag,), where A = In(7)

is (roughly) the amplitude ‘“‘decay constant” per layer. Show thatthefractional

transmitted intensity is

| Evans |” 4n™VE, = sech’[N In(n)] =+— 4 exp[—N In(n’)]

The asymptotic form holds for n*Y >> 1.
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7.10 An arbitrary optical element of length L is placed in a uniform nonabsorbin me.

7.11

7.12

dium with index of refraction n(w) with its front face at x = 0 and its back face at
x = L. If a monochromatic plane wave of frequency w with amplitude Vine(@, x, t
= exp[ik(w)x — iwt] is incident on the front face of the element, the transmitteg
wave amplitudeis Urans(@, x, t) = T(w) exp[ik(w)(x — L) — iwt], where the relative
transmission amplitude T(w) = 7(w) exp[i@(w)] is a complex quantity of Magnitude
T(w) and phase ¢(o).

A plane waveof radiation y,,.(x, t), consisting of a coherent SUPErposition of
different frequencies centered around w = @, With support A(w) narrow on the
scale of variation of r(w), ¢(w) and k(w), is incident on the optical element. Show
that the transmitted wave for x > L is approximately

Wirans(X, t) ~ T(a)ePWine(X’, t’)

where B is a constant phase and x’ = x — L, t! = t — T. Thetransit or group
delay time (sometimes attributed in another context to E. P. Wigner) is T =
[dd(@)/do],,-..,. If cT < L, some authors speak of superluminal propagation
through the element. Discuss.

A simple example of the transit time of the preceding problem is afforded by

a

slab
of lossless dielectric of thickness d and index ofrefraction n in vacuum.

(a) For a plane wave incident normally, show that the magnitude of the trans-
mitted amplitudeis

4n

(n + 1)° — (n — 1) cos(2z)P + [(n — 1) sin(2z)P.
 
 ol =F

while its phase is

 

(n — 1)? sin(2z)
Pla) =z + arctan]= + 1)* — (n — 1) cos(2z)

where z = nwd/c.

(b) Neglecting dispersion, show that for z > 0 and z = 7, |z7| = 1.0 and cT/d =
(n* + 1)/2, while for z = a/2 (quarter-wave plate), |7| = 2n/(n? + 1) and
cT/d = 2n’l(n’ + 1). Show also that cT/d, averaged over any integer number
of quarter-wavelength optical paths, is (cT/d) = n. Doesthis resulttell you
anything about what you might expect for the observedtransit time of a long
wave train (Aw/w << 1) through a piece of window glass? Explain.

(c) Calculate numerically and plot the results as functions of z for the magnitude
of the transmission amplitude, its phase, and the transit time in units of d/c
forn = 1.5 andn = 2.0.

The time dependenceofelectrical disturbancesin good conductors is governed by
the frequency-dependent conductivity (7.58). Consider longitudinal electric fields
in a conductor, using Ohm’slaw, the continuity equation, and the differential form
of Coulomb’slaw.

(a) Show that the time-Fourier-transformed charge density satisfies the equation

[o(@) — iwes|(x, w) = 0
(b) Using the representation o(w) = go/(1 — iw), where dp = €)w,7 and 7 is a

dampingtime, showthatin the approximation w,T >> 1 anyinitial disturbance
will oscillate with the plasma frequency and decay in amplitude with a decay
constant A = 1/27. Note that if you use o(w) ~ o(0) = op in parta, you will
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find no oscillations and extremely rapid damping with the (wrong) decay con-

stant A, = do/€>.

Reference: W. M.Saslow and G. Wilkinson, Am. J. Phys. 39, 1244 (1971).

A stylized model of the ionosphere is a medium described by the dielectric constant

(7.59). Consider the earth with such a medium beginning suddenly at a height h

and extending to infinity. For waves with polarization both perpendicular to the

plane of incidence (from a horizontal antenna) and in the plane of incidence (from

a vertical antenna),

(a) show from Fresnel’s equations for reflection and refraction that for w > o,

there is a range of angles of incidence for which reflection is nottotal, but for

larger angles thereis total reflection back toward the earth.

(b) A radio amateur operating at a wavelength of 21 meters in the early evening

finds that she can receive distant stations located more than 1000 km away,

but none closer. Assumingthat the signals are being reflected from the F layer

of the ionosphere at an effective height of 300 km,calculate the electron

density. Compare with the known maximum and minimum

F

layer densities

of ~ 2 X 102 m~3 in the daytime and ~ (2-4) X 10'' m© at night.

A simple model of propagation of radio waves in the earth’s atmosphere or iono-

sphere consists ofa flat earth at z = 0 and a nonuniform medium with € = e(z) for

z > 0. Consider the Maxwell equations under the assumption that the fields are

independentof y and can be written as functions of z times e““*~”.

(a) Show that the wave equation governing the propagation for z > 0 is

2dF—— + @(z)F = 0

where

Q(z) = @boe(z) — k*

and F = E, for horizontal polarization, and
2

1 d’e 3 (de
*(z) = w +——~-->(—] -k

q (Zz) w Mo€(Z) Ie dz Ae (<<)

with F = V e/e, E, for vertical polarization.

(b) Use the WKB approximationto treat the propagation of waves directed ver-

tically into the ionosphere (k = 0), assuming that the dielectric constant is

given by (7.59) with a plasma frequency w,(z) governed by an electron density

like that shown in Fig. 7.11. Verify that the qualitative arguments in Section

7.6 hold, with departures in detail only for @ ~ @,max

(c) Using the WKBresults of part b and the concepts of the propagation of a

pulse from Section 7.8, define an effective height of the ionosphere h'(w) by

calculating the time 7 for a pulse of dominant frequency

w

to travel up and

be reflected back (h’ = cT/2). [The WKB approximationis discussed in most

books on quantum mechanics.]

The partially ionized interstellar medium (mostly hydrogen) responds to optical

frequencies as an electronic plasma in a weak magnetic field. The broad-spectrum

pulses from a pulsar allow determination of some average properties of the inter-

stellar medium (e.g., mean electron density and mean magneticfield). The treat-

ment of an electronic plasma in a magnetic field of Section 7.6 is pertinent.
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7.16

7.17

(a) Ignoring the weak magnetic field and assuming that max(w,) << w, show that
c timesthe transit time of a pulse of mean frequency w from a pulsar a distance
R awayis

e° |~ R +—— dct(w) Jemau nz) dz

where n,(z) is the electron density along the path ofthe light.

(b) The presence of the magnetic field causes a rotation of the plane of linea,
polarization (Faraday effect). Show that to lowest order in the magnetic field,
the polarized light from the pulsar has its polarization rotated through an angle
d0( a):

3

50(w) = — | n(z)Bi(z) dz
2egcmea

where B)(z) is the componentof B parallel to the path of the light.

(c) Assuming you had an independent measureof the pulsar distance R, what
observations would you make in orderto infer (n,) and (B))? What assump-

tions, if any, about the polarization are necessary?

Plane waves propagate in a homogeneous, nonpermeable, but anisotropic dielectric.
The dielectric is characterized by a tensor €,, but if coordinate axes are chosen as
the principle axes, the components of displacement along these axesarerelated to
the electric-field components by D; = ¢,F; (i = 1, 2, 3), where e, are the eigenvalues
of the matrix €;,.

(a) Show that plane waves with frequency w and wave vector k mustsatisfy

k X (k X E) + pow’D = 0

(b) Show that for a given wave vector k = kn there are two distinct modesof
propagation with different phase velocities v = w/k that satisfy the Fresnel
equation

 y=0
i=1 vy — U;

where v,; = 1/V poe; is called a principal velocity, and n; is the componentof

n alongtheith principal axis.

(c) Show that D,-D, = 0, where D,, D, are the displacements associated with

the two modesof propagation.

Consider the problem of dispersion and waves in an electronic plasma when a
uniform external magnetic induction Bo is present, as in Section 7.6.

(a) Show that in general the susceptibility tensor y,,(w) defined through D, =
DEEK, and €jk = €o( 6x + Nix)» 1S

Ww

P 2 2 .
[w Ox — wbj;b, _ LWWp&x10|

Ark (wr — wp)

where b is a unit vectorin the direction of Bo.

(b) Bystraightforward diagonalization of the dielectric tensor €,, or by an airtight

argument based on the approach andresults of Section 7.6, find the eigenval-
ues €,,7 = 1, 2, 3.
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(c) A plane wave (w, k = kn) mustsatisfy the vector equation of Problem 7.16a.
Show that in termsof x;, the electric field and wave number mustsatisfy the
three homogeneous equations,

(1 -— E, + &(n-E) + > XeExn = 90, jf =1,2,3

where é = (ck/w)*. Keeping only first-order terms in an expansion of yj in
powers of w,/w, show that the effective dielectric constant for propagation of
the plane wave is

2 2@, @,o;b-n
€../€ ~ 1 +
= 2 3

@ @

for positive and negative helicity waves.

Magnetohydrodynamic waves can occur in a compressible, nonviscous, perfectly
conducting fluid in a uniform static magnetic induction Bp. If the propagation di-
rection is not parallel or perpendicular to Bo, the waves are not separated into
purely longitudinal (magnetosonic) or transverse (Alfvén) waves. Let the angle
between the propagation direction k and thefield By be 6.

(a) Show that there are three different waves with phase velocities given by

uy = (v4 cos 6)*

ui, = Hs? + v4) + Als? + v4)? — 4s7v4 cos?o}!?

where s is the sound velocity in the fluid, and v, = (Bi/upo)'” is the Alfvén
velocity.

(b) Find the velocity eigenvectors for the three different waves, and prove that
the first (Alfvén) wave is always transverse, while the other two are neither
longitudinal nor transverse.

(c) Evaluate the phase velocities and eigenvectors of the mixed wavesin the ap-
proximation that v, >> s. Show that for one wave the only appreciable com-
ponentof velocity is parallel to the magnetic field, while for the other the only
componentis perpendicularto the field and in the plane containing k and Bp.

An approximately monochromatic plane wave packet in one dimension has the

instantaneous form, u(x, 0) = f(x) e°*, with f(x) the modulation envelope. For
each of the forms f(x) below, calculate the wave-numberspectrum | A(k)|? of the
packet, sketch |u(x, 0)|* and | A(k)|’, evaluate explicitly the rms deviations from the
means Ax and Ak (defined in terms of the intensities |u(x, 0)|* and |A(k)|*), and
test inequality (7.82).

(a) f(x) _ Ne~@lz\/2

(b) f(x) — Ne~&*"/4

_ JNA -al|x|)  fora|x|<1
() fe) = {0 for a |x| > 1

N for |x| <a
(d) f(x) = {0 for |x| >a

A homogeneous,isotropic, nonpermeable dielectric is characterized by an index of
refraction n(w), which is in general complex in order to describe absorptive
processes.
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7.21

7.22

7.23

7.24

(a) Show that the general solution for plane waves in one dimension can be

written

1 [*
u(x, t) = Via [. dw eTA(weoron) + B(a@)e™On]

where u(x, ft) is a componentof E or B.

(b) If u(x,t) is real, show that n(—@) = n*(o).

(c) Show that, if u(0, t) and du(0, t)/ax are the boundaryvaluesofu andits deriy-

ative at x = 0, the coefficients A(w) and B(w) are

A(w) icot{aco} - sal. dt e wo t) + ommio no|

Consider the nonlocal (in time) connection between D and E,

D(x, t) = ofBO t) + | drt G(r)E(x, t — a}

with the G(r) appropriate for the single-resonance model,

€E(w)/Ey = 1 + f(a — w — iyo)!

(a) Convert the nonlocal connection between D and into an instantaneousre-
lation involving derivatives of E with respect to time by expandingtheelectric
field in the integral in a Taylor series in 7. Evaluate the integrals over G(r)
explicitly up to at least 4°E/a?’.

(b) Show thatthe series obtained in part a can be obtained formally by converting

the frequency-representation relation, D(x, w) = €(w)E(x, w) into a space-
time relation,

D(x, t) = i:E(x t)

wherethe variable w in e(w) is replaced by w — i(0/dt).

Use the Kramers—Kronig relation (7.120) to calculate the real part of e(w), given
the imaginary part of e(w) for positive w as

(a) Im €/ey = A[O(w — w,) — O(w — @)], WwW > w, > 0

Ayw

(wp — w) + Yo

In each case sketch the behavior of Im e(w) and the result for Re e(w) as
functions of w. Commentonthe reasonsfor similarities or differences of your
results as compared with the curvesin Fig. 7.8. The step function is 6(x) = 0,
x <Qand 6(x) = 1,x > 0.

Discuss the extension of the Kramers—Kronig relations (7.120) for a medium with
a Static electrical conductivity o. Show that the first equation in (7.120) is unchanged,
but that the second is changed into

O 20 5 [ [Re E(w’) Zz Eo dw

0Im e(o) = 7 qT w'* — w

 (b) Im ee, =

[Hint: Consider €(w) — io/w as analytic for Im w = 0.]

(a) Use the relation (7.113) and the analyticity of €(w)/e€) for Im w = 0 to prove
that onthe positive imaginary axis €(w)/€, is real and monotonically decreasing



7.25

7.26

Ch.7 Problems 349

away from the origin toward unity as w — ioo, provided Im € = 0 forreal
positive frequencies. Assume that (7.114) holds for real o.

(b) With the assumption that Im e¢ vanishesfor finite real w only at w = 0, show
that e(w) has no zeros in the upperhalf-w-plane.

(c) Write down a Kramers—Kronig relation for €)/e(w) and deduce a sum rule

similar to (7.122), but as an integral over Im[e€o/e()].

(d) With the one-resonance model (7.107) for e(w) determine Im e(w) and
Im[1/e(w)] and verify explicitly that the sum rules (7.122) and part c are

satisfied.

Equation (7.67) is an expression for the square of the index of refraction for waves
propagating alongfield lines through a plasmain a uniform external magneticfield.
Using this as a model for propagation in the magnetosphere, consider the arrival
of a whistler signal (actually the Brillouin precursor and subsequently of Section

7.11).

(a) Make a reasonably careful sketch of cdk/dw, where k = wn(w)/c, for
the positive helicity wave, assuming w,/wg, = 1. Indicate the interval where
c dk/dw is imaginary, but do nottry to sketch it there!

(b) Show that on the interval, 0 < w < wg, the minimum of c dk/dw occurs at

w/w, ~ 4, provided w,/@, = 1. Find approximate expressions for c dk/dw for

w near zero and for w near wz.

(c) By meansof the methodof stationary phase and the general structure of the
solution to Problem 7.20a, show that the arrival of a whistler is signaled by a
rising and falling frequency as a function of time, the falling frequency com-

ponent being the source of the name.

(d) (Optional) Consider the form of the signal in the Brillouin precursor. Show
that it consists of a modulated waveform of frequency wo = w,/4 whose en-

velope is the Airy integral. This then evolves into a signal beating with the

two frequencies of partc.

A charged particle (charge Ze) moves at constant velocity v through a medium
described by a dielectric function €(q, w)/€, or, equivalently, by a conductivity func-
tion o(q, w) = iwle) — €(q, w)]. It is desired to calculate the energy loss per unit
time by the moving particle in terms of the dielectric function e(q, ) in the ap-
proximation that the electric field is the negative gradient of the potential and
current flow obeys Ohm’s law, J(q, #) = o(q, w)E(q, @).

(a) Show that with suitable normalization, the Fourier transform of the particle’s

charge density is

Ze
p(q, ©) = Opp le — 4°)

(b) Show that the Fourier components of the scalar potential are

p(q, ®)
q° €(q, @)

(c) Starting from dW/dt = [J - E d°x show that the energy loss per unit time can

be written as

dW Ze dq f” tml —2
7 >= —_,~ @

dt 4m q Jo . €(q, @)

[This shows that Im[e(q, w)]~‘ is related to energy loss and provides, by study-
ing characteristic energy losses in thin foils, information on €(q, @) for solids.|

(q, @) =

  Jot ae
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7.27

7.28

7.29

The angular momentum ofa distribution of electromagnetic fields in vacuum is
given by

L = 
1
>| dx x x (E x B)

Hoe

where the integration is overall space.

(a) Forfields produceda finite time in the past (and so localized to a finite region
of space) show that, provided the magnetic field is eliminated in favorofthe
vector potential A, the angular momentum canbe written in the form

 
1 3

L= >| Bx} Ex A+ > B(x x WA,
Moe j=1

The first term is sometimesidentified with the ‘“‘spin’” of the photon and the

second with its ‘‘orbital’’ angular momentum because of the presence ofthe
angular momentum operator L,, = —i(x x V).

(b) Consider an expansion of the vector potential in the radiation gauge in terms
of plane waves:

A(x, t) = > | ony [e(k)a,(kje™*"+ c.c.]

The polarization vectors €,(k) are conveniently chosen as the positive and
negative helicity vectors e. = (1/V2)(e€; + ies) where e, and e) are real
orthogonalvectors in the plane whose positive normalis in the direction of k.

Show that the time average of thefirst (spin) term of L can be written as

2 | d°k
Lin = — ——k k)|’ — |a_(k)nw =| Gap lla (W)P laCOP

Can the term “spin” angular momentum bejustified from this expression?

Calculate the energy of the field in terms of the plane wave expansion of A
and compare.

A circularly polarized plane wave moving in the z direction has a finite extent in
the x and y directions. Assuming that the amplitude modulation is slowly varying
(the wave is many wavelengths broad), show that the electric and magneticfields
are given approximately by

i [0Eo dE ao:
E x, ’ xs = E Xx, e + ie + ~~ — + 1 — e eikz iat(X yz.) es y)(e ies) -(2 He,

= +1V we E

where e;, €), e€; are unit vectors in the x, y, z directions.

For the circularly polarized wave of Problem 7.28 with E(x, y) a real function ofx
and y, calculate the time-averaged component of angular momentum parallel to the
direction of propagation. Show that the ratio of this component of angular mo-
mentum to the energy of the wave in vacuum is

Interpret this result in terms of quanta of radiation (photons). Show that for a
cylindrically symmetric, finite plane wave, the transverse components of angular
momentum vanish.
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7.30 Starting with the expression for the total energy of an arbitrary superposition of
plane electromagnetic waves (7.8, 7.11) in otherwise empty space, show that the
total number of photons (defined for each plane wave of wave vector k and polar-
ization € as its energy divided by fick) is given by the double integral

_ _& 3 [ae E(x, t) - E(x’, t) + c* B(x, ft) - B(x’, 2)

N les av | Ix — x’/



CHAPTER 8

Waveguides, Resonant Cavities,
and Optical Fibers

Electromagnetic fields in the presence of metallic boundaries form a practical
aspect of the subject of considerable importance. At high frequencies wherethe

wavelengths are of the order of metersor less, the only practical way of gener-
ating and transmitting electromagnetic radiation involves metallic structures with
dimensions comparable to the wavelengths involved. At much higher (infrared)

frequencies, dielectric optical fibers are exploited in the telecommunicationsin-
dustry. In this chapter we considerfirst the fields in the neighborhoodofa con-

ductor and discuss their penetration into the surface and the accompanyingre-

sistive losses. Then the problems of waves guided in hollow metal pipes and

of resonant cavities are treated from a fairly general viewpoint, with specific

illustrations included along the way. Attenuation in waveguides and Q

values of cavities are discussed from two different points of view. The earth-
ionosphere system as a novel resonant cavity is treated next. Then we discuss
multimode and single-mode propagation in optical fibers. The normal mode
expansion for an arbitrary field in a waveguide is presented and applied to the
fields generated by a localized source, with brief mention of the use of the nor-

mal mode expansion in the treatment of obstacles in waveguides by variational

methods.

8.1 Fields at the Surface of and Within a Conductor

352

In Section 5.18 the concept of skin depth and effective surface current was intro-

duced by a simple example of a planar interface between conductor and vacuum,

with a spatially uniform, time-varying magnetic field at the interface. Here we

generalize the circumstances,at least conceptually, even though the mathematics

is much the same.
First consider a surface with unit normal n directed outward from a perfect

conductor on one side into a nonconducting medium on the other side. Then,

just as in the static case, there is no electric field inside the conductors. The

charges inside a perfect conductor are assumed to be so mobile that they move

instantly in response to changesin the fields, no matter how rapid, and always

producethe correct surface-charge density = (capital > is used to avoid confusion

with the conductivity oa):

n-D=)> (8.1)
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to give zero electric field inside the perfect conductor. Similarly, for time-varying
magnetic fields, the surface charges move in responseto the tangential magnetic

field to produce always the correct surface current K:

nxH=K (8.2)

to have zero magneticfield inside the perfect conductor. The other two boundary
conditions are on normal B andtangential E:

n-(B— B,) = 0 (8.3)

n X (E —- E,) = 0

where the subscript c refers to the conductor. From these boundary conditions
we see that just outside the surface of a perfect conductor only normal E and
tangential H fields can exist, and that the fields drop abruptly to zero inside the
perfect conductor. This behavior is indicated schematically in Fig.8.1.

The fields in the neighborhood of the surface of a good, but not perfect,
conductor must behave approximately the same as for a perfect conductor. In

Section 5.18 we saw that inside a conductorthe fields are attenuated exponen-
tially in a characteristic length 6, called the skin depth. For good conductors and
moderate frequencies, 6 is a small fraction of a centimeter. Consequently, bound-
ary conditions (8.1) and (8.2) are approximately true for a good conductor,aside
from a thin transitional layer at the surface.

If we wish to examine that thin transitional region, however, care must be
taken. First of all, Ohm’s law J = cE showsthat with a finite conductivity there
cannot actually be a surface layer of current, as implied in (8.2). Instead, the
boundary condition on the magneticfield is

n x (H — H,) = 0 (8.4)

To explore the changes producedbya finite, rather than an infinite, conductivity,
we employ a successive approximation scheme.First we assumethatjust outside
the conductor there exists only a normalelectric field E, and a tangential mag-
netic field H,, as for a perfect conductor. The values of these fields are assumed
to have been obtained from the solution of an appropriate boundary-value prob-
lem. Then we use the boundary conditions and the Maxwell equations in the
conductor to find the fields within the transition layer and small corrections to
the fields outside. In solving the Maxwell equations within the conductor we
make use of the fact that the spatial variation of the fields normalto the surface

Ey

rm
b
y
—
>

A

A,
E   

 

 
§=0 é—>

(a) (b)

Figure 8.1 Fields near the surface of a perfect conductor.
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is much more rapid than the variations parallel to the surface. This meansthat
we can safely neglect all derivatives with respect to coordinates parallel to the
surface compared to the normalderivative.

If there exists a tangential H, outside the surface, boundary condition (8.4)
implies the same H, inside the surface. With the neglect of the displacement
current in the conductor, the Maxwell curl equations become

1
E.~-V x H.

o (8.5)

H. = -—-VxE,
[uc
 

where a harmonic variation e“’ has been assumed.If n is the unit normal out-

ward from the conductor and € is the normal coordinate inward into the con-

ductor, then the gradient operator can be written

0
V = -n—

0g

neglecting the other derivatives when operating on the fields within the conduc-
tor. With this approximation the Maxwell curl equations (8.5) become

1 oH,
E. = --n X —

o 0g (8.6)

H. ~ to n X dk.

[.@ 0g

These can be combined to yield

a 2i
—> (n X H.) + = (n X H,) = 0

n-H. = 0

where 6 is the skin depth defined previously:

5= (2) (8.8)
M.WO

The second equation in (8.7) shows that inside the conductor H is parallel to the
surface, consistent with our boundary conditions. The solution for H,is

H. —= Hye*e*” (8.9)

 

where Hj,is the tangential magnetic field outside the surface. From (8.6) the
electric field in the conductor is approximately

E.= [5— (1 - in x HyeMe* (8.10)
Oo

These solutions for H and E inside the conductor exhibit the properties discussed
in Section 5.18: rapid exponential decay, phase difference, and magnetic field
muchlarger than the electric field. Furthermore, they show that, for a good con-
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Figure 8.2 Fields near the surface of a good, but not perfect, conductor. For € > 0, the

dashed curves show the envelope of the dampedoscillations of H, (8.9).

ductor, the fields in the conductor are parallel to the surface* and propagate
normal to it, with magnitudes that depend only on the tangential magnetic field
H) that exists just outside the surface.

From the boundary condition on tangential E (8.3) we find that just outside

the surface there exists a small tangential electric field given by (8.10), evaluated

at € = 0:

 E, ~ 5 (1 — i)(n x H,) (8.11)

In this approximation there is also a small normal componentof B just outside
the surface. This can be obtained from Faraday’s law of induction and gives B,
of the same order of magnitude as E). The amplitudes of the fields both inside
and outside the conductorare indicated schematically in Fig. 8.2.

The existence of a small tangential component of E outside the surface, in
addition to the normal E and tangential H, meansthat there is a powerflow into
the conductor. The time-averaged power absorbed per unit area is

dPrioss 1 [-@O 

*From the continuity of the tangential component of H and the equation connecting E to V x Hon

either side of the surface, one can show that there exists in the conductor a small normal component
of electric field, E.-n = (iwe/o)E,, but this is of the next order in small quantities compared with
(8.10). Note that our discussion here presupposesa tangential componentof H.In situations in which
the lowest order approximationis essentially electrostatic, the present treatmentis inapplicable. Dif-

ferent approximations must be employed. See T. H. Boyer, Phys. Rev. A9, 68 (1974).



356 Chapter 8 Waveguides, Resonant Cavities, and Optical Fibers—SI

This result can be given a simple interpretation as ohmiclosses in the body of
the conductor. According to Ohm’slaw,there exists a current density J near the
surface of the conductor:

1 |
J = cE, = 5 (1 — i)(n x HyeFP (8.13)

The time-averagedrate of dissipation of energy per unit volume in ohmiclosses
is 5J + E* = (1/20) |J/’, as written in (5.169). Theintegral of (5.169) in z leads
directly to (8.12).

The current density J is confined to such a small thickness just below the
surface of the conductorthatit is equivalent to an effective surface current K.--:

Kar = I J dé =n x H, (8.14)

Comparison with (8.2) shows that a good conductor behaveseffectively like a
perfect conductor, with the idealized surface current replaced by an equivalent

surface current, which is actually distributed throughout a very small, butfinite,
thickness at the surface. The powerloss can be written in terms of the effective
surface current:

dP 1
— =5 [Ker (8.15)

This shows that 1/06 plays the role of a surface resistance of the conductor.*
Equation (8.15), with K.given by (8.14), or (8.12) will allow us to calculate
approximately the resistive losses for practical cavities, transmission lines, and
waveguides, provided we havesolved for the fields in the idealized problem of
infinite conductivity.

8.2 Cylindrical Cavities and Waveguides

A practical situation of great importanceis the propagation or excitation of elec-
tromagnetic waves in hollow metallic cylinders. If the cylinder has end surfaces,
it is called a cavity; otherwise, a waveguide. In our discussion of this problem the
boundary surfaces are assumedto be perfect conductors. The losses occurring in

practice can be accounted for adequately by the methodsof Section 8.1. A cylin-
drical surface S of general cross-sectional contour is shown in Fig. 8.3. For sim-

plicity, the cross-sectional size and shape are assumedconstantalongthe cylinder
axis. With a sinusoidal time dependence e~‘” for the fields inside the cylinder,
the Maxwell equations take the form

V XxX E = ioB V-B=0
(8.16)

V X B= —ipewE V-E=0

*The coefficient of proportionality linking E, and Ket is called the surface impedance Z,. For a good
conductor (8.11) yields Z, = (1 — i)/a6, but the concept of surface impedance obviously has wider
applicability.
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Figure 8.3. Hollow,cylindrical waveguide of arbitrary cross-sectional shape.

whereit is assumed that the cylinderis filled with a uniform nondissipative me-
dium having permittivity « and permeability w. It follows that both E and B satisfy

(V + pew")y ep = 0 (8.17)

Becauseof the cylindrical geometry it is useful to single out the spatial vari-
ation of the fields in the z direction and to assume

E(x, y, Zz, t) _ E(x, yenketo

B(x, y, Z, t) ~~ B(x, yenketor

Appropriate linear combinations can be formed to give traveling or standing
wavesin the z direction. The wave numberk is, at present, an unknown param-
eter that may be real or complex. With this assumed z dependenceofthefields
the wave equation reduces to the two-dimensional form

(8.18)

[V? + (ew? —np = 0 (8.19)

where V? is the transverse part of the Laplacian operator:

Q
2 —V=WV- 522 (8.20)

It is useful to separate the fields into components parallel to and transverse

to the Z axis:

E=E,+ E, (8.21)

where

E, = 2E, (8.22)
E, = (zx E) xz

and z is a unit vector in the z direction. Similar definitions hold for the magnetic
field B. The Maxwell equations (8.16) can be written out in terms of transverse

and parallel components as

  

dE
+iwi xX B= VE, 2+ (V, X E) = ioB, (8.23)
&

OB, . A A °

a — LEW x E, = V,B,, Z° (V, x B,) = —ipewk, (8.24)

OF 0B
V,-E, = -— VB, = -— 8.25t t OZ ’ t t az ( )

It is evident from the first equations in (8.23) and (8.24) that if £, and B, are
known the transverse components of E and B are determined, assuming the z
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dependenceis given by (8.18). Explicitly, assuming propagation in the positive 7
direction and the nonvanishing of at least one of F, and B,, the transversefields

are

i n

Bes—[AV,E, — wt X V,B,] (8.26a)

and

lB, = ——-———
‘(ew — k’)

[kV,B, + pew 2 X V,E-] (8.26b)

For wavesin the opposite direction, change the sign ofk.
Before considering the kindsof field that can exist inside a hollow cylinder,

we take note of a degenerate or special type of solution, called the transverse
electromagnetic (TEM) wave. This solution has only field componentstransverse
to the direction of propagation. From the second equation in (8.23) and thefirst
in (8.25) it is seen that E, = 0 and B, = 0 imply that E, = Eypy, satisfies

V, X Ervem = 0, V,- Erem = 0

This meansthat Eysy is a solution of an electrostatic problem in two dimensions.

There are three main consequences. Thefirst is that the axial wave numberis
given by the infinite-medium value,

k= ky = wV pe (8.27)

as can be seen from (8.19). The second consequenceis that the magnetic field,

deduced from the first equation in (8.24), is

Brem = + V Me Z x E+em (8.28)

for waves propagating as e~"*. The connection between Brgy, and Eygy is just

the same as for plane wavesin an infinite medium. The final consequenceis that
the TEM mode cannot exist inside a single, hollow, cylindrical conductorofin-
finite conductivity. The surface is an equipotential; the electric field therefore
vanishesinside. It is necessary to have two or morecylindrical surfaces to support
the TEM mode. The familiar coaxial cable and the parallel-wire transmissionline
are structures for which this is the dominant mode. (See Problems8.1 and 8.2.)
An important property of the TEM modeis the absence of a cutoff frequency.

The wave number(8.27) is real for all w. This is not true for the modes occurring
in hollow cylinders (see below).

In hollow cylinders (and on transmission lines at high frequencies) there
occur two typesof field configuration. Their existence can be seen from consid-

ering the wave equations (8.19) satisfied by the longitudinal components, F, and

B,, and the boundary conditions to besatisfied. Provided the fields are time-
varying, perfect conductivity assures that both E (and D) and B (and H)vanish
within the conductor. (For the latter, the skin depth is vanishingly small.) The
presence of surface charges and currents at the interface allows the existence of
a normal componentof D at the boundary, and also a tangential component of
H, but the tangential component of E and the normal component of B must be
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continuous across the boundary. Thus, for a perfectly conducting cylinder the
boundary conditions are

nx E = 0, n-B=0

wheren is a unit normalat the surface S. It is evident that the boundary condition

on E, 1s

E, Is — (8.29)

From the componentofthefirst equation in (8.24) parallel to n it can be inferred
that the corresponding boundary condition on B, is

0B. — (0) 8.30orl. (8.30)

where 0/dn is the normalderivative at a point on the surface. The two-dimensional
wave equations(8.19) for E, and B,, together with the boundary conditions(8.29)
and (8.30), specify eigenvalue problemsof the usualsort. For a given frequency
w, only certain values of wave numberk can occur (typical waveguidesituation),
or, for a given k, only certain w values are allowed (typical resonant cavity situ-
ation). Since the boundary conditions on E,, and B, are different, the eigenvalues

will in general be different. The fields thus naturally divide themselves into two
distinct categories:

TRANSVERSE MAGNETIC (TM) WAVES

B, = 0 everywhere; boundary condition, E,|; = 0

TRANSVERSE ELECTRIC (TE) WAVES

_. OB
E,, = 0 everywhere; boundary condition, 5 =

n S

 

The designations‘electric (or E) waves” and ‘‘magnetic (or H) waves” are some-
times used instead of TM and TE waves,respectively, corresponding to a spec-
ification of the axial component of the fields. The various TM and TE waves,
plus the TEM waveif it can exist, constitute a complete set of fields to describe
an arbitrary electromagnetic disturbance in a waveguideor cavity.

8.3 Waveguides

For the propagation of wavesinside a hollow waveguide of uniform crosssection,
it is found from (8.26a, b) that the transverse magnetic andelectric fields for both
TM and TE wavesarerelated by

H, = N|
#

zx E, (8.31)

where Z is called the wave impedance and 1s given by

KLE | my
ew ky) Ve

Z = (8.32)
bo ko |p“—~=-9 |- (TE
k k fe (TE)
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where ky is given by (8.27). The plus (minus) sign in (8.31) goes with z depen-
dence, e“* (e~““). The transversefields are determined by the longitudinalfields,
according to (8.26):

TM WAVES

ik
E, = +> Vw

Y

TE WAVES

ik
H, = ~? Vw (8.33)

where we~“ is E,(H,) for TM (TE) waves* and y* is defined below. Thescalar
function yw satisfies the two-dimensional wave equation (8.19),

(Vi + yp = 0 (8,34)

where

y = pew — k? (8.35)

subject to the boundary condition,

uwl;=O0 or —| =0 (8.36)

for TM (TE) waves.
Equation (8.34) for w, together with boundary condition (8.36), specifies an

eigenvalue problem.It is easy to see that the constant y* must be nonnegative.
Roughly speaking,it is because y& must be oscillatory to satisfy boundary condi-
tion (8.36) on opposite sides of the cylinder. There will be a spectrum of eigen-
values y, and corresponding solutions y, A = 1, 2, 3,..., which form an or-

thogonalset. These different solutions are called the modes of the guide. For a

given frequency w, the wave number k is determined for each value of A:

ki = pew — yx (8.37)

If we define a cutofffrequency wy,

YA
W, = 8.38Xv we ( )

then the wave numbercan be written:

ky = VpeV ar — of (8.39)

Wenote that, for w > w,, the wave numberk),is real; waves of the A mode can

propagate in the guide. For frequenciesless than the cutoff frequency, k, is imag-

inary; such modes cannot propagate and are called cutoff modes or evanescent

modes. The behavior of the axial wave number as a function of frequency is
shown qualitatively in Fig. 8.4. We see that at any given frequency only finite
number of modes can propagate. It is often convenient to choose the dimensions

 

*We have changed from E and B to E and H as ourbasicfields to eliminate factors of « whenusing
the wave impedances. (Like ordinary impedance, wave impedance involves voltage and current and

so E and H.)
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 | [7 Figure 8.4 Wave number k, versus

0 1 Oo Ws O4 Os frequency w for various modesA. w,

o—> is the cutoff frequency.

of the guide so that at the operating frequency only the lowest mode can occur.

This is shown by the vertical arrow on thefigure.

Since the wave numberk, is alwaysless than the free-space value ew, the

wavelength in the guideis alwaysgreater than the free-space wavelength. In turn,

the phase velocity v, is larger than the infinite space value:

w 1 1 1
v,=—= >Pky Ve 1 (%) Vpe
 (8.40)

@

The phase velocity becomesinfinite exactly at cutoff.

8.4 Modes in a Rectangular Waveguide

As an importantillustration of the general features described in Section 8.3 we
consider the propagation of TE waves in a rectangular waveguide with inner

dimensions a, b, as shown in Fig. 8.5. The wave equation for & = H,is

0° 0°
(2. +. ay + *)b = 0 (8.41)

with boundary conditions dw/dn = 0 at x = 0, a and y = 0, b. The solution for w

is consequently

 
Wnn(xX, Y) = Ao cos(=) cos(22) (8.42)

where

mn
Ynn = 7(% + =) (8.43)

y

 
 Figure 8.5
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The single index A that specified the modesearlier is replaced by the twopositive
integers m,n. For there to be nontrivial solutions, m and n cannot both be zero,
The cutoff frequency w,,,,, 1s given by

a (me n2\"”
Onn — Vue (" + ") (8.44)

If a > b, the lowest cutoff frequency, that of the dominant TE mode,occurs for

m=1l,n = 0:

 

T
@M =

we we a

This correspondsto half of a free-space wavelength across the guide. The explicit
fields for this mode, denoted by TE,o, are:

 (8.45)

H, = Hy cos(=e
a

ika (TX) oie
H,. = —— Hp sin 7 este (8.46)

7

Ey =i oor Hp sin(2)
7 a

where k = k,9 1s given by (8.39) with w, = w,. The presence of a factor i in H,
(and E,,) means that there is a spatial (or temporal) phase difference of 90° be-
tween H, (and £,) and H, in the propagation direction. It happens that the TE,9
mode has the lowest cutoff frequency of both TE and TM modes,* and so is the
one used in most practical situations. For a typical choice a = 25 the ratio of
cutoff frequencies w,,,, for the next few modes to w,, are as follows:

 

 

n 0 1 2 3
m

0 2.00 4.00 6.00
1 1.00 2.24 4.13
2 2.00 2.84 4.48
3 3.00 3.61 5.00
4 4.00 4.48 5.66
5 5.00 5.39
6 6.00

There is a frequency range from cutoff to twice cutoff or to (a/b) times cutoff,
whichever is smaller, where the TE;, modeis the only propagating mode. Be-

yond that frequency other modesrapidly begin to enter. The field configurations

*This is evident if we note that for the TM modesF,is of the form

BE= Eo sin(2) sin("2
a b

while y”is still given by (8.43). The lowest mode has m = n = 1. Its cutoff frequency is greater than

that of the TE; mode by the factor (1 + a?/b?)"”.
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of the TE,;, mode and other modes are shown in many books, for example,

American Institute of Physics Handbook [ed. D. E. Gray, 3rd edition, McGraw-

Hill, New York (1972), p. 5-54].

8.5 Energy Flow and Attenuation in Waveguides

The general discussion of Section 8.3 for a cylindrical waveguide of arbitrary
cross-sectional shape can be extended to include the flow of energy along the

guide and the attenuation of the waves due to losses in the walls having finite
conductivity. The treatmentis restricted to one modeat a time; degenerate modes

are mentioned only briefly. The flow of energy is described by the complex

Poynting vector:

S =3(E x H*) (8.47)

whosereal part gives the time-averaged flux of energy. For the two typesoffield
wefind, using (8.31) and (8.33):

y

E VipP + ia vi|
5 . ok7 (8.48)

ZY ula (wou— 1%we vet
where the upper (lower)line is for TM (TE) modes. Since yw is generally real,*
we see that the transverse component of S represents reactive energy flow and

does not contribute to the time-averaged flux of energy. On the other hand,the

axial componentof S gives the time-averaged flow of energy along the guide. To

evaluate the total power flow P we integrate the axial component of S$ over the

cross-sectional area A:

p=] S- ida = 2k {6lf. (V,ys)* + (V.W) da (8.49)

By means of Green’s first identity (1.34) applied to two dimensions,(8.49) can
be written:

- oktH¢. yy eal - J p* Vous ia (8.50)

wherethefirst integral is around the curve C, which defines the boundary surface

of the cylinder. This integral vanishes for both typesof field because of boundary

conditions (8.36). By meansof the wave equation (8.34) the secondintegral may
be reduced to the normalization integral for wy. Consequently the transmitted

poweris

rstale)(-g)hese as
*It is possible to excite a guide in such a mannerthat a given mode orlinear combination of modes

has a complex yw. Then a time-averaged transverse energy flow can occur. Since it is a circulatory
flow, however,it really represents only stored energy andis not of great practical importance.
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where the upper (lower) line is for TM (TE) modes, and we haveexhibitedaj]
the frequency dependenceexplicitly.

It is straightforward to calculate the field energy per unit length of the guide

in the same way as the powerflow. The resultis

U = : (=) {| [ ww da (8.52)

Comparison with the power flow P showsthat P and are proportional. The

constant of proportionality has the dimensions of velocity (velocity of energy

flow) andis just the group velocity:

P_kil 1 ws
— 1-4
U OMe a /je Ug (8.53)

as can be verified by a direct calculation of v, = dw/dk from (8.39), assuming

that the dielectric filling the guide is nondispersive. We note that v, is alwaysless
than the velocity of waves in an infinite medium andfalls to zero at cutoff. The
product of phase velocity (8.40) and group velocity is constant:

 

Ug = — (8.54)

an immediate consequenceof the fact that w Aw « k Ak.
Our considerations so far have applied to waveguides with perfectly con-

ducting walls. The axial wave number k, was either real or purely imaginary.If

the walls have a finite conductivity, there will be ohmic losses and the powerflow
along the guide will be attenuated. For walls with large conductivity the wave
number will have small additional real and imaginaryparts:

ky =~ k® + a, + iB, (8.55)

where kis the value for perfectly conducting walls. The change a,in thereal
part of the wave numberis generally unimportant except near cutoff when

k— 0. The attenuation constant 8, can be found either by solving the bound-
ary-value problem over again with boundary conditions appropriate for finite

conductivity, or by calculating the ohmic losses by the methods of Section 8.1

and using conservation of energy. We will first use the latter technique. The

powerflow along the guide will be given by

P(z) = Poe7P% (8.56)

Thus the attenuation constant is given by

1 dP
B. = ~sB ap (8.57)

where —dP/dzis the powerdissipated in ohmic losses per unit length of the guide.

According to the results of Section 8.1, this powerloss is

_ dP
= -9¢ In x H/? di (8.58)
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where the integral is around the boundary of the guide. With fields (8.31) and

(8.33) it is easy to show that for a given mode:

1

_aP_ 1 ()§ Hwy
dz 208\,) Jc} 4 ww a

— (1-4 ]|n x Vw)? + > |wPw) ww)[LEW

2

op
on  dl (8.59)

where again the upper (lower) line applies to TM (TE) modes.
Since the transverse derivatives of y are determined entirely by the size and

shape of the waveguide, the frequency dependence of the powerlossis explicitly

exhibited in (8.59). In fact, the integrals in (8.59) may be simply estimated from
the fact that for each mode:

(V7 + pwew,)y = 0 (8.60)

This means that, in some average sense, and barring exceptional circumstances,

the transverse derivatives of y must be of the order of magnitude of V pew) ws:

(28
an

Consequently, the line integrals in (8.59) can be related to the normalization

integral of ||’ over the area. For example,

¢ A ay
cw, dn

where C is the circumference and A is the area of cross section, while & is a

dimensionless number of the order of unity. Without further knowledge of the
shape of the guide we can obtain the order of magnitude of the attenuation

constant B, and exhibit completely its frequency dependence. Thus, using (8.59)

with (8.62) and (8.51), plus the frequency dependenceof the skin depth (8.8), we

find
1/2

e l C Wy Wy °

_ Via a)aen(Z)f 6a
Ww

~ (nx Vig?) ~ peak(lab) (8.61)
  

° C
= — 2dl épe J |u|’ da (8.62)

  

where is the conductivity (assumed independent of frequency), 6, is the skin

depth at the cutoff frequency, and &,, 7, are dimensionless numbersof the order

of unity. For TM modes, 7, = 0.

For a given cross-sectional geometryit is a straightforward matter to calcu-
late the dimensionless parameters & and 7, in (8.63). For the TE modes with

n = 0 in a rectangular guide, the values are &,9 = a/(a + b) and Hno =

2bi(a + b). For reasonable relative dimensions, these parameters are of order

unity, as expected.

The general behavior of 8, as a function of frequency is shown in Fig. 8.6.

Minimum attenuation occurs at a frequency well above cutoff. For TE modes

the relative magnitudes of € and 7, depend on the shape of the guide and onA.
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| T™
|

Be TE
|
| ! Figure 8.6 Attenuation constant B,

- | | as a function of frequency for
| 7N3 typical TE and TM modes. For TM

/, | | L modes the minimum attenuation
0 ] 2 3 4 5 occurs at w/w, = V3, regardless of

w/w,——> cross-sectional shape.

Consequently no general statement can be made about the exact frequency for

minimum attenuation. But for TM modes the minimum always occurs at @pin =

V3w,. At high frequencies the attenuation increases as w'’. In the microwave
region typical attenuation constants for copper guides are of the order
B, ~ 10-*a,/c, giving 1/e distances of 200-400 meters.

The approximations employed in obtaining (8.63) break downcloseto cutoff.

Evidence for this is the physically impossible, infinite value of (8.63) at w = a).

8.6 Perturbation ofBoundary Conditions

Theuse of energy conservation to determine the attenuation constant B,is direct

and has intuitive appeal, but gives physically meaningless results at cutoff and
fails to yield a value for a), the changein the real part of the wave number. Both

these defects can be remedied by use of the technique called perturbation of
boundary conditions. This methodis capable, at least in principle, of obtaining
answers to any desired degree of accuracy, although we shall apply it only to the
lowest order. It also permits the treatment of attenuation for degenerate modes,
mentioned briefly at the end of this section and in Problem 8.13. The effect of

small distortions of cross section can also be treated. See Problem 8.12.
For definiteness we consider a single TM mode with no other mode (TE or

TM) degenerate or nearly degenerate with it. The argumentfor an isolated TE

modeis similar. To reduce the numberof sub- and superscripts, we denote the
(unperturbed) solution for perfectly conducting walls by a subscript zero and the
(perturbed) solution for walls of finite conductivity by no sub- or superscript.
Thus the unperturbed problem hasa longitudinal electric field E, = %, where

(V7 + ¥)% =0, wwls = 0 (8.64)

and y; is real. For finite, but large, conductivity, FE, = wis not zero on the walls,

but is given by (8.11). To lowest order, the right-hand side of (8.11) is approxi-

mated by the unperturbedfields. By useof the first equation in (8.23) and (8.33),

the perturbed boundary condition on y& can be expressed as

bls = oo (8.65)
On |
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where the small complex parameter f 1s*
2

pect he (=) (8.66)
2M \@po

Here pw, and pw are the magnetic permeabilities of the conducting walls and the
medium in the guide, respectively, 5 is the skin depth (8.8), and ais the cutoff

frequency of the unperturbed mode. The perturbed problem, equivalent to

(8.64), is thus

0(E+ P= 0, Ws FSP Y
 

(8.67)

If only the eigenvalue y” is desired, Green’s theorem 4135) in two dimensions

can be employed:

0ftv ariel da=$ |0%! - oh a
where the right-handside has an inwardly directed normal[out of the conductor,
in conformity with (8.11) and (8.65)]. With the identifications, w = wand ¢ =

ws, and use of the wave equations (8.64) and (8.67), and their boundary condi-
tions, the statement of Green’s theorem becomes

avo|Oe - P) |wiwaa= 5p | (8.68)
  

Since f is assumed to be a small parameter,it is normally consistent to approx-
imate win the integral on the left by its unperturbed value y%. This leads to the

final result,

  

2
0¢ bo]

c |on
v2 _ Me — k2 — £0? = f ——_—_—_—_— (8.69)

| Wo |? da
A

From (8.51) and (8.59) of the preceding section onefindsthat theratio ofintegrals
on the right-hand side of (8.69) enters a previous result, namely,

  
§ [aol ay

2 onpwd [w\ °©2kBO, = on (=) —— (8.70)
[|ol? aa

where B™is defined by (8.57) and (8.63). This meansthat (8.69) can be written
as

k? = kK? 4+ 2(1 + DkOBO (8.71)

a result that holds for both TM and TE modes, with the appropriate B© from

Section 8.5. For k® >> B®, (8.71) reduces to the former expression (8.55) with

*More generally, f can be expressed in termsof the surface impedance Z, as f = (iw/wwo)Z,.
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a= B. At cutoff and below, however, wheretheearlier results failed, (8.71) yields
sensible results because the combination kBis finite and well behavedin the
neighborhood of k® = 0. The transition from a propagating modeto a cutoff

modeis evidently not a sharp oneif the walls are less than perfect conductors,

but the attenuationis sufficiently large immediately above and below the cutoff

frequency thatlittle error is made in assuming a sharp cutoff.

The discussion of attenuation here and in the preceding sectionis restricted

to one mode at a time. For nondegenerate modeswith not too great losses this
approximation is adequate. If, however, it happens that a TM and a TE mode

are degenerate (as occurs in the rectangular waveguide for n # 0, m # 0), then

any perturbation, no matter how small, can cause sizable mixing of the two
modes. The methods usedso far fail in such circumstances. The breakdown of
the present method occurs in the perturbed boundary condition (8.65), where

there is now on theright-hand side a term involving the tangential derivative of
the unperturbed H,, as well as the normal derivative of E,. And there is, of

course, a corresponding perturbed boundary condition for H, involving both

unperturbed longitudinal fields. The problem is one of degenerate-state pertur-

bation theory, most familiar in the context of quantum mechanics. The perturbed
modes are orthogonal linear combinations of the unperturbed TM and TE

modes, and the attenuation constants for the two modes have the characteristic

expression,
 

B= 3(Brm + Pre) + 3V(Bim _ Bre) + 4 | KI? (8.72)

where By and By, are the values found above, and K is a coupling parameter.

The effects of attenuation and distortion for degenerate modesusing per-
turbation of boundary conditions are addressed in Problem 8.13. See also Collin.

8.7 Resonant Cavities

Although an electromagnetic cavity resonator can be of any shape whatsoever,

an important class of cavities is produced by placing end faces on a length of
cylindrical waveguide. We assumethat the end surfaces are plane and perpen-

dicular to the axis of the cylinder. As usual, the walls of the cavity are taken to

have infinite conductivity, while the cavity is filled with a lossless dielectric with

constants yw, €. Because of reflections at the end surfaces, the z dependence of

the fields is that appropriate to standing waves:

A sinkz + B coskz

If the plane boundary surfaces are at z = 0 and z = d, the boundary conditions

can be satisfied at each surface only if

k= p- (p = 0,1, 2,...) (8.73)

For TM fields the vanishing of E, at z = 0 and z = d requires

E. = w(x, y) cos(225) (p = 0,1, 2,...) (8.74)
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Similarly for TE fields, the vanishing of H, at z = 0 and z = d requires

TTH. = w(x, y) sin(222) (p = 1, 2, 3,...) (8.75)

Then from (8.31) and (8.33) we find the transversefields:

TM FIELDS

pw . [PT
E, = —-= sin| ——] V

© dy? ( d “ (8.76)

H, = << cos(225] ZX Vib
y d

TE FIELDS

low . [pmwzZ\.,
E, = ——> sint—-] zx V

y ( d o (8.77)
17 TZH, = ae cos(22| Vil

The boundary conditions at the ends of the cavity are now explicitly satisfied.

There remains the eigenvalue problem (8.34)—(8.36), as before. But now the
constant 7” is:

TT
2

y= pew — (2) (8.78)

For each value of p the eigenvalue y; determines an eigenfrequency @),,:

2
1 pw

Op = ue i + (22) | (8.79)

and the corresponding fields of that resonant mode. The resonance frequencies

form a discrete set that can be determined graphically on the figure of axial wave
numberk versus frequency in a waveguide (see Fig. 8.4) by demanding that k =
pa/d. It is usually expedient to choose the various dimensionsof the cavity so

that the resonant frequency of operation lies well separated from other resonant

frequencies. Then the cavity will be relatively stable in operation andinsensitive

to perturbing effects associated with frequencydrifts, changes in loading,etc.

An important practical resonantcavity is the right circular cylinder, perhaps

with a piston to allow tuning by varying the height. The cylinder is shownin Fig.
8.7, with inner radius R and length d. For a TM modethetransverse wave equa-
tion for w = E,, subject to the boundary condition FE, = 0 at p = R, has the

solution:

(Pp, 6) = Eodn(Ymnpye”"® (8.80)

where

be 5 3 
Ymn — R
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Xmn 1S the nth root of the equation,J,,(x) = 0. These roots were given earlier,
following Eq. (3.92). The integers m and n take on the values m = 0, 1, 2,...,
andn = 1, 2,3,.... The resonance frequencies are given by

1 Xin, powOmnp = = +P we R? d2

The lowest TM mode has m = 0, n = 1, p = 0, and so is designated TMp1o.

Its resonance frequency is

 (8.81)

2.405
Wo10 — ‘weR

The explicit expressions for the fields are

2.405 ,
E, = Boh R Pe 

(8.82)
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The resonant frequency for this mode is independentof d. Consequently simple

tuning is impossible.

For TE modes,the basic solution (8.80)still applies, but the boundary con-
dition on H,[(dy/dp)|z = 0] makes

where x,,,, 18 the nth root of J,,(x) = 0. These roots, for a few values of m and

n, are tabulated below (for m # 1, x = 0 is trivial root):

Roots of J,,(x) = 0

m = 0: X6, = 3.832, 7.016, 10.173,...

m= 1: Xi, = 1.841, 5.331, 8.536,...

= 2: x5, = 3.054, 6.706, 9.970,...

m = 3: x3, = 4.201, 8.015, 11.336,...



Sect. 8.8 Power Losses in a Cavity; Q of a Cavity 371

The resonance frequencies are given by

1 (x2, pea?\""
=— + 8.83Wmnp Vue (8 dz (8.83)

where m = 0, 1, 2,..., but n, p = 1, 2, 3,.... The lowest TE mode has m =

n = p = 1, and is denoted TE,,;. Its resonance frequencyis

  

 

1.841 R2\""

while the fields are derivable from

1.841
b= H, = Hoh R ) cos sin(2et (8.85)

by means of (8.77). For d large enough (d > 2.03R), the resonance frequency
@1, is smaller than that for the lowest TM mode. Then the TE,,, modets the

fundamentaloscillation of the cavity. Because the frequency dependsonthe ratio

d/R it is possible to provide easy tuning by making the separation of the end
faces adjustable.

Variational methods can be exploited to estimate the lowest resonant fre-
quencies of cavities. A variational principle and some examplesare presented in

the problems (Problems 8.9-8.11).

8.8 Power Losses in a Cavity; QO of a Cavity

In the preceding section it was found that resonant cavities have discrete fre-
quencies of oscillation with a definite field configuration for each resonancefre-
quency. This implies that, if one were attempting to excite a particular mode of

oscillation in a cavity by some means,nofields of the right sort could be built up

unless the exciting frequency were exactly equal to the chosen resonance fre-

quency. In actual fact there will not be a delta function singularity, but rather a

narrow band of frequencies around the eigenfrequency over which appreciable
excitation can occur. An important source of this smearing outof the sharpfre-
quencyof oscillation is the dissipation of energy in the cavity walls and perhaps
in the dielectric filling the cavity. A measure of the sharpness of response of the
cavity to external excitation is the Q of the cavity, defined as 27 times the ratio
of the time-averaged energy stored in the cavity to the energy loss per cycle:

Stored energy
 O = w (8.86)
Powerloss

Here w,)is the resonance frequency, assuming no losses. By conservation of en-

ergy the power dissipated in ohmiclosses is the negative of the time rate of

change of stored energy U. Thus from (8.86) we can write an equation for the
behavior of U as a function of time:

dUdU_ _% 4
dt Q

U(t) = Ue"2
with solution (8.87)
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If an initial amount of energy Upis stored in the cavity, it decays away exponen-

tially with a decay constant inversely proportional to Q. The time dependence
in (8.87) implies that the oscillations of the fields in the cavity are damped as
follows:

E(t) _ Ene”208/220hootAwe (8.88)

where we have allowed for a shift Aw of the resonant frequency as well as the
damping. A damped oscillation such as this has not a pure frequency, but a
superposition of frequencies around w = w, + Aw. Thus,

1 ” —iwt
E(t) = an [- E(@)e dw

where (8.89)
1 [. ,

E —_— E eP0205i(a—ap—Aw)t dt

(w) x7 Jo 9  
The integral in (8.89) is elementary and leads to a frequencydistribution for the
energy in the cavity having a resonantline shape:

1

(@ — w@ — Aw)? + (a9/20)
 |E(w)|? « (8.90)

The resonance shape (8.90), shownin Fig. 8.8, has a full width T at half-maximum
(confusingly called the half-width) equal to w)/Q. For a constant input voltage,
the energy of oscillation in the cavity as a function of frequency will follow the
resonance curve in the neighborhoodof a particular resonant frequency. Thus,

the frequency separation dw between half-power points determines the width [
and the Q of cavityis

Wo Wo
=— == 8.91QO- 7=F (8.91)

Q values of several hundreds or thousands are commonfor microwavecavities.

To determine the Q of a cavity we can calculate the time-averaged energy

stored in it and then determine the powerloss in the walls. The computations
are very similar to those done in Section 8.5 for attenuation in waveguides. We

consider here only the cylindrical cavities of Section 8.7, assuming no degener-

  
Figure 8.8 Resonance line shape. The
full width I’ at half-maximum (of the
power) is equal to the unperturbed

wo + AwJ Nan G) ——> cn Wy divided by the Q of the
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acies. The energy stored in the cavity for the modeA,p is, according to (8.74)—
(8.77):

va{M 4 (28) ] [iru ave
where the upper(lower) line applies to TM (TE) modes. For the TM modes with
p = 0 the result must be multiplied by 2.

The powerloss can be calculated by a modification of (8.58):

1 d

Pross — f a | dz ln x H [ices + 2 | da [n x Hiss (8.93)
200 Jc 0 A

For TM modes with p # 0 it is easy to show that
2

_ _€& pu Cd 2Pross = ou f + (27) \( + & ) J | ab | da (8.94)

where the dimensionless number é, is the same one that appears in (8.62), C is
the circumference of the cavity, and A is its cross-sectional area. For p = 0, &

must be replaced by 2é,. Combining (8.92) and (8.94) according to (8.86), and
using definition (8.8) for the skin depth 6, we find the Q of the cavity:

Bd I
[ue 0 Cd

2\1+ —(+6)
where pu, is the permeability of the metal walls of the cavity. For p = 0 modes,
(8.95) must be multiplied by 2 and &, replaced by 2&,. This expression for Q has
an intuitive physical interpretation when written in the form:

(8.95) | O=

O= £ (~) x (Geometrical factor) (8.96)
L. \S6

whereV is the volumeof the cavity, and S its total surface area. The Q of a cavity

is evidently, apart from a geometrical factor, the ratio of the volume occupied

by the fields to the volume of the conductor into which the fields penetrate be-
cause ofthe finite conductivity. For the TE,,; mode in the right circular cylinder
cavity, calculation yields a geometrical factor

 L+5 (8.97)(+) d d°
1 + 0.209 R + 0.244 =)

that varies from unity for d/R = 0 to a maximum of2.13 at d/R = 1.91 and then

decreases to 1.42 as d/R > ~.
Expression (8.96) for Q applies not only to cylindrical cavities but also to

cavities of arbitrary shape, with an appropriate geometrical factor of the order

of unity.

The use of conservation of energy to discuss losses in a cavity has the same

advantages and disadvantages as for waveguides. The Q valuescan becalculated,
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but possible shifts in frequencylie outside the scope of the method. The technique
of perturbation of boundary conditions, described in Section 8.6, again removes
these deficiencies. In fact the analogy is so close to the waveguidesituation that
the answers can be deduced without performing the calculation explicitly. The
unperturbed problem of the resonant frequencies of a cavity with perfectly con-
ducting walls is specified by (8.64) or its equivalent for TE modes. Similarly,the
perturbed problem involvessolution of (8.67) or equivalent. A result equivalent
to (8.69) evidently emerges. The difference (yg — y*) is proportional to (@ — @)
where now @p is the unperturbed resonantfrequency rather than the cutoff fre-
quency of the waveguide and w is the perturbed resonant frequency. Thus the
analog of (8.69) takes the form,

w-w=(1+ iI (8.98)

where / is the ratio of appropriate integrals. In the limit of J — 0, the imaginary
part of w is —il/2w9. From (8.88)this is to be identified with —iw)/2O, and there-
fore I = w/Q. Equation (8.98) can thus be written

ow= a — c* (8.99)

where Q is the quantity defined by (8.86) and (8.92), (8.93). Dampingis seen to
cause equal modifications to the real and imaginary parts of w*. For large Q
values, the change in the resonant frequency, rather than its square,is

Wo
Aw ~ Im w = 20

The resonant frequencyis always lowered by the presenceofresistive losses. The
near equality of the real and imaginary parts of the change in w* is a consequence
of the boundary condition (8.11) appropriate for relatively good conductors. For
very lossy systems or boundaries with different surface impedances, therelative
magnitude of the real and imaginary parts of the change in w* can be different
from that given by (8.99).

In this section, as in Section 8.6, the discussion has been confined to non-
degenerate modes. Generalization to degenerate modesis treated in Problem
8.13.

8.9 Earth and Ionosphere as a Resonant Cavity:
Schumann Resonances

A somewhat unusual example of a resonantcavity is provided by the earth itself
as one boundarysurface and the ionosphere as the other. The lowest resonant
modes of such a system are evidently of very low frequency, since the character-
istic wavelength must be of the order of magnitude of the earth’s radius. In such
circumstances the ionosphere and the earth both appear as conductors with real
conductivities. Seawater has a conductivity of o ~ 0.1 0! m™, while the iono-
sphere has o ~ 10°’-10°* Q7' m“!. The walls of the cavity are thus far from
perfectly conducting, especially the outer one. Nevertheless, we idealize the phys-
ical reality and consider as a model two perfectly conducting, concentric spheres
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with radii a and b = a + h, wherea is the radius of the earth (a = 6400 km) and
h is the height of the ionosphere above the earth (h ~ 100 km). Furthermore,if

we are concerned with only the lowest frequencies, we can focus our attention

on the TM modes, with only tangential magnetic fields.* The reason for this is
that the TM modes,with a radially directed electric field, can satisfy the boundary

condition of vanishing tangential electric field at r = a and r = b without appre-

ciable radial variation of the fields. On the other hand, the TE modes, with only

tangential electric fields, must have a radial variation of approximately half a
wavelength between r = a and r = b. The lowest frequencies for the TE modes,
are therefore of the order of wpe ~ ac/h, whereas for the lowest TM modes

Wm ~ Cla.
The general problem of modesin a spherical geometry is involved enough

that we leave it to Chapter 9. Here we consider only TM modesand assumethat

the fields are independentof the azimuthal angle ¢. Thelast is no realrestriction;

it is known from consideration of spherical harmonics that the relevant quantity
is 1, not m. If the radial component of B vanishes and the other components do

not depend on ¢, the vanishing of the divergence of B requires that only By is

nonvanishingif the fields are finite at 6 = 0. Faraday’s law then requires Ey =
0. Thus the homogeneous Maxwell equations specify that TM modes with no @

dependenceinvolve only E,, Es, and By. The two curl equations of Maxwell can

be combined,after assuming a time-dependence of e“’, into

2
W
2B-VxVxB=0 (8.100)

where the relative permeabilities of the medium between the spheres are taken

as unity. The @ componentof (8.100) is

0° 1aw 1

@ Be) + 5a Ba) + 2 ag aaaag SY| ~ 8 ea)
The angularpart of“ can be transformed into

a] 1 ? (sin 0 rBy) 1a, arBs)\ 1B
a0 sin 6 06 ° sin6 0 a0 sin’ 6

showing, upon comparison with (3.6) or (3.9), that the 6 dependenceis given by

the associated Legendre polynomials P7"(cos 6) with m = +1. It is natural there-

fore to write a product solution,

 

Bg (r, 8) = a P;(cos 6) (8.102)

Substitution into (8.101) yields as the differential equation for u,(r),

d*u,(r) wo  IU(l+1)
—-~ + 1> = 0 8.103
dr? C r2 u(r)= ( )

with / = 1, 2,... defining the angular dependence of the modes.

The characteristic frequencies emerge from (8.103) when the boundary con-

*For a spherical geometry the notation TE (TM)indicates the absence of radial electric (magnetic)

field components.
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ditions appropriate for perfectly conducting walls at r = a and r = b are imposed.
The radial and tangential electric fields are

ic? 0 ic? u(r)

E, = ——— (sin By) = —— I + 1) P((cos 6
"wr sin 8 00 (sin 6B, ) or ( ) , (cos 4)

= TT B =— 1

Eg or or (rBy) or OF P;(cos 6)

The vanishing of EF, at r = a and r = b implies that the boundary condition for
u,(r) is

du,(r) _
0 forr=a and r=b (8.104)

dr

The solutions of (8.103) are r times the spherical Bessel functions (see Section
9.6). The boundary conditions (8.104) lead to transcendental equations for the
characteristic frequencies. An example is left as a problem;for our present pur-
poses a limiting case suffices. The height h of the ionosphereissufficiently small
compared to the radius a that the limit h/a < 1 can be assumed. TheI(/ + 1)/r?
term in (8.103) can be approximatedbyits value at r = a. The solutionsof (8.103)
are then sin(qr) and cos(qr), where q* is given by the square bracketin (8.103)
evaluated at r = a. With the boundary conditions (8.104), the solution is

u(r) ~ A cos[g(r — a)]

where qh = na,n = 0,1, 2,.... Forn = 1, 2,... the frequencies of the modes
are evidently larger than w = nac/h andare in the domain of frequencies of the
TE modes. Only for n = 0 are there very-low-frequency modes. The condition
q = 01s equivalent to u,(r) = constant and

w, ~ V+ 1) - (8.105)

where the equality is exact in the limit h/a — 0. The exact solution showsthat to
first order in h/a the correct result has a replaced by (a + 5h). Thefields are
E, = 0, r°E, « Pj(cos 6), rB, ~ P}(cos 8).

The resonant frequencies (8.105) are called Schumann resonances.* Theyare
extremely low frequencies: with a = 6400 km,thefirst five resonant frequencies
are w,/27 = 10.6, 18.3, 25.8, 33.4, 40.9 Hz. Schumann resonances manifest them-
selves as peaks in the noise power spectrum of extremely low frequencies prop-
agating around the earth. Lightning bolts, containing a wide spectrum offre-
quencies, act as sourcesofradial electric fields. The frequency components near
the Schumannresonancesare propagatedpreferentially because they are normal
modesof the earth-ionosphere cavity. The first definitive observations of these
peaksin the noise power spectrum were madein 1960," althoughthere is evidence
that Nikola Tesla may have observed them before 1900.* A typical noise power

*W. O. Schumann, Z. Naturforsch. 72, 149, 250 (1952).

"M. Balser and C. A. Wagner, Nature 188, 638 (1960).

*In U.S. patent 787,412 (April 18, 1905), reprinted in Nikola Tesla, Lectures and Patents and Articles,

Nikola Tesla Museum, Beograd, Yugoslavia (1956), this remarkable genius clearly outlines the idea
of the earth as a resonating circuit (he did not know ofthe ionosphere), estimates the lowest resonant
frequency as 6 Hz(close to the 6.6 Hz for a perfectly conducting sphere), and describes generation

and detection of these low-frequency waves.I thank V. L. Fitch for this fascinating pieceof history.
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Figure 8.9 Typical noise power spectrum at low frequencies (integrated over30 s),
observed at Lavangsdalen, Norway on June 19, 1965. The prominent Schumann
resonancesat 8, 14, 20, and 26 Hz, plus peaksat 32, 37, and 43 Hz as well as smaller

structure are visible. [After A. Egeland and T. R. Larsen, Phys. Norv. 2, 85 (1967).]

spectrum is shown in Fig. 8.9. The resonances are clearly visible. They shift

slightly and change shape from day to day, but have average linear frequencies

of 8, 14, 20, 26, 32, 37, and 43 Hz for the first seven peaks. These frequencies

are given quite closely by 5.8V/(/ + 1) Hz, the coefficient being 0.78 times
c/27a(= 7.46 Hz). The lack of precise agreementis not surprising, since, as al-
ready noted, the assumption of perfectly conducting walls is rather far from the
truth. The QO values are estimated to be of the order of 4 to 10 for thefirst few

resonances, corresponding to rather heavy damping. The effect of the damping
on a resonant frequencyis in the right direction to account for the differences
between the observed values and (8.105), but the simple shift implied by (8.99)
is only about half of what is observed. The V/(/ + 1) variation of the resonant
frequencies is, however, quite striking.

The simple picture of a resonant cavity with well-defined, but lossy, walls
accounts for the main features of the Schumann resonances,althoughfailing in

some quantitative aspects. More realistic and detailed models and discussion of
the observations can be found in a review by Galejs,* as well as his monograph,

Galejs. The use of waveguide and resonant cavity concepts in the treatment of

propagation of electromagnetic waves aroundthe earth is discussed in the books
by Budden and Wait listed at the end of this chapter. Two curiosities may be

*J. Galejs, J. Res. Nat. Bur. Stand. (U.S.) 69D, 1043 (1965). See also T. Madden and W. Thompson,
Rev. Geophys. 3, 211 (1965) and F. W. Chapman,D.L. Jones, J. D. W. Todd, and R. A. Challinor,

Radio Sci. 1, 1273 (1966).
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permitted here. On July 9, 1962, a nuclear explosion was detonatedat high alti-
tude over Johnston Island in the Pacific. One consequence of this test was to
create observable alterations in the ionosphere and radiation belts on a world-
wide scale. Sudden decreases of 3-5% in Schumann resonant frequencies were
observed in France and at other stations immediately after the explosion, the
changes decaying away over a period of several hours. This is documented in
Fig. 17 of the paper by Galejs.

The second curiosity is the proposal* that Schumann resonances can serve
as “a global tropical thermometer.”’ The average magnetic field intensity of the
fundamental Schumannresonanceis expected to be strongly dependent on the
frequency of lightning strikes around the world (which are seen from satellite
observations to peak strongly in the tropics, +23° latitude). The frequency of
lightning strikes at a numberofsites in the tropics is known to be dramatically
correlated to the average temperature. This lightning-temperature relation pro-
vides the physical understanding of the remarkably close correlation of
Schumann resonance monthly mean magnetic field strength and monthly mean
surface temperature observed at Kingston, RhodeIsland, over a 5.5-year period
and suggests that the Schumann resonancescan serve as a global thermometer!

8.10 Multimode Propagation in Optical Fibers

Opticalfibers lie at the heart of high-speed, high-capacity telecommunications.
Visible or infrared light, modulated with the signal, is transmitted withlittle loss
through small silica fibers. The very great frequency of the carrier light means
that very large bandwidthsare available for the signals. The technology has ad-
vanced rapidly in the past 25 years; a voluminoustechnical literature continues
to grow. Wecan discuss only someof the basic principles. The reader wishing
more can consult the references given at the end ofthe chapter.

Transmission via optical fibers falls approximately into two classes—multi-
modeor single-mode propagation.“Cores” (the region where mostof the energy
flow is located) are typically 50 wm in diameter for multimode propagation, com-
pared to a wavelength of the order of 1 um, while 5 wm diameters are typical of
single-mode fibers. We first consider multimode transmission for which the se-
migeometrical eikonal or WKB approximationis appropriate. Single-mode prop-
agation is best described in waveguide terms. These concepts are treated in the
following section.

Optical fiber cables, of the order of 2 cm in diameter, are actually nests of
smaller cables each containingsix or eight optical fibers protected by secondary
coatings and buffer layers. The operative fiber consists of a cylindrical core of
radius a [2a = O(50 wm)] and index of refraction n,, surrounded by a cladding
of outer radius b [2b = O(150 wm)] and index of refraction ny < n,, as shown in
Fig. 8.10a. Since the wavelength of the light is O(1 jum), the ideas of geometrical
optics apply; the interface between core and cladding can be treated as locally
flat. If the angle of incidencei of a ray originating within the coreis greater than
ip, where ig = sin” *(no/n,) is the critical angle for total internal reflection, the ray
will continue to be confined—itwill propagate—as shownin Fig. 8.105 and 8.10c.

*E. R. Williams, Science 256, 1184-1187 (1992).
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Figure 8.10 Optical fiber core and cladding, with inner cylinder of index of refraction

n, and cladding of index ny (n; > no): (a) cross section offiber; (0) longitudinal

section, showing

a

total internally reflected ray; (c) longitudinal section of the core,

showing meridional propagating rays with complementary angles of incidence

8< AOnax = COS‘(No/n,), the critical angle for total internal reflection.

It is convenient to use the complementary angle of incidence 6, measured from

the cylinder axis. Propagation occurs for rays with 6 < Onax = cos”'(No/n;). It is

also convenient to use the parameter

2nt ny

Typical operation has A = 1%. Then @nax ~ V2A = 0.14 radian (8 degrees).

The system is, of course, a waveguide with discrete modes, as discussed in

Section 8.11. Simple phase-space argumentsallow us to estimate the numberof

propagating modes. The transverse wave number k, ~ ké@ is limited because

8 < @nax. Two-dimensional phase-space numberdensity dN is

d*k

(2m)

No (8.106)

dN = 1a’

where the first factor is the spatial area, the second the wave-number volume

element, and the factor 2 is for two states of polarization. With d*k = 27k, dk, =

2ak*@ dé, we have

Omax

~ ak? | 9 do ~ 4(kaV/2A)? = 4V? (8.107)
O

Here V = kaV72A,called the fiber parameter in the literature. Typical numbers

are A = 0.85 wm, a = 25 wm, n, ~ 1.4 (ka ~ 260), and A = 0.005, leading to

N ~ 335. In contrast, single-mode propagation has a = O(2.7 wm) and A =

O(0.0025). Then N = O(2),one for each state of polarization. Such a phase-space

estimate is, of course, is only qualitative.

A core with a single coating is the simplest configuration, but multilayer

geometries are possible. Consideration of Snell’s law at successive interfaces
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showsthat if the indices of refraction decrease from layer to layer out from the
center, a ray leaving the axis at some angle is bent successively more toward the
axis until it is totally reflected. In fact, for an arbitrary numberoflayers outside
the core, the critical angle 6,4, = COS '(Nouter/Minner), JUSt as for the simple two-
index fiber. The limit of manylayersis a ‘‘graded”’ index fiber in which the index
of refraction varies continuously with radius from the axis. Grading addresses
the problem of distortion caused by different optical path lengths for different
angles of launch, as we discuss below.

For multimode propagation, especially in graded fibers, the quasi-geomet-
rical description called the eikonal approximationis appropriate. We assumethat
the medium of propagation is a linear, nonconducting, nonmagnetic material with
an index of refraction n(x) = V €(x)/€ that varies in space slowly onthescale of
the local wavelength of the wave. With fields varying in time as e‘’, the Maxwell
equations for E and H can be combined to give Helmholtz wave equations of
the form

WE + pow’e(x)E + v2 E - ve] = 0
E (8.108)

V*H + pow’e(x)H — iw(Ve) xX E = 0

The assumption that e(x) changeslittle over a wavelength allows us to drop the
terms involving the gradient of € as the next order of smallness. Then the com-
ponents of the electric and magnetic fieldssatisfy

ve + rts)|p = 0 (8.109)

Locally, the basic solutionsare “‘plane”’ waves;thatis, there is a local wave num-
ber {|k(x)| = wn(x)/c. It is suggestive to write, without approximation to (8.109)
as yet,

Wy _— eios(xyic (8.110)

where the function S(x) is called the eikonal. Insertion of (8.110) into (8.109)
leads to an equation forS,

Ww

C2 [n?(x) — VS + VS] + i V°S =0

Consistent with the hypothesis of slow variation of n(x) on the scale of a wave-
length (and thus small change in S on the samescale), we neglect the last term
as higher order. We then have the eikonal approximation of quasi-geometrical
optics,

VS - VS = n°(x) (8.111)
To interpret the eikonal S and connect it to geometric ray tracing, wefirst

consider the expansion of S(x) in a Taylor series around somepoint xo:

S(x) ~ S(Xo) + (kK — xo)» VS(xo) + °°

The wave amplitude wis then

W(x) = expliostslerp|is — Xo) ° oPSts)
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The form of w is that of a plane wave with wave vector k(xo) = wVS(X)/c =
n(Xo)Wk(Xo)/c, where k(x) is a unit vector in the direction of VS(xo). In general

we define k(x) by

= n(x)k(x) (8.112)

The amplitude (x) describes a wave front thatis locally plane and is propagating

in the direction defined by k(x). If we imagine advancing incrementally in the

direction of k, we trace out a path that is the geometrical ray associated with the

wave. Figure 8.11a sketches such a path.If the distance along the path is labeled

by the variable s, the incremental change Arhasassociated with it an incremental
distance As along the path. In the limit of vanishing increments, the ratio Ar/As

becomes dr/ds = k. We therefore can write a result equivalent to (8.112) to

describe the optical ray path r(s),

dn(x) — = VS (8.113)

Consider now the changein the left-hand side with s along the path,

d ds
£ na$|. —_VS = Vo

But d/ds = k- V, so that, from (8.112), dS/ds = k -kn(r) = n(r). We thus obtain
an equation relating the coordinate r(s) along the ray to the gradient of the index

of refraction, a generalization of Snell’s law,

" nie a = Vni(r) (8.114)

Raysin a circular fiber fall into two classes:

1. Meridional rays: rays that pass through the cylinder axis; they correspond

to modes with vanishing azimuthal index m and nonvanishing intensity at

p = 0.

2. Skew rays:rays that originate off-axis and whosepathis a spiral in space with

inner and outer turning points in radius; they correspond to modes with non-

vanishing azimuthal index m andvanishing intensity at p = 0.
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Figure 8.11 (a) Path of wave front defined by ray unit vector k. (b) Propagation in the

z direction with index of refraction graded in the x direction.
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For simplicity, we apply (8.114) only to the transmission of meridionalraysin an
optical fiber, or equivalently to rays in a “‘slab” geometry. Let the propagation
of radiation be in the x-z plane, generally in the z direction with an index of
refraction that is ‘‘graded”’ in the x direction,i.e., n = n(x), as indicated in Fig,
8.116. Suppose that a ray leaves the origin at an angle 6(0) with respect to the z
axis, as shown. A distance s alongthe ray (at the point P) the unit vector k makes
an angle 6(x) with the z axis. Note that we write 6(x), not 6(x, z), because the
coordinate x of the point P on the ray determinesthe value of z, modulo multiple
values if the ray bends back toward the z axis. In terms of 6(x), the derivatives
in (8.114) are dx/ds = sin 6(x) and dz/ds = cos 6(x). Then the vector equation
(8.114) has as its two components,

- [n(x) sin 6(x)] = os and < [n(x) cos (x)] = 0

The second equation hasasits integral, n(x) cos 6(x) = n(0) cos 6(0). If n(x) is
a monotonically decreasing function of |x|, for any given 6(0) there is a maximum
(and a minimum) value of x attained by theray, namely, when cos 0(Xmax) = 1.
The index of refraction at |x| = xa, is

N = N(Xmax) = n(0) cos[(0)] (8.115)

The parameter7 is a characteristic of a given ray ortrajectory [specified by 6(0)].
From n(x) we can deduce x,,,, and so delimit the lateral extent of that trajectory.

To find the actual path x(z) or z(x) of the ray we must return to the equations
for x and z in termsof s. The first integral of the z componentof (8.114) is, as
we have just seen, n(dz/ds) = n. This means that we can replace d/ds in the x
componentof (8.114) by d/ds = (n/n)d/dz. The equation then reads

n_d (dx) _ dn
n(x) dz " dz dx

or

[n7(x)] (8.116)

Equation (8.116) has the structure of Newton’s equation of motion of a particle
of mass m in a potential V(x), with t > z,m— 7’, and V(x) > —n?(x)/2. Just as
in mechanics, use of the “‘velocity” x’ = dx/dz allows one to write d?x/dz? =
d(x'*/2)/dx andfind a first integral (conservation of energy in mechanics),

vx’? = n(x) - 1 (8.117)

the constant of integration being determined by the condition that x’ = 0 when
n(x) = n. The trajectory z(x) is found from the integral,

=a} dx
zZ(x) =n > Vin) 2

Hereit is assumedthat the ray beganat the origin with angle 6(0). For x < Xmax:
the path represents one-quarter of a cycle of oscillation back and forth across
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the x = 0 line, as shown in Fig. 8.12a. The half-period of the ray (from one
crossing of the z axis to the next)is

rmx dy
7=27 —— 8.1180 Vike) NS)

To discuss the transit time of a wave along an optical fiber, we need to

examine the physical and optical path lengths along the ray. These path lengths

from A to B are

B B

Loony = J ds and Lop = J n(x)ds

With ds = (n/n) dz = (n/7)(dz/dx) dx = [n(x)/Vn*(x) — n°] dx, we find the
physical and optical path lengths for half a period to be

*max n(x) dx |*max n?(x) dx
Loony = 2 SS and Loot = 2 ——————
pny 0 Vr(x) Pt 0 Vrr(x)

The transit time of a ray of a given launch angle (0) is given by the optical path
divided by c. For a length of fiber z >> Z, the transit time 7(z) is

(8.119)

opt

Z
 T(z) = (8.120)

OM
T
N

Different rays, defined by different 6(0) orn, have different transit times, a form

of dispersion that is geometrical. (Note that cZ/L,.,, is the ray equivalent of the

group velocity within the fiber.) A signal launched with a nonvanishing angular
spread will be distorted unless n(x) is chosen to makethe transit time largely
independent of 7. With a graded profile that decreases monotonically with |x|,
rays with larger initial angles and so larger Xmax Will have longer physical paths,

but will have larger speeds (phase velocities) c/n(x) in those longerarcs. There
is thus an inherent tendency toward equalization of transit times. The grading
can in fact be chosen to makeall transit times equal (see Problem 8.14). A simple
example is shownin Fig. 8.12b. The fractional increase in optical path length Lo,

[divided by n(0)] relative to Z as a function of 6 is shownfor a simple two-index
fiber and a Gaussian-graded fiber with the same values of n, = n(Q) and no
(A = 0.01). For 0 < 6 < Onax ~ 0.1414, the graded fiber has a fractional change
of less than 10~°; for the simplefiber, the spread is 1%.

The geometrical dispersion resulting from different launch angles 6(0) has
its counterpart as intermodal and intramodal dispersion when the propagation1s

described by discrete modes,as in the next section (see Problem 8.16). There is
also material dispersion from the optical properties of the dielectrics. The optical
path length L,,; (8.119) is then modified by having one of the factors of n(x) in
the integrand of (8.119) replaced by d[wn(a,x)|/dw. Forsilica, the group velocity
in the infinite medium is stationary at A ~ 1.3 wm; very large bandwidths and
very high information transmission rates are possible there. Absorption is a min-

imum at A ~ 1.55 pm;losses are of the order of 0.2 dB/km (see Section 9.7 for

the Rayleigh scattering limit).
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Figure 8.12 (a) Raysat critical angles @,., aNd Omnax/2 in a simple fiber with A = 0.01
(dashed curves) and a gradedfiber of the same radiusa,critical angle, and central
index, but with a Gaussian profile, n(x) = n, e-*"” for 0 < x <a, (b = alVA) and n(x)
= No for x > a. Note the difference in scales. Units are such that a = 6,,,, ~ V2/10.
(b) Differences in optical path length (divided by the axial index ofrefraction) and
actual length along a fiber, [L,,./n(0)Z — 1], for a simple two-index fiber with A = 0.01
and the Gaussian-gradedfiber of (a); Qnax = 2/10. The compensation from faster
phase velocity at larger excursions away from the axis in the gradedfiberis striking.
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g.11 Modes in Dielectric Waveguides

While the geometrical ray description of propagation in opticalfibers is appro-

priate when the wavelength is very short compared to the transverse dimensions
of the guiding structure, the wave natureof the fields must be taken into account
when these two scales are comparable. Just as in a metallic waveguide, propa-
gation at a given frequency can occur only via certain discrete modes, each with
unique transverse field configurations and axial wave numbers. The boundrays

(0 < Onax) in the geometric description have their counterparts as bound modes,
with fields outside the core that decrease exponentially in the radial direction.
Unbound rays (89 > Omax) correspond to the radiating modes, with oscillatory
fields outside the core. Not surprisingly, single-mode propagation is important
in optical communication, just as it is in microwave transmission in metallic
guides. We now discuss modesin a planar guide and then introduce the circular

fiber.

A. Modes in a Planar Slab Dielectric Waveguide

To examine the existence of discrete modesin an optical fiber, we consider

the simple situation of a “‘step-index” planarfiber consisting of a dielectric slab
of thickness 2a in the x direction andinfinite in the other two directions. We look
for waves that are traveling in the z direction and are independentof y. The
indices of refraction are n, and n, for the slab and its surrounding medium(clad-
ding), respectively. The surfaces of the slab are at x = +a, as showninFig. 8.13.

Geometrically, any ray that makes an angle 6 with respect to the z axis less than

Omax 1S totally internally reflected; the light is confined and propagates in the z

direction, as discussed in the preceding section. The discrete modestructure oc-
curs when we considerthe wave natureofthe light. Instead of solving the bound-
ary-value problem,as for metallic waveguides, we keep to the optical description

(but see Problem 8.15). The path shown in Fig. 8.13 can be thought of as the
normal to the wavefront of a plane wave,reflected back andforth oralternatively
as two plane waves, one with positive x component of wave number, k, =

k sin 6, and the other with k, = —k sin 6. To have a stable transverse field con-

figuration and coherent propagationin the z direction, the accumulation of trans-
verse phase on the path from A to just beyond B (with two internalreflections)

must be an integer multiple of 27:

4ka sin 6 + 26 = 2p7 (8.121)

 
Figure 8.13 Slab dielectric waveguide. Ray or normal to wavefront at angle 6 shown.
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where p is a nonnegative integer, k = n,w/c, and ¢ is the phase associated With
the total internal reflection, according to the Fresnel formulas (7.39) and (7.42),
These phasesare easily found to be

 

Ore .

sin? @ (8.122)

1 2A
dim = —2 arctan( 1

—?. arctan

 

1 — 2A yVsin26 —

where A = (nj — n}3)/2nj. The subscripts TE and TM in waveguide language
correspondto the electric field being perpendicular and parallel to the plane of
incidence in the Fresnel equations. Introducing the fiber parameter (frequency
variable) V = ka\/2A andtransverse variable é = sin 6/V2A, (8.121) can be
written

1ao(ve 22) = 5 [Eo ey
where f = 1 for TE modes and f = 1/(1 — 2A) for TM modes.

The twosides of (8.123) are plotted in Fig. 8.14 for V = 1 and V = 10. There
are seven TE and seven TM modes for V = 10. For small A the TE and TM
modesare almost degenerate. The left-hand side of (8.123) showsthat there are
roughly N ~ 4V/7 modesin all, a numberthat follows from the one-dimensional
phase-space estimate,

‘ms dhe _ ka t~ 2vNr ~ Now ~ 2a | d(sin 0) = —_

7~kmax 247 7

An appropriate expression for the roots of (8.123) for TE modesis given
in Problem 8.15. The lowest approximation, valid for V >> 1 and small p, is
&(TE) ~ (p + 1)7/2(V + 1), showing equal spacing in p, as implied by the
phase-space argument.

Although our phase coherence argument relied only on the wave in the
interior of the slab, fields exist outside, too. Their influence is expressed in
the phases ¢. From (7.46) we find that the fields outside the slab vary in x as
e(l*) where

B= kV2A — sin*6 = Y Vi — & (8.124)
a

For a fixed V, as the mode numberp increases (€— 1), B gets smaller and smaller;
the fields extended farther and farther into the cladding. For angles 8 > @nax
(€> 1), 6 becomes imaginary, corresponding to unconfined transverse fields. The
slab radiates rather than confinesthefields. In the waveguide regime,part of the
powerpropagates within the core (slab) and part outside (see Problem 8.15). For
V = 1, roughly two-thirds of the power of the TE, modeis carried within the
core. When V >> 1, the lower modesare almosttotally confined. Only for p ~
Pmax Goes any appreciable powertravel outside the core.

Note that if A is very small, 6,,., ~ W2A is small. The longitudinal propa-
gation constant k, = k cos 6 ~ k forall the waveguide modes, as we saw in the
geometrical optics approach. For the TM modes,in which thereis a longitudinal
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Figure 8.14. Graphic determination of eigenvalues for planar slab opticalfiber:
tan(Vx — pa/2) = fV1/x? — 15x = sin A\V/2A ~ OOmax, V = kaV2A (f = 1 for
TE modes, f ~ 1 + 2A for TM modes); dashed curves have f = 1.04. (a) V = 1,

= ().739 (TE), 0.747 (TM). (b) V = 10, seven roots for TE and for TM (p = 0,..., 6).

componentofelectric field E,, we have |E,/E,| = tan 0 = @nax = V2A for small
A. Thus, to zeroth order in A, the TM modeshavetransverseelectric fields and

are degenerate with the TE modes. Appropriate linear superposition of two such

degenerate modes gives a mode with arbitrary direction of polarization in the

x-y plane. Such modesare labeled LP (for linearly polarized, although they can

be circularly or elliptically polarized as well). LP modes are approximate descrip-
tions in other geometries, such as circular, provided A << 1, as Is mentioned at

the end of this section.

B. Modes in Circular Fibers

Optical fibers come in a wide variety of cross-sectional shapes, many analyz-

able only by numerical methods. Thecircular fiber with an index of refraction

that is azimuthally symmetricis one of the simplest to discuss, but even it is more

complicated than the one-dimensional slab geometry of the preceding section.
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Wegive only an introduction here. The reader wishing to go into more details
may consult the references cited at the end of the chapter.

Weconsidera fiber of uniform cross section with unit relative magnetic per-
meability and an index of refraction that does not vary along the cylinderaxis
but mayvary in the transverse directions. For the present we do notrestrict the
problem to a circular cylinder. The Maxwell equations can be combined,as in
Section 8.2, with assumed propagation as e“:*~'*", to yield the Helmholtz wave
equations for H and E,

nw
V-H + H = iwe,(Vn’) X E

c? Wr) (8.125)
2,2

aS E = v4 (Vn?) « E
nh

 VE+-—
C

where we havewritten € = ne. Just as in Section 8.2, the transverse components
of E and H can be expressed in terms of the longitudinal fields E, and H,.
Explicitly, the connections are

E, = — [k, V.E, — oot X V,H.]
y

and (8.126)

H, = -5 [k, V.H, + wegn% x V,E.]
Y

where y* = n’a*/c” — k2 is the radial propagation constant, as for metallic wave-
guides. If we take the z componentof the equations (8.125) and use (8.126) to
eliminate the transverse field components (and assumethat dn7/dz = 0), we find
generalizations of the two-dimensional scalar wave equation (8.34),

 

2
k

V-H, + yH, — (=) (V,n7) -V.H, = >Z° [V,n7 x VE]

and (8.127)

2 2 k. ° 2 wk,Mo » 2
VIE, + ¥y E, yn (V,n ) ° V_E, — yn Zs [V.n x V1, |

Ourfirst observation is that, in contrast to (8.34) for ideal metallic guides,
the equations for E, and H, are coupled. In general there is no separationinto
purely TE or TM modes. Werestrict further comments to the simple situation
of a core that is a circular cylinder of radius a with an azimuthally symmetric
index n(p). The cross products ontheright-handsidesin (8.127) are proportional
to (an*/dp)(d/pdd)[E,, H,]. Onlyif the fields have no azimuthalvariation are these
right-handsides zero; only in such circumstances are there separate TE and TM
modes. One might think that for a step-index fiber the transverse gradient of n’
would vanish, at least for p < a and for p > a; but there’s the rub. The change
from n = n, inside to n = ny outside implies a transverse gradient,

V,n° = —2niA6(p — a)p

The equations are coupled, unless the fields are independent of azimuth. The
modes with both FE, and H, nonzero are known as HE or EH hybrid modes. In
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practice, the solution is found by requiring continuity for normal D and B and

tangential E and H across p = a. Separation of variables in cylindrical coordi-

nates, assuming variation in azimuth of the form e’”® leads to solutions for E,

and H.,

E,\ — JAe imd
‘i _ {4a(n ’ p <a

Zz

and (8.128)

[E}= [Beaten 9>o
Zz

with the z and t dependences understood. Here y* = njw*/c* — kz and B* =
k2 — n3w’/c’. Matching boundary conditions at p = a, with the transverse com-
ponents computed from(8.126), leads to a determinantal eigenvalue equation
for the various modes(see Problem 8.17). One finds that the TE and TM modes
have nonvanishing ‘“‘cutoff” frequencies, with the lowest corresponding to V =
n,waV2Alc = 2.405, the first root of Jo(x). In contrast, the lowest HE mode

(HE,,) has no “cutoff” frequency. For 0 < V < 2.405, it is the only modethat

propagatesin thefiber.

The azimuthally symmetric TE or TM modescorrespond to meridionalrays;

the HE or EH modes, which have azimuthal variation, say, as sin(m@) or
cos(m@), correspond to skew rays. That “skew ray” modes have longitudinal
components of both E and H can be understood physically by considering the
total internal reflection of such a ray at p = a. Since the plane containing such a

ray and the normalto the surface does not contain the z axis, the electric field

vector after reflection will have a different projection on the z axis than before,

as will the magnetic field vector. Successive reflections therefore mix TE and TM
waves; the eigenmodes have both FE, and H, nonvanishing.

In fibers with very small A, called “‘weakly guiding waveguides”’in thelit-

erature, the fields are found to have very small longitudinal componentsand are
closely transverse. The language of plane light waves can be employed. For ex-
ample, an HE,, mode, with azimuthal dependencefor EF,of cos ¢, has fields that

are approximately linearly polarized and vary as Jo(yp) in the radial direction.

In the ‘‘weakly guided’’ approximation, this modeis labeled LPo.
The discussion so far (and some further aspects addressed in the problems)

provide a brief introduction to the subject of optical waveguides. The literature
is extensive and growing. The interested reader may gain entrée by consulting

one of the references at the end of the chapter.

8.12 Expansion in Normal Modes; Fields Generated
by a Localized Source in a Hollow Metallic Guide

For a given waveguidecross section and frequency o, the electromagnetic fields

in a hollow guide are described by an infinite set of characteristic or normal

modes consisting of TE and TM waves, each with its characteristic cutoff fre-

quency. For any given finite frequency, only a finite number of the modes can

propagate; the rest are cutoff or evanescent modes. Far away from any source,
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obstacle, or aperture in the guide, the fields are relatively simple, with only the

propagating modes (often just one) present with appreciable amplitude. Near a
source or obstacle, however, many modes, both propagating and evanescent,
must be superposed in order to describe the fields correctly. The cutoff modes

have sizable amplitudes only in the neighborhoodofthe source or obstacle;their
effects decay away over distances measured by the reciprocal of the imaginary

part of their wave number. A typical practical problem concerning a source,
obstacle, or aperture in a waveguide thus involves as accurate a solution as js

possible for the fields in the vicinity of the source, etc., the expansion of those

fields in terms of all normal modes of the guide, and a determination of the
amplitudes for the one or more propagating modesthat will describe the fields
far away.

A. Orthonormal Modes

To facilitate the handling of the expansion offields in the normal modes,it
is useful to standardize the notation for the fields of a given mode,treating TE
and TM modeson an equal footing and introducing a convenient normalization.
Let the subscript A or w denote a given mode. One maythink of A = 1, 2, 3,...
as indicating the modes arranged in some arbitrary order, of increasing cutoff
frequency, for example. The subscript A also conveys whether the modeis a TE
or I'M wave. The fields for the A mode propagating in the positive z direction
are written

E(x, y, z) = [Ex(x, y) + E(x, y)Je”* (8.129)
Hy(x, y, z) = [Ha(x, y) + HQ, y)Je””

where E,, H) are the transverse fields given by (8.31) and (8.33) and E.,, H,,
are the longitudinal fields. The wave numberk, is given by (8.37) and is taken
to be real and positive for propagating modesin lossless guides (and purely imag-

inary, k, = ik,, for cutoff modes). A time dependence e~‘”is, of course, under-

stood. For a wave propagating in the negative z direction the fields are

EX” = [E, — E,Je" (8.130)
H’”? — [—-H, 4 H,,Je7**”

The pattern of signs in (8.130) comparedto (8.129) can be understood from the
need to satisfy V-E = V-H = 0 for each direction of propagation and the
requirementof positive power flow in the direction of propagation. The overall
phase of the fields in (8.130) relative to (8.129) is arbitrary. The choice taken
here makesthe transverse electric field at z = 0 the same for both directionsof
propagation,just as is done for the voltage waves on transmissionlines.

A convenient normalization for the fields in (8.129) and (8.130) is afforded
by taking the transverseelectric fields E,(x, y) to be real, and requiring that

| E, ° E. da = 0» (8.131)jer

wherethe integralis over the cross-sectional area of the guide. [The orthogonality
of the different modes is taken for granted here. The proofis left as a problem
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(Problem 8.18), as is the derivation of the other normalization integrals listed
below.] From the relation (8.31) between electric and magnetic fields it is evident
that (8.131) implies

1
| H, ° H,, da = z2 Ory (8.132)

A

and that the time-averaged powerflow in the Ath modeis

1 , 1
5 | (E, xX H,,) -Z da = 2Z, Ory (8.133)

It can also be shown that if (8.131) holds, the longitudinal components are nor-
malized according to

TM WAVES

—

| E,E,, da = —>
ki

TE WAVES

Yi
| A.A, da = k2Z2 Ory (8.134)

Asan explicit example of these normalized fields welist the transverse elec-
tric fields and also H, and E, of the TE and TM modesin a rectangular guide.
The modeindex A is actually two indices (m, n). The normalized fields are

  

TM WAVES

27™ nay
FmnaCOSaap coe) sa)

27N ny
FE ymn = 8.135rn =as8(") os 135)
E —21Vmn sin(72) sin(222Ty

ZInht = in 7

k,Vab b

TE WAVES

 k= —27Nn cos(2) sin(22)
XMmn Yn ‘ab a b

nT27m MTX
EV an ==sin| —— cos| —— 8.136
YnVab ( a ( b 1B)

Aan =aCOS| —— COS| ——
K,Z,Vab ( a ( b

with y,,, given by (8.43). The transverse magnetic field components can be ob-
tained by meansof (8.31). For TM modes,the lowest value of m and n is unity,
but for TE modes, m = 0 orn = Ois allowed. If m = 0 orn = 0, the normalization

must be amended by multiplication of the right-handsides of (8.136) by V2.

N<
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B. Expansion ofArbitrary Fields

Anarbitrary electromagnetic field with time dependence e‘can be ex.
pandedin terms of the normal modefields (8.129) and (8.130).* It is useful to
keep track explicitly of the total fields propagating in the two directions. Thus
the arbitrary fields are written in the form

E = BO)+ BO. H = H®+ HO (8.137)

where

E® =) AME®, HO = ¥ AMH® (8.138)
Xr Xr

Specification of the expansion coefficients A{*) and A‘? determinesthefields
everywherein the guide. These may be found from boundary or source condi-
tions in a variety of ways. Hereis a useful theorem:

The fields everywherein the guide are determined uniquely by specification
of the transverse components of E and H in a plane, z = constant.

Proof: There is no loss in generality in choosing the plane at z = 0. Then from
(8.137), (8.138), and (8.129), (8.130), the transverse fields are

E, = >, (AW? + AD)E,
* (8.139)

H, = > (AG— AG®)H,.<

If the scalar product of both sides of the first equation is formed with E, and an
integration over the cross section of the guide is performed, the orthogonality
condition (8.131) implies

AS? + AD = | E, - E, da

Similarly the second equation, with (8.132), yields

AS? — AY? = 2 | H, - H, da

The coefficients A{~) are therefore given by

1
AY = 9 | (E, ° E, * Z°H, ° H,) da (8.140)

This showsthat if E, and H, are given at z = 0, the coefficients in the expansion
(8.137) and (8.138) are determined. The completeness of the normal mode ex-
pansion assures the uniquenessof the representationforall z.

C. Fields Generated by a Localized Source

The fields in a waveguide may be generated by a localized source, as shown
schematically in Fig. 8.15. The current density J(x, f) is assumed to vary in time
as e‘”’. Becauseofthe oscillating current, fields propagate to the left and to the

“We pass over the mathematical problem of the completeness of the set of normal modes, andalso

only remark that more general time dependencescan be handled by Fourier superposition.
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: Figure 8.15 Schematic representation of a
| localized source in a waveguide. The walls

z—> : of the guide, together with the planes S,
| and S_, define the volume containing the

- Sy source.

right. Outside the source, at and to the right of the surface S.,, say, there will be
only fields varying as e“** and theelectric field can be expressed as

E= EO = ¥ AWE” (8.141)
T

with a corresponding expression for H. On and to the left of the surface $_ the
fields all vary as e“** and theelectric fieldis

E = E= > ADE® (8.142)
a

To determinethe coefficients Ain terms of J, we consider a form of the
energy flow equation of Poynting’s theorem. The identity

V-(E x H® — E® x WH) =J- EY (8.143)

follows from the source-free Maxwell equations for E\~, HS“, and the Maxwell
equations with sourcesatisfied by E and H.Integration of (8.143) over a volume
V boundedbya closed surface S leads, via the divergence theorem,to the result,

| (E x H& — E® x H)-nda = | J» ESdx (8.144)
s V

where n is an outwardly directly normal. The volume V is now chosento be the
volume boundedby theinner walls of the guide and two surfaces S$, and S_ of
Fig. 8.15. With the assumptionof perfectly conducting walls containing no sources
or apertures, the part of the surface integral over the walls vanishes. Only the

integrals over S$, and S_ contribute. For definiteness, we choose the Jowersign

in (8.144) and substitute from (8.141) for the integral over S,:

[ =S.ae| a-x BO — EDx AY?)da
S4. Xr’ S4.

With the fields (8.129) and (8.130) and the normalization (8.133), this becomes

| ~2AY (8.145)
Sy Zy *

The part of the surface integral in (8.144) from S_ is

| =—) Av? | z+- (EG x HY? — EX? x HY”) da
S_ Xr’ S_
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which can easily be shownto vanish. For the choice of the lowersign in (8.144)
therefore, only the surface S, gives a contribution to the left-handside. Similarly
for the upper sign, only the integral over S_ contributes. It yields (8.145), but
with A\”instead of A(*). With (8.145) for the left-hand side of (8.144), the
coefficients A‘) are determined to be

. Z -
AY = > [3 » EY? d?x (8.146)

where the field E{*of the normal mode A is normalized according to (8.131).
Note that the amplitude for propagation in the positive z direction comesfrom
integration of the scalar product of the current with the modefield describing
propagation in the negative z direction, and vice versa.

It is a simple matter to allow for the presence of apertures (acting as sources
or sinks) in the walls of the guide between the two planes S, and S_. Inspection
of (8.144) showsthat in such circumstances (8.146) is modified to read

Z _ Z _
AY? = & | (E x HY) -nda - Z| J+ EX? d’x (8.147)

2 apertures 2 Vv

where

E

is the exact tangential electric field in the apertures and n is outwardly
directed.

The application of (8.146) to examples of the excitation of waves in guides
is left to the problemsat the end of the chapter. In the next chapter (Section 9.5)
we consider the question of a source that is small compared to a wavelength and
derive an approximation to (8.146): the coupling of the electric and magnetic
dipole momentsof the source to the electric and magnetic fields of the Ath mode.
The coupling of waveguides by small apertures is also discussed in Section 9.5.
The subject of sources and excitation of oscillations in waveguides and cavities
is of considerable practical importance in microwave engineering. Thereis a vo-
luminousliterature on the topic. One of the best references is the book by Collin
(Chapters 5 and 7).

D. Obstacles in Waveguides

Discontinuities in the form of obstacles, dielectric slabs, diaphragms, and
apertures in walls occur in the practical use of waveguidesascarriers of electro-
magnetic energy and phase information in microwave systems. The expansion of
the fields in normal modesis an essential aspect of the analysis. In the second
(1975) edition of this book we analyzed the effects of transverse planar obstacles
with variational methods (Sections 8.12 and 8.13). Lack of space prevents inclu-
sion of the material here. The reader interested in pursuing these questions can
refer to the second edition or the references mentioned below andin the Ref-
erences and Suggested Reading.

Theoretical and experimental study of obstacles, etc. loomed large in the
immense radar research effort during the Second World War. The contributions
of the United States during 1940-45 are documented in the MassachusettsInsti-
tute of Technology Radiation Laboratory Series, published by the McGraw-Hill
Book Company, Inc., New York. The general physical principles of microwave
circuits are covered in the book by Montgomery, Dicke, and Purcell, while a
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compendium of results on discontinuities in waveguidesis provided in the volume

by Marcuvitz. Collin, already cited, is a textbook source.

References and Suggested Reading

Waveguides and resonant cavities are discussed in numerouselectrical and commu-

nications engineering books, for example,

Ramo, Whinnery, and Van Duzer, Chapters 7, 8, 10, and 11
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Schelkunoff, Electromagnetic Fields
Schelkunoff, Applied Mathematics for Engineers and Scientists

Amongthe physics textbooks that treat waveguides, transmission lines, and cavities are
Panofsky and Phillips, Chapter 12
Slater

Smythe, Chapter XIII
Sommerfeld, Electrodynamics, Sections 22-25

Stratton, Sections 9.18—-9.22

An authoritative discussion appears in
F. E. Borgnis and C. H. Papas, Electromagnetic Waveguides and Resonators, Vol.
XVI of the Encyclopaedia of Physics, ed. S. Flugge, Springer-Verlag, Berlin

(1958).
The books by

Collin
Harrington

Johnson
Waldron

are intended for graduate engineers and physicists and are devoted almost completely to
guided wavesand cavities. The standard theory, plus many specialized topics like discon-
tinuities, are covered in detail. The original work on variational methods for discontinu-
ities 1s Summarized in

J. Schwinger and D.S. Saxon, Discontinuities in Waveguides, Notes on Lectures

by Julian Schwinger, Gordon & Breach, New York (1968).

Variational principles for eigenfrequencies, etc., as well as discontinuities, are sur-
veyed in

Cairo and Kahan
and also discussed by

Harrington, Chapter 7
Van Bladel, Chapter 13
Waldron, Chapter 8

The definitive compendium of formulas and numerical results on discontinuities,
junctions, etc., in waveguidesis

Marcuvitz

The mathematical tools for the treatment of these boundary-value problemsare pre-
sented by

Morse and Feshbach,especially Chapter 13
Perturbation of boundary conditions is discussed by Morse and Feshbach (pp. 1038ff).
Information on special functions may be found in the ever-reliable

Magnus, Oberhettinger, and Soni, and in encyclopedic detail in
Bateman Manuscript Project, Higher Transcendental Functions.
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Numerical values of special functions, as well as formulas, are given by

Abramowitz and Stegun
Jahnke, Emde, and Lésch

Two booksdealing with propagation of electromagnetic waves around the earth and
in the ionosphere from the point of view of waveguides and normal modesare

Budden
Wait

See also

Galejs

Schumann resonancesare also described in detail in

P. V. Bliokh, A. P. Nicholaenko, and Yu.F. Filtippov, Schumann Resonancesin

the Earth-Ionosphere Cavity, transl. S. Chouet, ed. D. L. Jones, IEE Electro-

magnetic Wave Series, Vol. 8, Peter Peregrinus, London (1980).

There is a huge literature of the theory and practice of optical fibers for communi-
cations. Our discussion in Sections 8.10 and 8.11 has benefited from the comprehensive
book

A. W.Snyder and J. D. Love, Optical Waveguide Theory, Chapman & Hall, New

York (1983).

Bookswith discussions of the waveguide aspects, as well as much practical detail, are

J. M. Senior, Optical Fibre Communications, 2nd ed., Prentice-Hall, New York

(1992).

C. Vassallo, Optical Waveguide Concepts, Elsevier, New York (1991).
Numerical methods are often required for optical waveguide geometries. A useful refer-
ence 1s

F. A. Fernandez and Y. Lu, Microwave and Optical Waveguide Analysis by the

Finite Element Method, Research Studies Press & Wiley, New York (1996).

Problems

8.1 Consider the electric and magnetic fields in the surface region of an excellent con-
ductor in the approximation of Section 8.1, where the skin depth is very small
comparedto the radii of curvature of the surface or the scale of significant spatial
variation of the fields just outside.

(a) For a single-frequency component, show that the magnetic field H and the
current density J are such that f, the time-averaged force per unit area at the
surface from the conduction current, is given by

Me

where Hj)is the peak parallel component of magnetic field at the surface, py,
is the magnetic permeability of the conductor, and n is the outward normal at
the surface.

(b) Ifthe magnetic permeability » outside the surface is different from p,, is there

an additional magnetic force per unit area? What aboutelectric forces?

(c) Assume that the fields are a superposition of different frequencies (all high

enoughthat the approximationsstill hold). Show that the time-averaged force



Ch.8 Problems 397

takes the same form as in part a with |H)|? replaced -by 2(|H,|*), where the
angle brackets (- - -) mean time average.

8.2. A transmission line consisting of two concentric circular cylinders of metal with
conductivity o and skin depth 6, as shown,isfilled with a uniform lossless dielectric

(uw, €). A TEM modeis propagated along this line. Section 8.1 applies.

(a)

 

Show that the time-averaged powerflow alongthe lineis

b
P= i ma” | Ho|? in(?)

E a

where Hp is the peak value of the azimuthal magnetic field at the surface of

the inner conductor.

Problem 8.2

(b) Show that the transmitted power is attenuated along theline as

(c)

(d)

P(z) = Poe2%

where

(es)— + —

1 « \a_ b

Y 2068 |e b
In| —

a

The characteristic impedance Z, ofthe line is definedas theratio of the voltage
between the cylinders to the axial current flowing in one of them at any

position z. Show thatfor this line

b
Lo = i [- in?)

27 € a

Show that the series resistance and inductanceper unit length of the line are

1 1 1
R= —_— + —

2700 (1 *

a b po fl 1
= {+ In(-] + =~+=

L {#in(2) Aor (1 *)}

where p, is the permeability of the conductor. The correction to the induc-
tance comesfrom the penetration of the flux into the conductors by a distance

of order 6.
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8.3

8.4

8.5

(a) ‘A transmission line consists of two identical thin strips of metal, shown ip

cross section in the sketch. Assuming that b >> a, discuss the propagation of

a TEM modeonthis line, repeating the derivations of Problem 8.2. Show that

brofee€

1 €
Y= TeV E

a Vols)
2

K = Fab
Op= (Mone)

 

 

 
Problem 8.3

where the symbols on the left have the same meanings as in Problem 8.2.

(b) ‘The lower half of the figure shows the cross section of a microstrip line with

a strip of width b mounted on a dielectric substrate of thickness h and dielectric
constant ¢, all on a ground plane. What differences occur here compared to
partaifb > h?Ifb <h?

Transverse electric and magnetic waves are propagated along a hollow,right cir-
cular cylinder with inner radius R and conductivity o.

(a) Find the cutoff frequencies of the various TE and TM modes. Determine

numerically the lowest cutoff frequency (the dominant mode) in terms of the
tube radius andthe ratio of cutoff frequencies of the next four higher modes
to that of the dominant mode.For this part assume that the conductivity of
the cylinderis infinite.

(b) Calculate the attenuation constants of the waveguide as a function of fre-
quency for the lowest two distinct modes and plot them as a function of
frequency.

A waveguide is constructed so that the cross section of the guide forms a right

triangle with sides of length a,a, V/2a, as shown. The medium inside has by, =

é, = 1.



8.6

8.7

8.8
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(a) Assuminginfinite conductivity for the walls, determine the possible modes of
propagation andtheir cutoff frequencies.

Problem 8.5

(b) For the lowest modesof each type calculate the attenuation constant, assuming

that the walls have large, but finite, conductivity. Compare the result with that
for a square guide of side a made from the same material.

A resonant cavity of copper consists of a hollow, right circular cylinder of inner
radius R and length L, with flat end faces.

(a) Determine the resonant frequencies of the cavity for all types of waves. With
(1/V pe R) as a unit of frequency, plot the lowest four resonant frequencies
of each type as a function of R/L for 0 < R/L < 2. Does the same mode have
the lowest frequency for all R/L?

(b) If R = 2 cm, L = 3 cm,andthe cavity is made of pure copper, what is the
numerical value of Q for the lowest resonant mode?

A resonant cavity consists of the empty space between two perfectly conducting,
concentric spherical shells, the smaller having an outer radius a and the larger an
inner radius b. As shown in Section 8.9, the azimuthal magnetic field has a radial
dependencegiven by spherical Bessel functions, j,(kr) and n,(kr), where k = wc.

(a) Write down the transcendental equation for the characteristic frequencies of

the cavity for arbitrary 1.

(b) For/ = 1 use the explicit forms of the spherical Bessel functions to show that
the characteristic frequencies are given by

(x + =|
tan kh _ ab

kh 2 2 1 2 1ke + ab\ 75 Ke

where h = b — a.

(c) For h/a < 1, verify that the result of part b yields the frequency found in
Section 8.9, and find the first order correction in h/a. [The result of part b
seems to have been derivedfirst by J. J. Thomson and published in his book
Recent Researches in Electricity and Magnetism, Oxford Clarendon Press,

1893, pp. 373 ff.]

For the Schumannresonances of Section 8.9 calculate the Q values on the assump-

tion that the earth has a conductivity o, and the ionosphere has a conductivity o;,

with corresponding skin depths 6, and 6,.

(a) Show that to lowest orderin h/a the Q valueis given by Q = Nh/(6, + 6;) and

determine the numerical factor N forall /.

(b) For the lowest Schumannresonance evaluate the Q value assuming o, = 0.1

(Om)~!, a; = 107° (Om)~1, A = 10° km.
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8.9

8.10

(c) Discuss the validity of the approximations used in part a for the range of
parameters used in partb.

A hollow volume V containing a uniform isotropic linear medium (e, 1) is bounded

by a perfectly conducting closed surface S$ (which may have morethan one discon-
nected part). A harmonic electric field inside the cavity satisfies the vector
Helmholtz equation,

Vx(VXxE)=kKE with k* = wpe

The boundary condition isn xX E = 0 (andn-B = 0) on S.

(a) Show that

[ Be-[v x (Vx Ey ax
== 

[ ex-pats
V

is a variational principle for the eigenvalue k* in the sense that a change of
E — E + OE, where both E and 6Esatisfy the boundary conditions on S, leads
to only second-order changesin k?.

(b) Apply the variational principle to the TMoi9 modeofa right cylindrical cavity

of radius R and length d, using the trial longitudinal electric field E, =
FEcos(7p/2R) [no variational parameters]. Show that the estimate of the ei-
genvalue is

a |7+4
kKR=->8 7 \r 4

Compare numerically with the knowneigenvalue, the root xo, of Jo(x).

(c) Repeat the calculation of part b with E, = E, [1 + a(p/R)* — (1 + a)(p/R)‘),
where a is a variational parameter. Show that for this trial function the best
estimate is

17 — 2\V/34\ ]*”
kR = 80:

 

68 + V34

How muchbetteris this truly variational calculation than part b?

Use the variational principle of Problem 8.9 in terms of the electric field E to find
an estimate of the eigenvalue for k* for the TE,;, modein a rightcircular cylinder
cavity of radius RK and length d with perfectly conducting walls. Use as a trial func-
tion B, = Bo(p/R) (1 — p/2R) cos ¢ sin(7z/d). [This function satisfies the boundary
conditions of B, = 0 at z = 0 and z = d, and 0B,/dp = 0 at p= R.]

(a) First show that the variational principle can be reexpressed as

[ (wx BS) -(V x B) ds
2 = — 

[ ee -B ax
V

(b) Showthat the (transverse) components of the (trial) electric field are

E, = Eo(1 — p/2R) sin ¢ sin(az/d); Ey = E,(1 — p/R) cos @ sin(7z/d)

(c) Calculate the curl of E and show that the approximation for k? is

18 @
aR ee
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Compare with the exact result. For small enough d/R, this mode hasa larger

eigenvalue than the TM) mode. Why should the present variational estimate

be at all reliable?

(d) The original variational expression in Problem 8.9 has an equivalent integrand
in the numerator, E*-[V(V-E) — V’E]. Discuss the relative merits of this
integrand compared with the square of the curl of E in part a for the present
problem.

Apply the variational method of Problem 8.9 to estimate the resonant frequencyof
the lowest TM mode in a “breadbox”’ cavity with perfectly conducting walls, of
length d in the z direction, radius R for the curved quarter-circle “front” of the
breadbox,and the “bottom” and “‘back”’ of the box defined by the plane segments
(y = 0,0 <x < R) and (x = 0,0 < y < R), respectively. Use the trial function,

E, = E,(p/R)’ — p/R)sin 2¢

for the only componentofelectric field present. This function gives vanishing tan-
gential component of E on the boundary surfaces; the index is a variational pa-
rameter. Show that

(v + 2)(2Qv + 3)\(07 + v + 4)

v(2v + 1)
 k?R? _—

Minimize with respect to v to find the best estimate of KR from the giventrial
function. Compare with the exact answer, kR = 5.13562,the first root of J>(x).

A waveguide with lossless dielectric inside and perfectly conducting walls has a
cross-sectional contour C that departs slightly from a comparison contour Cy whose
fields are known. The difference in boundaries is described by 6(x, y), the length
measured from Cy to C along the normal to Cp at the boundary point(x, y). The
derivative d6/ds along the boundaryis higher order in small quantities.

(a) Ifthe eigenvalue parametersand solutions for C and Cy are (y*, W) and (¥6, YW),

respectively, without degeneracy, show thatto first order in 6

Awol ge Pop 50,9) : - vis Se] al
an on?

2
  
 

| | Wo? dx dy
So

where only the first (second) term in the numerator occurs for TM (TE)
modes.[Hint: Follow the same general approachas usedin Section 8.6 for the

effects of finite conductivity.|

(b) Determine the perturbed value of y’ for the lowest TE and TM modes(TE;0
and TM,,,) in a rectangular guide if the change in shape is as shown in the

accompanying sketch.

 

New

boundary

   
a *~ Problem 8.12
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8.13 To treat perturbationsif there is a degeneracy of modesin guides or cavities under
ideal conditions, one must use degenerate-state perturbation theory. Consider the

two-dimensional (waveguide) situation in which there is an N-fold degeneracy in
the ideal circumstances (of perfect conductivity or chosen shape of cross section),
with no other nearby modes. Thereare N linearly independentsolutions i, chosen
to be orthogonal, to the transverse wave equation, (V; + yo)#i? = 0,1 = 1,2,...,
N. In response to the perturbation, the degeneracyis in generallifted. There is g

set of perturbed eigenvalues, yz, with associated eigenmodes, #,, which can be

expanded (in lowest order) in terms of the N unperturbed eigenmodes: y, =

Laips?.

(a) Show that the generalization of (8.68) for finite conductivity (and the corre-
sponding expression in Problem 8.12 on distortion of the shape of a wave-

guide) is the set of algebraic equations,

N

» [(y? — yo)N6; + Ayla; = 0 (j =1,2,...,N)

where

ap?” ap

n,= |lwpr da and Ay = f anay HE

for finite conductivity, and

_ IW” WY ne Py?
Ais = P ox, »| on on 0 6n? al

for distortion of the boundary shape.

(b) The lowest modein a circular guide of radius R is the twofold degenerate TE,,

mode,with fields given by

W = B, = BoJ,(yop) exp(+id) exp(ikz — iwt)

The eigenvalue parameteris yp = 1.841/R, corresponding to thefirst root of
dJ,(x)/dx. Suppose that the circular waveguide is distorted along its length
into an elliptical shape with semimajor and semiminor axes, a = R + AR,
b = R — AR,respectively. To first order in AR/R, the area and circumfer-
ence of the guide remain unchanged. Show that the degeneracyis lifted by
the distortion and that to first order in AR/R, yj = yo(1 + AAR/R) and y3 =
yo(1 — AAR/R). Determine the numerical value of A and find the eigenmodes
as linear combinations of *?. Explain physically why the eigenmodes turn
out as they do.

8.14 Consider an optical fiber with a graded index of refraction for rays confined to the
x-z plane, n(x) = n(0) sech(ax). The fiber has large enough transverse dimensions
(x) to contain all rays of interest, which are evidently symmetric about x = 0. The
invariant 0 = N(Xmax) = n(0) cos 6(0).

(a) Solve the eikonal equations for the transverse coordinate x(z) of the ray and
show that

ax = sinh™'[sinh(axmax) sin(@z)]

where the origin in z is chosen when the ray has x = 0. Sketch rays over one

half-period for ‘“‘launch angles” 6(0) = 7/6, 7/4, and 7/3.

(b) Find the half-period Z of the ray. Does it depend on n?

(c) Show that the optical path length for a half period, Loo. = Jn(x) ds is Lop =
n(0)Z. Commenton the effectiveness of this particular grading of the index.
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Hint: In the computation of L.,, a useful change of variables is sinh(ax) =
sinh(a@Xmax) sint. The resulting integral can be done by contour integration:

a/2
| dé _ T

o Llt+a’*sin*O@ 2V1+ a

Discuss the TE and TM modesin the dielectric slab waveguide of Section 8.11.A
as a boundary-value problem.

(a) Showthat (8.123) emerges as the determiningrelation for both even and odd
modes(in x) and that even or odd p goes with the evenness or oddness of the
mode, defined by the symmetry in x of the transversefields.

(b) Show that the eigenvalues of € for the TE modes are given approximately by

_ (pt l)a rE _ (p + ue

o~ 2(V + 1) 24(V + 1)3

The lowest orderresult is accurate for V >> 1 and small p. Check the accuracy
of the full expression against solution of (8.123) by Newton’s method for

V = 1, 2,3.

(c) Calculate the powerflow in the z direction (per unit length in the y direction)
within the core (|x| < a) and in the cladding (|x| > a) for the even TE modes
and show that the fractions are

1 sin(2Vé) 1 cos*(Vé)Foe ==] 1+ d Fue = = |—core | 2VE | ™ iad s [mre
where

_ sin(2Vé) _cos*(Vé)_
s=|i4 2Vé (Ss

where €is the root of (8.123) for the pth mode. Find corresponding expressions
for the odd TE modes.

The longitudinal phase velocity in the dielectric slab waveguide of the preceding
problem is v, = w/k, = c/(n, cos 6,). Intermodal dispersion occurs because the
dielectric media have dispersion and also because the group velocity differs intrin-

sically for different modes.

(a) Making the approximation that the dielectrics’ dispersion can be neglected,
show that the group velocity v, = dw/dk, for the TE, modeis

= £08| 1 + B,a
U =

8 ny cos*@, + B,a

where 6, is the eigenangle of the pth mode (cos 6, = V1 — 2Aé?) and 8,is
given by (8.124). Interpret the departure from u,v, = c’/n{ (as in metallic
waveguides; B, — ©) in terms of the Goos—H4ancheneffect and ray-like prop-
agation at the simple phase speed c/n,. [Hint: Write the eigenvalue relation
(8.121) in terms of the independentvariable w and the dependent variable k,
and differentiate with respect to .]

(b) Write a program to evaluate v, versus V/V,, where V, = p7/2 is the threshold
frequency variable for the p™ mode. Makea plot of v,/c for n; = 1.5, nz = 1.0

for p = 0,1, 2,..., 6 as a function of V/V,(p = 1) on the range (0, 10).

(c) Relate the results of part b to the optical path length difference for the step-
index fiber shownin Fig. 8.12b. Can you generate a plot from the results for
u,(p) at fixed V for n, = 1.01, n. = 1.0 to compare with the ‘‘classical’’ ray
result?
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8.17 Consider the propagating modesin a cylindrical optical fiber waveguide of radiys

8.18

8.19

a with a step index of refraction, n, in the core (p < a) and n, <n, in the cladding
(o > a). Assumethatthe fields vary as e’”° *:*-'*", For bound modes,thefields ip
the core (cladding) are proportional to ordinary (modified) Bessel functions J,(K,)
with appropriate values of v and argument,as in (8.128).

(a) Show that for m # 0 the eigenvalue relation for the transverse parameter Venn

(and Brn) is

nid,  neKi\(1Ji, 1K m (ni n5\(1 1
Sat 4ee t+ Slants
Y Im  B Km}\¥JIm BK a\y Bp )\y B

where y* = nja*/c? — k2 and B? = k?2 — n3a*/c?, while primes indicate deriy-
atives with respect to the argument, and the argumentofJ, (K,,) is ya (Ba).

The first subscript on y is the azimuthal index m; the second designates the
nth root of the eigenvalue equation for fixed m.

(b) Determine the eigenvalue equation for the m = 0 modes (TE and TM) and

show that the lowest “cutoff” frequency corresponds to V = 2.405,thefirst
root of Jo(x), where ‘‘cutoff” is the frequency below which the guide radiates
rather than confines.

(c) Show that the lowest HE mode (HE,,) has no cutoff frequency and that
for V <1 the decay parameter Ba ~ Ae~®”’. Find A and B intermsof n,
and Ny.

(a) From the use of Green’s theorem in two dimensions show that the TM and
TE modesin a waveguide defined by the boundary-value problems(8.34) and
(8.36) are orthogonal in the sense that

| E,,E,,da = 0 forrA # pw
A

for TM modes, and a correspondingrelation for H, for TE modes.

(b) Prove that the relations (8.131)—(8.134) form a consistent set of normalization
conditions for the fields, including the circumstances when A is a TM mode
and wis a TE mode.

The figure showsa cross-sectional view of an infinitely long rectangular waveguide
with the center conductorof a coaxial line extending vertically a distance h intoits
interior at z = 0. The current along the probe oscillates sinusoidally in time
with frequency , and its variation in space can be approximated as I(y) =
Ip sin[(w/c)(h — y)]. The thickness of the probe can be neglected. The frequencyis
such that only the TE), mode can propagate in the guide.

E a a|
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| Problem 8.19

(a) Calculate the amplitudes for excitation of both TE and TM modesforall

(m, n) and show howthe amplitudes depend on m and n for m,n >> 1 for a
fixed frequency w.



8.20
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(b) For the propagating mode show that the power radiated in the positive z

direction is

272eclo . 4f 7X\ . 4f oh
p-&2 ae

wkab smn ( a sin 2c

with an equal amountin the opposite direction. Here k is the wave number

for the TE,,) mode.

(c) Discuss the modifications that occur if the guide, instead of running off to
infinity in both directions, is terminated with a perfectly conducting surface at
z = L. What values of L will maximize the powerflow for a fixed current Ip?
Whatis the radiation resistance of the probe (defined as the ratio of power
flow to one-half the square of the current at the base of the probe) at

maximum?

Aninfinitely long rectangular waveguide has a coaxial line terminating in the short
side of the guide with the thin central conductor forming a semicircular loop of
radius R whosecenter is a height 4 above the floor of the guide, as shownin the
accompanying cross-sectional view. Thehalf-loop is in the plane z = 0 andits radius
R is sufficiently small that the current can be taken as having a constant value Ip

everywhere onthe loop.

 

 

 at
b

  | Problem 8.20 

(a) Prove that to the extent that the current is constant aroundthe half-loop, the
TM modes are not excited. Give a physical explanation of this lack of

excitation.

(b) Determine the amplitude for the lowest TE modein the guide and show that

its value is independentof the height h.

(c) Show that the powerradiated in either direction in the lowest TE modeis
4

I, ~af{aR
P=—Z-(|—

16 “ (2)

where Z is the wave impedanceof the TE;, mode. Here assume R <<a,b.

A hollow metallic waveguide with a distortion in the form of a localized bend or
increase in cross section can support nonpropagating (‘‘boundstate’’) configura-
tions of fields in the vicinity of the distortion. Consider a rectangular guide that has
its distortion confined to a plane, as shown in the figure, and TE jo as its lowest

propagating mode, with perpendicular electric field E, = yw. On either side of
the distortion the guide is straight and of width a. Without distortion, ~ =
E, sin(y/a) exp(+ikz), where k* = (w/c)? — (a/a)’. The distortion is described by
a curvature x(s) = 1/R(s) and a width w(s). Locally the elementof areain the plane
is dA = h(s, t) ds dt, where s is the length along the guide wall and r the transverse
coordinate, as shown in the figure, and hA(s, ft) = 1 — x(s)t. In terms of s and ¢ the

Laplacian is

10. ab\ 14 (1 0p
2. —_ —— —_—}]+-—-—{-—

ve re (nS) ro (ia)
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If the distortions are very small and change slowly ins on the scale of the width
a, an ansatz for the solution is

ws, t) - HOW sn} mt
s,t) = —~

Vis, 1) Lw(s)
[The factor in the denominatoris equivalent to the factor p-‘” familiar from Besse]
functions that converts the radial part of the Laplacian in polar coordinatesto a
simple secondpartial derivative (plus an additional term without derivatives). ]

(a) Show that substitution of the ansatz into the two-dimensional wave equation,
(V* + w/c’) = 0, leads to the equation for u(s),

du 1 1
as? + [k* — v(s)]u = 0 with v(s) = (oe — +) 4 K*(s)

if small terms are neglected. Interpret v(s) in analogy with the Schrédinger
equation in one dimension.

If the distortion is in the form of a bend through an angle 6 with constant(b)
radius of curvature R >> a, show that for 0a/R << 1 thereis a “‘boundstate”

2 a 2
5 TIC a
~ |—]/ 1 — [(—~—“b= (F)|-(G)

References: J. Goldstone and R.L. Jaffe, Phys. Rev. B 45, 14100 (1992); J. P.
Carini, J.T. Londergan, K. Mullen, and D. P. Murdock, Phys. Rev. B 48, 4503

at frequency wo where

(1993).

| K(s) = 1/R(s)

|
V

Problem 8.21



CHAPTER 9

Radiating Systems, Multipole Fields
and Radiation

In Chapters 7 and 8 we discussed the properties of electromagnetic waves and
their propagation in both bounded and unbounded geometries, but verylittle
was said about the generation of such waves. In the present chapter we turn to
this question and discuss the emission of radiation by localized systemsof oscil-

lating charge and current densities. Theinitial treatmentis straightforward, with-
out elaborate formalism. It addresses simple systems in which electric dipole,
magnetic dipole, or electric quadrupole radiation dominates, or the sources are
sufficiently simple that direct evaluation of the radiation fields is easy. The simple
multipole expansion of a source in a waveguideis also treated, and the effective
multipole moments of apertures. These ‘“‘elementary”’ discussions are followed
by the systematic development of multipole fields of arbitrary order (/, m) and
the derivation of exact formulas for multipole radiation of any order bylocalized

harmonic systems. Some comparisons of the simple and systematic approaches
are made. Applications to scattering are presented in Chapter 10, along with
diffraction and the optical theorem. Considerationsof the relativistic Liénard—
Wiechertfields and radiation by rapidly moving charged particles are deferred

to Chapters 14 and15.

9.1 Fields and Radiation of a Localized Oscillating Source

For a system of charges and currents varying in time we can make a Fourier

analysis of the time dependenceand handle each Fourier componentseparately.

Wetherefore lose no generality by considering the potentials, fields, and radia-
tion from a localized system of charges and currents that vary sinusoidally in

time:

p(x, t) = p(xje (0.1)
J(x, t) = J(x)e

As usual, the real part of such expressions is to be taken to obtain physical
quantities.* The electromagnetic potentials and fields are assumed to have the
same time dependence. The sources are located in otherwise empty space.

*See Problem 9.1 for some of the subtleties that can arise over factors of 2. There are also factors of
2 in the correspondence betweenclassical and quantum-mechanical quantities. For example,in a one-
electron atom our classical dipole momentp is replaced by 2e(f|r|i) for a transition from state i to

state f.

407
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It was shown in Chapter 6 that the solution for the vector potential A(x, t)

in the Lorenz gaugeis

Mo J(x’, ¢') Ix — x’|
Ace, ) = 22 [ ae | ae FO oy 4 REI, 9,

(x, ) Aa * Ix — x’| ( C (9.2)

provided no boundary surfaces are present. The Dirac delta function assures the
causal behavior of the fields. With the sinusoidal time dependence (9.1), the

solution for A becomes

ik|x—x’|
bh rv & ,

A(x) = de | I(x’)7 d°x (9.3) 

where k = w/c is the wave number, and a sinusoidal time dependenceis under-

stood. The magnetic field is given by

1
H=—-VxA (9.4)

Mo

while, outside the source, the electric field is

iZoE =
k
VxH (9.5)

where Zo = V po/€ is the impedanceof free space.

Given a current distribution J(x’), the fields can, in principle at least, be
determined bycalculating the integral in (9.3). We will consider one or two ex-
amples of direct integration of the source integral in Section 9.4. But at present
we wish to establish certain simple, but general, properties of the fields in the
limit that the source of current is confined to a small region, very small in fact
compared to a wavelength. If the source dimensionsare of order d and the wave-
length is A = 27c/w, and if d << A, then there are three spatial regions ofinterest:

The near (static) zone: d<xr<i

The intermediate (induction) zone: d<r~aA

The far (radiation) zone: d<A<r

Wewill see that the fields have very different properties in the different zones.
In the near zone the fields have the character of static fields, with radial com-

ponents and variation with distance that depend in detail on the properties of
the source. In the far zone, on the other hand, the fields are transverse to the

radius vector andfall off as r~', typical of radiation fields.
For the near zone where r < A (or kr < 1) the exponentialin (9.3) can be

replaced by unity. Then the vector potential is of the form already considered in
Chapter 5. The inverse distance can be expandedusing (3.70), with the result,

 

. Ho Aq Yim(9, oy) "7 ’ ! !lim A(x) = ie >Ta J(x’)r"V7(0', b') d?x’ (9.6)

This shows that the near fields are quasi-stationary, oscillating harmonically as
e'** but otherwise static in character.

In the far zone (kr >> 1) the exponential in (9.3) oscillates rapidly and de-
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termines the behavior of the vector potential. In this region it is sufficient to
approximate*

Ix —x’|=r—n-x’ (9.7)

where n is a unit vector in the direction of x. Furthermore, if only the leading
term in kris desired, the inverse distance in (9.3) can be replaced by r. Then the
vector potential is

 

[Lo eikr | lex’ 73

lim A(x) = — J(x’je*™™™ dex! ,jim A(x)

=

77 ——

|

S(x'e x (9.8)

This demonstratesthatin the far zone the vector potential behaves as an outgoing
spherical wave with an angular dependentcoefficient.It is easy to showthat the
fields calculated from (9.4) and (9.5) are transverse to the radius vector andfall
off as r~". They thus correspondto radiation fields. If the source dimensions are
small compared to a wavelength it is appropriate to expand the integral in (9.8)
in powersof k:

 lim A(x) = “22° 5 aan | J(x’)(n- x')” d3x' (9.9)
kr—- oo Ar r n

The magnitude of the nth term is given by

I 3,17 J(x')(kn + x’)” d°x (9.10)

Since the order of magnitude of x’ is d and kdis small compared to unity by
assumption, the successive terms in the expansion of A evidently fall off rapidly
with m. Consequently the radiation emitted from the source will come mainly
from thefirst nonvanishing term in the expansion (9.9). We will examinethefirst
few of these in the following sections.

In the intermediate or induction zone the two alternative approximations
leading to (9.6) and (9.8) cannot be made; all powers of kr must be retained.
Without marshalling the full apparatus of vector multipole fields, described in
Sections 9.6 and beyond, wecan abstract enough for our immediate purpose. The
key result is the exact expansion (9.98) for the Green function appearing in (9.3).
For points outside the source (9.3) then becomes

A(x) = poik > hy(Kr)Yin(9, ) | Ix)jkr)Vim(, b') d?x' (9.11)

If the source dimensions are small compared to a wavelength, Ji(kr') can be
approximated by (9.88). Then the result for the vector potential is of the form
of (9.6), but with the replacement,

1 eikr 5 ) 0

vl ia [1 + a,(ikr) + aj(ikr)? + --- + a,(ikr)y'] (9.12)

“Actually (9.7) is valid for r >> d, independent of the value of kr. It is therefore an adequate ap-
proximation even in the near zone.



410 Chapter9 Radiating Systems, Multipole Fields and Radiation—SI

The numerical coefficients a; come from the explicit expressionsfor the spherical
Hankel functions. The right-hand side of (9.12) shows the transition from the
static-zone result (9.6) for kr < 1 to the radiation-zone form (9.9) for kr >> 1.

Before discussing electric dipole and other types of radiation, we examine
the question of electric monopole fields when the sources vary in time. The analog
of (9.2) for the scalar potential is

1 hoa _

®(x, t) = | d3x! | dt'a 1G 4, aX ‘
X — xXATE, C

 

The electric monopole contribution is obtained by replacing Ix — x’| > |x| =r
underthe integral. The result is

= t — ric)

ATE,
 

t’

Dnonopole(X; t) — a

where q(t) is the total charge of the source. Since charge is conserved and a
localized source is by definition one that does not have charge flowing into or
away from it, the total charge

q

isindependentof time. Thusthe electric monopole
part of the potential (andfields) of a localized source is of necessity static. The
fields with harmonic time dependence e~’*", w # 0, have no monopole terms.

We now turn to the lowest order multipolefields for w * 0. Because these
fields can be calculated from the vector potential alone via (9.4) and (9.5), we
omit explicit reference to the scalar potential in what follows.

9.2 Electric Dipole Fields and Radiation

If only the first term in (9.9) is kept, the vector potential is

A(x) = Post
At

Examination of (9.11) and (9.12) shows that (9.13) is the / = 0 part of the series
and thatit is valid everywhere outside the source, not just in the far zone. The
integral can be put in more familiar terms by an integration by parts:

 ~ | J(x')d3x' (9.13)

 

 

[s d’x' = -| x'(V' - J)d*x' = -iw | x’p(x’)d°x' (9.14)

since from the continuity equation,

lop =V-J (9.15)

Thus the vector potential is

, ikr

A(x) = —2" p< (9.16)
Aa r

where

p= [ xo@)a°x’ (9.17)

is the electric dipole moment, as definedin electrostatics by (4.8).
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Theelectric dipole fields from (9.4) and (9.5) are

 
k2 ikr 1

H = — (n X p) — (1 -—
Aq r ikr (9.18)

 

A7re
r

1 ikr 1 ik .

E = — {en xp) Xn — + [3n(n + p) — ol(2 — e)et|
O

Wenotethat the magneticfield is transverse to the radius vectorat all distances,

but that the electric field has components parallel and perpendicularto n.

In the radiation zonethe fields take on the limiting forms,

ikr

r (9.19)
 

k?

H = — (nx p)<
Aa

E = ZH Xn

showing the typical behavior of radiation fields.
In the near zone, on the other hand,the fields approach

 

i@ 1
H = —(n Xx =

tn P) r? (9.20)
1 1

E = 3n(n +p) — =Ime, [3n(n- p) pl 3

Theelectric field, apart fromits oscillations in time,is just the static electric dipole

field (4.13). The magneticfield times Zp is a factor (kr) smaller than the electric

field in the region where kr << 1. Thusthefields in the near zone are dominantly

electric in nature. The magnetic field vanishes, of course, in the static limit

k — 0. Thenthe near zoneextends to infinity.

The time-averaged powerradiated per unit solid angle by the oscillating

dipole momentp is

dP 1
WO 2 Re[r’n- E x H*] (9.21)

where E and H aregiven by (9.19). Thus we find

dP CL

dQ 327°
 k* |(n xX p) X nf? (9.22)

Thestate of polarization of the radiation is given by the vector inside the absolute

value signs.* If the componentsof p all have the same phase, the angular distri-

bution is a typical dipole pattern,

dP CZ“a7 > k* |p)? sin20 (9.23)

*In writing angular distributions of radiation we will always exhibit the polarization explicitly by

writing the absolute square of a vector that is proportionalto theelectric field. If the angulardistri-

bution for someparticular polarizationis desired,it can then be obtainedbytaking the scalar product

of the vector with the appropriate polarization vector before squaring.
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where the angle 6 is measured from the direction of p. The total power radiated,
independentof the relative phases of the componentsofp,is

cLok* ipP
P=

127
(9.24)

A simple example of an electric dipole radiatoris a center-fed,linear antenna
whose length d is small compared to a wavelength. The antenna is assumedto
be oriented along the z axis, extending from z = (d/2) to z = —(d/2) witha
narrow gap at the center for purposes of excitation, as shown in Fig. 9.1. The
current is in the samedirection in each half of the antenna, having a value J, at
the gap andfalling approximately linearly to zero at the ends:

. 2 ;
I(z)e'" = n(1 — 2LEl) (9.25)

From the coatinuity equation (9.15) the linear-charge density p’ (charge perunit
length) is constant along each arm ofthe antenna, with the value,

p'(z) = =— (9.26)

the upper (lower) sign being appropriate for positive (negative) values of z. The
dipole moment(9.17) is parallel to the z axis and has the magnitude

(d/2)
_ / _ Uodp= Jon zp'(z) dz = Fa (9.27)

The angular distribution of radiated poweris

 

dP =Z,I3
70 7158 = (kd)* sin?6 (9.28)

T

while the total powerradiatedis

Zolo(kdy?
p== (9.29)

Weseethatfor a fixed input current the powerradiated increases as the square
of the frequency,at least in the long-wavelength domain where kd << 1.

The coefficient of J>/2 in (9.29) has the dimensions of a resistance and is
called the radiation resistance R,.4 of the antenna.It corresponds to the second
term in (6.137) andis the total resistance of the antenna if the conductivity is

Z

 
 

 

 
Figure 9.1 Short, center-fed, linear antenna.
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perfect. For this short center-fed antenna R,,q ~ 5(kd)* ohms. In principle the
input reactance for the antenna can be calculated by applying (6.138) or (6.140)
of Section 6.9. Unfortunately the calculation depends crucially on the strong
fields near the gap and thusis sensitive to the exact shape and method ofexci-
tation. Since the system is an electric dipole and the electrostatic dipole field

dominates near the antenna, we can nevertheless say with certainty that the re-

actance is negative (capacitive) for small kd.

9.3 Magnetic Dipole and Electric Quadrupole Fields

The next term in expansion (9.9) leads to a vector potential,

ikr 1

A(x) = Lo (2 — | | J(x’)(n + x’) d°x’ (9.30)

where we have included the correct terms from (9.12) to make (9.30) valid ev-
erywhere outside the source. This vector potential can be written as the sum of
two terms: Onegives a transverse magnetic induction and the other gives a trans-

verse electric field. These physically distinct contributions can be separated by
writing the integrand in (9.30) as the sum of a part symmetric in J and x’ anda

part that is antisymmetric. Thus

(n-x’)J =4[(n-x’)J + (n- J)x’] + 5(x’ XJ) Xn (9.31)

The second, antisymmetric part is recognizable as the magnetization dueto the
current J:

M = 3(x x J) (9.32)

Thefirst, symmetric term will be shown to be related to the electric quadrupole
momentdensity.

Considering only the magnetization term, we have the vector potential,

 ikLo elk 1

A(x) = —— X 1-— ;
(x) Aor (n m) r ( i) (9.33)

where m is the magnetic dipole moment,

m = [ ma’s =; | (x x J) d°x (9.34)

The fields can be determined by noting that the vector potential (9.33) is pro-
portional to the magnetic field (9.18) for an electric dipole. This meansthat the
magnetic field for the present magnetic dipole source will be equal to 1/Z times
the electric field for the electric dipole, with the substitution p — m/c. Thus we
find

ikr

 H = a {en Xm) Xn <4 (3n(n +m) — mi(4 — e)et| (9.35);

Similarly, the electric field for a magnetic dipole source is the negative of Zp

times the magnetic field for an electric dipole (with p — m/c):

ikr

E = -= k(n x m) = ( " (9.36)
r ikr
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All the arguments concerning the behaviorof the fields in the near andfar
zones are the same as for the electric dipole source, with the interchange
E —> ZH, Z,H — —E, p > m<c.Similarly the radiation pattern and total power
radiated are the same for the two kinds of dipole. The only difference in the
radiation fields is in the polarization. For an electric dipole the electric vector
lies in the plane defined by n andp, while for a magneticdipoleit is perpendicular
to the plane defined by n and m.

The integral of the symmetric term in (9.31) can be transformed byanin-
tegration by parts and some rearrangement:

1 ,
-| [Me x’)J + (n+ J)x’] d’x' = “> | x(n + x’)p(x’) d°x’ (9.37)

The continuity equation (9.15) has been used to replace V- J by iwp. Since the
integral involves second moments of the charge density, this symmetric partcor-
responds to an electric quadrupole source. The vector potentialis

jock? e'*” 1 | 3
A = — —_- —_ ’ ° ' , d ' .(x) Sap ( i) x’(n x’)p(x’) d°x (9.38)

The complete fields are somewhat complicated to write down. We content our-
selves with the fields in the radiation zone. Thenit is easy to see that

 

. (9.39)
E = ikZ),(n X A) X n/p

Consequently the magneticfieldis

ce

H = tee — | (n X x’)(n- x’)p(x’) d°x' (9.40)

With definition (4.9) for the quadrupole momenttensor,

QO.g8 = | (3XyX~— — 1°Sag)p(x) d°x (9.41)

the integral in (9.40) can be written

n X [ x + x’)p(x’) d°x' = in X Q(n) (9.42)

The vector Q(n) is defined as having components,

Q.. — > O.gNg (9.43)

We note that it depends in magnitude and direction on the direction of obser-
vation as well as on the properties of the source. With these definitions we have
the magnetic induction,

_ ick? eikr

(Wg r
 H = n X Q(n) (9.44)

and the time-averaged powerradiated per unit solid angle,

dP c7ZLo

dO 1152-77?

 

k° |[n X Q(n)] x nP? (9.45)
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whereagain the direction of the radiated electric field is given by the vectorinside
the absolute value signs.

The general angulardistribution is complicated. But the total powerradiated

can be calculated in a straightforward way. With the definition of Q(n) we can

write the angular dependence as

|[n x Q(n)] x n? = Q*-Q— |[n- QI’
>» O*pQaylphy _ >» O%2QyaNallghNs
a,B,Y a,B,y,6

(9.46)

The necessary angular integrals over products of the rectangular components of

n are readily found to be

4
[ non, dQ, = 5 Opy

4 (9.47)
7

| N,Ngn,ns dQ = 15 (SapOys + Sa,Sgs + Sasdzy)

Then wefind

1
| [In x Q(n)] X nf dO = tn > |Qael

“P (9.48)
1

i 15 > O*. > O,, + 2 > 2.6"|}
a Y a,B

Since Q,g is a tensor whose main diagonal sum is zero,the first term in the square

brackets vanishes identically. Thus we obtain the final result for the total power

radiated by a quadrupole source:

 
CZok° 5ado2 [Cee (9.49)

The radiated powervaries as the sixth power of the frequency for fixed quad-

rupole moments, compared to the fourth powerfor dipole radiation.
A simple example of a radiating quadrupole source is an oscillating sphe-

roidal distribution of charge. The off-diagonal elements of Q,, vanish. The di-
agonal elements may be written

 

Q33 = Qo, O11 = Qn = -3Qo (9.50)

Then the angular distribution of radiated poweris

dP Zp k° .
“0 7 a2 Qs sin*6 cos’ (9.51)

This is a four-lobed pattern, as shown in Fig. 9.2, with maxima at 6 = 7/4 and
37/4. The total powerradiated by this quadrupole is

CZok°Qs
P= —— 9.52

9607 (9-52)

The labor involved in manipulating higher terms in expansion (9.9) of the
vector potential (9.8) becomes increasingly prohibitive as the expansion Is ex-
tended beyondthe electric quadrupole terms. Another disadvantage of the pres-
ent approachis that physically distinct fields such as those of the magnetic dipole
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 Figure 9.2. A quadrupole radiation pattern.

and the electric quadrupole must be disentangled from the separate terms in
(9.9). Finally, the present technique is useful only in the long-wavelength limit.
A systematic development of multipole radiation beginsin Section 9.6. It involves
a fairly elaborate mathematical apparatus, but the price paid is worthwhile. The
treatmentallowsall multipole orders to be handled in the same way;the results
are valid for all wavelengths; the physically different electric and magnetic mul-
tipoles are clearly separated from the beginning.

9.4 Center-Fed Linear Antenna

A. Approximation ofSinusoidal Current

For certain radiating systems the geometry of currentflow is sufficiently sim-
ple that integral (9.3) for the vector potential can be foundin relatively simple,
closed form if the form of the current is assumed known. As an example of such
a system weconsidera thin, linear antenna of length d which is excited across a
small gap at its midpoint. The antennais assumedto be oriented along the z axis
with its gap at the origin, as indicated in Fig. 9.3. If damping due to the emission
of radiation is neglected and the antennais thin enough,the current along the
antenna can be taken as sinusoidal in time and space with wave number k = ac,
and is symmetric on the two armsof the antenna. The current vanishes at the
ends of the antenna. Hencethe current density can be written

J(x) =] sin( — kl d(x) d(y)es (9.53)

for |z| < (d/2). The delta functions assure that the current flows only along the
z axis. J 1s the peak value of the current if kd = 7. The current at the gapis
[, = I sin(kd/2).

With the current density (9.53) the vector potential is in the z direction and
in the radiation zone has the form [from (9.8)]:

 
ikr (d/2). Mo le | _ [kd _ikecosd= __ k 1KZCOS d 54A(x) 2ain( zi} z (9.54)
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Figure 9.3. Center-fed, linear antenna.

The result of straightforward integration is

(4 ()
. cos{| —— cos 6} — cos{| —

Lo 2Tek" ? ?

A(x) =2Z
(x) “An kr sin’6
 (9.55)

Since the magnetic field in the radiation zone is given by H = ikn X A/jo,its
magnitude is |H| = k sin @|A3|/y9. Thus the time-averaged powerradiated per
unit solid angle 1s

2

(“ (‘<)
cos{ — cos @] — cos| —

dPZI’ 2 2
dQ 877" sin 6
 (9.56)

The electric vector is in the direction of the componentof A perpendicularto n.
Consequently the polarization of the radiation lies in the plane containing the
antenna and the radius vector to the observation point.

The angular distribution (9.56) depends on the value of kd. In the long-
wavelength limit (kd << 1) it is easy to show that it reducesto the dipole result
(9.28). For the special values kd = m(277), corresponding to a half (two halves)
of a wavelength of current oscillation along the antenna, the angulardistributions

 

 

  

are
( 5( 7

— 0COs (2 cos

dP _ Zl” sin’6 a=
dQ 87

4 cos'( COS ) 9.57)

Z , kd = 27
\ sin“ 6

These angular distributions are shown in Fig. 9.7, where they are compared to
multipole expansions. The half-wave antenna distribution is seen to be quite
similar to a simple dipole pattern, but the full-wave antennahas a considerably
sharper distribution.

The full-wave antennadistribution can be thoughtof as due to the coherent
superposition of the fields of two half-wave antennas, one above the other, ex-

cited in phase. The intensity at 6 = 7/2, where the wavesaddalgebraically, is
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four times that of a half-wave antenna. At angles away from @ = 7/2 the ampli-
tudes tend to interfere, giving the narrower pattern. By suitable arrangementof
a set of basic antennas, such as the half-wave antenna, with the phasing of the
currents appropriately chosen,arbitrary radiation patterns can be formed byco-

herent superposition. The interested reader should refer to the electrical engi-

neering literature for detailed treatments of antennaarrays.

B. The Antenna as a Boundary- Value Problem

Only for infinitely thin conductors are wejustified in assuming thatthe cur-
rent along the antennais sinusoidal, or indeed has any other known form. A
finite-sized antenna with a given type of excitation is actually a complicated
boundary-value problem. Without attempting solution of such problems, wegive
some preliminary considerations on setting up the boundary-value problem for
a straight antenna with circular cross section of radius a and length d, of which
the center-fed antenna of Fig. 9.3 is one example. We assumethat the conductor
is perfectly conducting and has a small enough radius comparedto both a wave-
length A and the length d that current flow on the surface has only a longitudinal
(z) component, and that the fields have azimuthal symmetry. Then the vector
potential A will have only a z component. With harmonic time dependenceof
frequency w and in the Lorentz gauge, the scalar potential and the electric field
are given in terms of A by

PO) = OV A (9.58)

E(x) = x [V(V =A) + KA]

Since A = ZA,(x), the z componentofthe electric fieldis

grca) ® (2+)
But on the surface of the perfectly conducting antenna the tangential component
of E vanishes. Wethus establish the important fact that the vector potential A,
(and also the scalar potential) on the surface of the antenna arestrictly sinusoidal:

2

(= + eA-(p = a, z) = 0 (9.59)

This is an exact statement, in contrast to the much rougher assumptionthat the
current is sinusoidal.

An integral equation for the current can be found from (9.3). If the total
current flow in the z direction is J(z), then (9.3) gives for A, on the surface of
the antenna,

Zotd

A(p = a, Z) = a LYK~ 2’) dz’

where

 

K(z  dp (9.60) 

_1‘| exp[ikV(z — z')* + 4a’ sin?B]

V(z — z')? + 4a’ sin?B



Sect. 9.5 Multipole Expansion for Localized Source or Aperture in Waveguide 419

is the azimuthal average of the Green function e““/R. The condition (9.59) leads
to the integro-differential equation

d2 Zotd

0 = (< + Re) | I(z')K(z — z') dz’ (9.61)
dz ZO

This can be regarded as a differential equation for the integral, or equivalently
one can integrate (9.59) and equate it to A,(p = a, z). The result is the integral
equation

zotd

a, coskz + a, sinkz = | I(z')K(z — 2’) dz'
<0

The constants a, and a, are determined by the method of excitation and by the
boundary conditions that the current vanishesat the ends of the antenna.

The solution of the integral equation is not easy. From the form of (9.60) it
is clear that when z’ ~ z care must be taken andthefinite radius is important.
For a — 0, the current can be shownto be sinusoidal, but the expansion param-
eter for corrections turns out to be the reciprocal of In(d/a). This meansthat even
for d/a = 10° there can be corrections of the order of 10-15%. Whenthereis a
current node near the place of excitation, such corrections can change the an-

tenna’s input impedancedrastically. Various approximate methods of solution
of (9.61) are described by Jones. A detailed discussion ofhis version of the theory
and the results of numerical calculations for the current, resistance, and reactance

of a linear center-fed antenna are given by Hallén. Other referencesare cited in
the suggested reading at the end of the chapter.

9.5 Multipole Expansion for Localized Source
or Aperture in Waveguide

If a source in the form of a probe or loop or aperture in a waveguideis sufficiently
small in dimensions comparedto the distances over whichthefields vary appre-
ciably, it can be usefully approximated by its lowest order multipole moments,
usually electric and magnetic dipoles. Different sources possessing the same low-
est order multipole moments will produce sensibly the same excitations in the
waveguide. Often the electric dipole or magnetic dipole moments can be calcu-
lated from static fields, or even estimated geometrically. Even if the source is not
truly small, the multipole expansion gives a qualitative, and often semiquantita-
tive, understanding of its properties.

A. Current Source Inside Guide

In Section 8.12 it was shown that the amplitudes A(*? for excitation of the
Ath modeare proportional to the integral

| J-E®d°x

where the integral is extended over the region where J is different from zero.If
the mode fields E{*) do not vary appreciably over the source, they can be ex-
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panded in Taylor series around somesuitably chosen origin. The integralis thus

written, dropping the sub- and superscripts on E*:

[s -Ed’x = > J sue}£00 + > Xg

From (9.14) and (9.17) we see that the first term is

 ae (0) + os d°x (9.62)
OXg

E(0) « | J(x) d?x = —iwp + E(0) (9.63)

where p is the electric dipole momentof the source:

p = = | J(x) d°x
W@W

This can be transformedinto the more familiar form (9.17) by the meansof the
steps in (9.14), provided the surface integral at the walls of the waveguide can
be dropped. This necessitates choosing the origin for the multipole expansion
such that J,x, vanishes at the walls. This remark applies to all the multipole

moments. The use of the forms involving the electric and magnetic charge den-
sities p and py requires that (x,Jg + xgJ,)x,°*+ X, vanish at the walls of the
guide. The above-mentionedform for the electric dipole and the usual expression
(9.34) for the magnetic dipole are correct as they stand, without concern about
choice of origin.

The secondterm in (9.62) is of the same general form as (9.30) and is handled
the same way. The product J,%, is written as the sum of symmetric and antisym-
metric terms, just as in (9.31):

ye

OXg

OF,

0
  S Jona (0) = 5S Unk - Jp} (0) - %Es 0)
Xp (9.64)

1 OF+ =D (Igxg + Jgxa) —2 (0

The first (antisymmetric) part has been written so that the magnetic moment

density and the curl of the electric field are clearly visible. With the help of
Faraday’s law V X E = iwB, the antisymmetric contribution to the right side of
(9.62) can be written

OF
| > JXp. 0, d°x = iwm - B(0) (9.65)

a,B OXp antisym

 

where m is the magnetic dipole moment (9.34) of the source. Equations (9.63)
and (9.65) give the leading order multipole momentcontributions to the source
integral (9.62).

Other terms in the expansion in (9.62) give rise to higher order multipoles.
The symmetric part of (9.64) can be shown,just as in Section 9.3, to involve the

traceless electric quadrupole moment (9.41). The first step is to note that if the
surface integrals vanish (see above),

| (J,Xg + JgxXq) Px = —iw | XqXpp(x) d°x
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Then the second double sum in (9.64), integrated over the volumeof the current
distribution, takes the form

d°x

Se
           

The value of the double sum is unchanged by the replacement x,xg —
(X~Xg — 3775ag) because V- E = 0. Thus the symmetric part of the second term
in (9.62) is

E
| > IXp Oa dex = 7D Oup

a8 OXg sym

Similarly an antisymmetric part of the next termsin (9.62), hnvolving XpXy, Zives
a contribution

1 07
| E » ToXpXy 5

a,B,y

    (9.66)    

     
E 1@)

— (0 ax =— 9.67| "23of 67
antisym

in (@,B)

where Q%, is the magnetic quadrupole momentofthe source,given by (9.41) with
the electric charge density p(x) replaced by the magnetic charge density,

M 1
p(x) = —V+ Me = —> V+ (x x J) (9.68)

If the various contributions are combined, the expression (8.146) for the
amplitude A‘hasas its multipole expansion,

  

Aw) = 12 f EOC) — m- BOW)
1 E® ” Bie (9.69)

+2 >| up2,= (0) - 7, ©)
a,B

It should be rememberedthat here the modefields E~ are normalized according
to (8.131). The expansion is most useful if the source is such that the series
converges rapidly and is adequately approximated byits first terms. The posi-
tioning and orientation of probes or antennas to excite preferentially certain
modes can be accomplished simply by considering the directions of the electric
and magnetic dipole (or higher) moments of the source and the normal mode
fields. For example, the excitation of TE modes, with their axial magneticfields,

can be produced by a magnetic dipole antenna whose dipole momentis parallel
to the axis of the guide. TM modes cannot be excited by such an antenna, except
via higher multipole moments.

B. Aperture in Side Walls of Guide

Aperturesin the walls of a waveguide can be considered as sources(or sinks)
of energy. In Section 8.12 it was noted that if the guide walls have openings in
the volume considered to contain the sources, the amplitudes A‘are given by



422 Chapter 9 Radiating Systems, Multipole Fields and Radiation—SI

(8.147) instead of (8.146). With the assumption that there is only one aperture,
and no actual current density, the amplitude for excitation of the Ath modeigs

AM = -— n+ (E x HY”) da (9.70)
2 aperture

where n is an inwardly directed normal and the integral is over the aperture jp
the walls of the guide. If the aperture is small comparedto a wavelengthorother
scale of variation of the fields, the mode field H{” can be expandedjustas before.
The lowest order term, with H*) treated as constant overthe aperture, evidently
leads to a coupling of the magnetic dipole type. The next terms, with linear
variation of the modefield, give rise to electric dipole and magnetic quadrupole
couplings, exactly as for (9.64)—(9.66), but with the roles of electric and magnetic
interactions interchanged. Theresult is an expansion of (9.70) like (9.69):

+ . Z + +AY? = 1 — [Dece ° E‘(0) — Mere * B\(0) | (9.71)

where the effective electric and magnetic dipole moments are

Pett — en | (x bd Etan) da (9.72)

2
Mop = —— | (n X E,,,,) da

ipLo

In these expressionsthe integration is over the aperture, theelectric field E,,, is
the exact tangential field in the opening, and in (9.71) the modefields are eval-
uated at (the center of) the aperture. The effective moments (9.72) are the equiv-
alent dipoles whosefields (9.18) and (9.35)—(9.36) represent the radiation fields
of a small aperture in a flat, perfectly conducting screen (see Problem 10.10).
Comparison of (9.71) and (9.69) showsthat the dipole moments (9.72) are only
half as effective in producing a given amplitude as are the real dipole moments
of a source located inside the guide. The effective dipoles of an aperture are in
some sensehalf in and half out of the guide.

C. Effective Dipole Moments ofApertures

Onfirst encounter the effective dipole moments (9.72) are somewhat mys-
terious. As already mentioned, they have a precise meaning in termsofthe elec-
tric and magnetic dipole parts of the multipole expansion of the fields radiated
through an aperture in a flat perfectly conducting screen (considered later: Prob-
lem 10.10). For small apertures they can also be related to the solutions of ap-
propriate static or quasi-static boundary-value problems. Such problems have
already been discussed (Sections 3.13 and 5.13), and the results are appropriated
below.

If an aperture is very small compared to the distance over which thefields
change appreciably, the boundary-value problem can be approximated by one in
which the fields “far from the aperture’’ (measured in units of the aperture di-

mension) are those that would exist if the aperture were absent. Except for very
elongated apertures,it will be sufficiently accurate to take the surface to beflat

and the “‘asymptotic”’ fields to be the samein all directions away from the ap-
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erture. For an opening in a perfectly conducting surface, then, the boundary-

value problem is specified by the normalelectric field E, and the tangential
magnetic field Hp that would exist in the absence of the opening. The fields Ey

and H), are themselves the result of some boundary-value problem, of propaga-
tion in a waveguideor reflection of a plane wave from a screen, for example. But

for the purpose at hand, they are treated as given. To lowest order their time

dependence can be ignored, provided the effective electric dipole moment is
related to Ey and the magnetic moment to Hp. (See, however, Problem 9.20.)

The exact form of the fields around the opening depends onits shape, but
some qualitative observations can be made by merely examining the general

behaviorof the lines of force. Outside a sphere enclosing the aperturethe fields

may be represented by a multipole expansion. The leading terms will be dipole

fields. Figure 9.4 shows the qualitative behavior. The loop of magnetic field pro-
truding above the plane on the left has the appearance of a line of force from a

magnetic dipole whose momentis directed oppositely to Ho, as indicated by the
direction of the moment m“*? shown below. The magnetic field below the plane
can be viewed as the unperturbed Hp, plus an opposing dipole field (dashed lines
in Fig. 9.4) whose momentis oriented parallel to Hp (denoted by m‘”? below).
Similarly, the electric field lines above the plane appearto originate from a ver-
tical dipole moment p“"? directed along Ep, while below the planethe field has
the appearance of the unperturbed normal field Ej, plus the field from a dipole

p‘, directed oppositely to Ey. The use of effective dipole fields is of course
restricted to regions somedistance from the aperture. Right in the aperture the

fields bear no resemblanceto dipole fields. Nevertheless, the dipole approxima-

tion is useful qualitatively everywhere, and the effective moments areall that are

needed to evaluate the couplings of small apertures.

The preceding qualitative discussion has one serious deficiency. While it is
correct to state that the electric dipole moment is always directed parallel or

antiparallel to E, and so is normal to the aperture, the magnetic dipole moment

is not necessarily parallel or antiparallel to Hp. There are two directions in the
tangent plane, and therelative orientation of the aperture and the direction of
H, are relevant in determining the direction of mg,,. Since the effective moments

are obviously proportional to the field strength, it is appropriate to speak of the

electric and magnetic polarizabilities of the aperture. The dipole moments can be
written

Pett = €0YEo (9.73)

(Metta = > YapHo)

where y”is the scalar electric polarizability and y% is the 2 X 2 magnetic po-

larizability tensor. The magnetic tensor can be diagonalized by choosingprincipal
axes for the aperture. There are thus three polarizabilities (one electric and two
magnetic) to characterize an arbitrary small aperture. It should be remembered
that the signs of the y’s in (9.73) depend on the side of the surface from which

the dipole is viewed, as shown in Fig. 9.4. If there are fields on both sides of the
surface, the expressions in (9.73) must be modified. For example, if there is a

vertically directed electric field E,; above the surface in Fig. 9.45, as well as E,

below, then E, in (9.73) is replaced by (E) — E,). Other possibilities can be
worked out from (9.73) by linear superposition.
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Figure 9.4 Distortion of (a) the tangential magnetic field and (b) the normalelectric
field by a small aperture in a perfectly conducting surface. The effective dipole
moments, as viewed from above and below the surface, are indicated beneath.

The polarizabilities y” and yi, have the dimensions of length cubed. If a
typical dimension of the aperture is d, then it can be expected that the polariz-
abilities will be d° times numerical coefficients of the order of unity, or smaller.
The expression (9.72) for per: can be seen to be of the form to yield sucha result,
since E,an is proportional to E>, and the two-dimensionalintegral will give E,
times the cube of a length that is characteristic of the aperture. Furthermore,the
vectorial properties of per, in (9.72) correspondto (9.73). On the other hand, the
expression in (9.72) for Mer, is less transparently of the proper form, even though
dimensionally correct. Someintegrations by parts and use of the Maxwell equa-
tions puts it into the equivalent and moresatisfying form:

Mee = 2 | x(n - H) da (9.74)

where n- H is the exact normal componentof H in the aperture and the integra-
tion is over the plane of the aperture. It is now evident that the connection
between H, and m+, is of the general form shownin (9.73). For a circular opening
of radius R the effective dipole moments can be taken from thestatic solutions
of Sections 3.13 and 5.13. The results are

de, R? SR?
a 3 Eo, Mere = 3 Hy (9.75)

 

where the signs are appropriate for the apertures viewed from the side of the

surface where E and H are nonvanishing, as can be checked from Fig. 9.4. The
electric and magnetic polarizabilities are thus

4R? SR?
y" = a Yap = oa Sup (9.76)

The use of effective dipole moments to describe the electromagnetic prop-
erties of small holes can be traced back to Lord Rayleigh.* The general theory
was developed by H.A. Bethe’ and has been appliedfruitfully to waveguide and

“Lord Rayleigh, Phil. Mag. XLIV,28 (1897), reprinted in his Scientific Papers, Vol. IV, p. 305.

"H. A. Bethe, Phys. Rev. 66, 163 (1944).
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diffraction problems.It is significant in practical applications that the effective
dipole moments of arbitrary apertures can be determined experimentally by elec-
trolytic tank measurements.*

Examples of the use of multipoles to describe excitation and scattering in
waveguides and diffraction are left to several problemsat the end of the chapter.
Other material can be foundin thelist of suggested reading.

9.6 Spherical Wave Solutions of the Scalar Wave Equation

In Chapters 3 and 4 spherical harmonic expansions for the solutions of the

Laplace or Poisson equations were used in potential problems with spherical
boundaries or to develop multipole expansions of charge densities and their
fields. Our approach so far for radiating sources has been “‘brute force,” with
creation of the lowest order multipoles moreor less by hand. Clearly, treatment
of higher multipoles demands a more systematic approach. Wetherefore turn to

the development of vector spherical waves and their relation to time-varying

sources.
As a prelude to the vector spherical wave problem, we consider the scalar

wave equation. A scalarfield y(x, t) satisfying the source-free wave equation,

1 do’
Vey-saS = 9.77Ww C or ( )

can be Fourier-analyzed in time as

W(x, t) = | u(x, w)e' dw (9.78)

with each Fourier componentsatisfying the Helmholtz wave equation

(V? + k*)w(x, w) = 0 (9.79)

with k* = w’/c*. For problems possessing symmetry properties about someorigin,
it is convenient to have fundamental solutions appropriate to spherical coordi-
nates. The representation of the Laplacian operator in spherical coordinatesis

given in equation (3.1). The separation of the angular andradial variables follows
the well-known expansion

W(x, w) — > fimO)Yim(, p) (9.80)

where the spherical harmonics Y,,, are defined by (3.53). The radial functions
fim(r) satisfy the radial equation, independentof m,

Ee p2dwe
a +d flr) = (9.81)

With the substitution,

fir) = pl25 (7) (9.82)

*S. B. Cohn,Proc. IRE 39, 1416 (1951); 40, 1069 (1952).
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equation (9.81) is transformed into

da 1d -&+3)_ = 4 2 = =

s r dr K utr) = 0

This equationis just the Bessel equation (3.75) with v = / + Thusthesolutions

(9.83)

for fim(r) are

(9.84)
Bim

“i5 J141/2(kr) +pll2> Nivinlkr)flm (r)=

It 1s customary to define spherical Bessel and Hankel functions, denoted by
ix), n(x), ho-(x), as follows:

1/2

jx) = (2) J14-1/2(X)

nx) = (2) Ni+12(X)

1/2
T ;

h\'?(x) = (2) Jisa2(x) © iNp+1/2(x)]

Forreal x, h{’(x) is the complex conjugate of h'”(x). From theseries expansions

(9.85)

(3.82) and (3.83) one can showthat

sin x

ila) = (xiC: £)) (9.86)
(i a | COS

n(x) = —(—x) (2 all x

For the first few values of / the explicit forms are

   

  

Jo(x) = S. No(x) = ——, hD(x) = —

je) =SS mfx) = 25%-
hy(x) = -— ( + ‘|

}2(x) = (2 — ‘| sinx — 3 ee n(x) = -(2 _ ‘| cosx — 3 “nt

nro) =(142-3) + (987

IS 6) . 15
J3(x) = “i ~ 2 sm x — ~e x COS X

15 6 IS 1)\.,
n3(x) = — xi ya) CO8* — oy) sine  e€

hs?(x) = >
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From theseries (3.82), (3.83), and the definition (3.85) it is possible to calculate
the small argumentlimits (x << 1, /) to be

i)a(1 Po, -)
(21 + 1)!! 2(21 + 3) (9.88)

(21 — 1)! x? 7
n(x) >aT ( “30-2” )

where (2/ + 1)!! = (27 + 1)(2/ — 1)(2/ — 3) --- (5) - G)- C2). Similarly the large

argumentlimits (x >> /) are

, 1. lar
I(x) > , sin( 5

lor
n(x) > -- cos(x — =) (9.89)

ix
. e

hy?(x) > (“i—

The spherical Bessel functions satisfy the recursion formulas,

 

 

vet Z(x) = Zi) + Z41)

Zi(x) = [lerale) ~ + Denna) (9.90)

i [xzi()] = x21) ~ Fei)

where z,(x) is any oneof the functionsj,(x), n,(x), h(x), h(x). The Wronskians

of the variouspairs are

; 1 . 1
Win m) = = Wir HP) = —Wenn ht?) = (9.91)

The general solution of (9.79) in spherical coordinates can be written

W(x) = DARA(kr) + AthPr)¥in(8, $) (9.92)
Lm

where the coefficients A{’ and A‘? will be determined by the boundary

conditions.
For reference purposes we present the spherical wave expansion for the out-

going wave Green function G(x, x’), which is appropriate to the equation,

(V? + k*)G(x, x’) = —d(x — x’) (9.93)

in the infinite domain. This Green function, as was shown in Chapter6,is

eik|x—x'|

G(x, x’) = (9.94)
Aa |x — x’|

The spherical wave expansion for G(x, x’) can be obtained in exactly the same
way as was donein Section 3.9 for the Poisson equation [see especially (3.117)
and text following]. An expansion of the form

G(x, x’) — > gir, VYim(6", b')Vim(9, p) (9.95)
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substituted into (9.93) leads to an equation for g,(r, r’):

[A244 wen 1 ,

de + dr 2 Je = 42 d(r — r’) (9.96)

The solution that satisfies the boundary conditions offiniteness at the Origin and
outgoing wavesat infinity is

gr, r') = Aj(kr)hy(kr.) (9.97)
The correct discontinuity in slope is assured if A = ik. Thus the expansionofthe
Green function is

ik|x—x’| eo le
|x = Ik 2 ii(kr)h}?(kr.) > Yim(O, b')Yim (8, p) (9.98)

Our emphasisso far has been on the radial functions appropriate to the scalar
wave equation. We now reexamine the angular functions in order to introduce
some concepts of use in considering the vector wave equation. The basic angular
functions are the spherical harmonicsY,,,(6, @) (3.53), which are solutionsof the
equation

1 a g 1 &
—|a— a sin +a Vim = WL + 1Y, |
| 6.00 (sin 5) sin20 3=| im

=

UE

+

1)Yim (9.99)

As1s well known in quantum mechanics, this equation can be written in the form:

L’Y,,, = Il + 1) Yin (9.100)

The differential operator L* = LZ + L? + L2, where

1
L=-(rx V) (9.101)

i

is i~* times the orbital angular-momentum operator of wave mechanics.

The components of L can be written conveniently in the combinations,

a) d
L, = L, + iL, = e’*|— + icot@é—

a0 ap
_{ a ’L_=L, - iL, = ew(-4 + i cot é “) (9.102)

. oO_j —L,
dp

Wenote that L operates only on angular variables and is independentof r. From
definition (9.101) it is evident that

r-L=0 (9.103)

holds as an operator equation. From the explicit forms (9.102) it is easy to verify

that L’ is equal to the operator onthe left side of (9.99).
From the explicit forms (9.102) and recursionrelationsfor Y,,, the following

useful relations can be established:

Li Yim = V(L— m)(L + m + 1) Yin
L_Yim V+ m)\(l— m + 1) Vint (9.104)
LYim = MYyp
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Finally we note the following operator equations concerning the commutation

properties of L, L*, and V”:

L?>L = LL’

Lx L=iL (9.105)

LW = VL,

where

1¢ L?
2 FT _V a (r) Me (9.106)

9.7 Multipole Expansion of the Electromagnetic Fields

With the assumption of a time dependence e‘” the Maxwell equations in a

source-free region of empty space may be written

(9.107)
V-E=0 V-H=0

where k = alc. If E is eliminated by combining the two curl equations, we obtain

for H,

(V+k)H=0, V-H=0

with E given by (9.108)
iZo

E=—_VxH
k

Alternatively, H can be eliminated to yield

(V+kR)E=0, V-E=0

with H given by (9.109)
1

H KZ, VXxE

Either (9.108) or (9.109) is a set of three equations that is equivalent to the

Maxwell equations (9.107).
Wewish to find multipole solutions for E and H. From (9.108) and (9.109)

it is evident that each Cartesian component of H andE satisfies the Helmholtz

wave equation (9.79). Hence each such component can be written as an expan-
sion of the general form (9.92). There remains, however, the problem of orches-
trating the different components in orderto satisfy V- H = 0 and V- E = 0 and
to give a pure multipole field of order(/, m). We follow a different and somewhat

easier path suggested by Bouwkampand Casimir.* Consider the scalar quantity

r- A, where A is a well-behaved vectorfield. It is straightforward to verify that

the Laplacian operator acting on this scalar gives

V(r- A) =r-(V?A) + 2V-A (9.110)

*C, J. Bouwkampand H.B.G. Casimir, Physica 20, 539 (1954). This paper discusses the relationship

among a numberofdifferent, but equivalent, approaches to multipole radiation.
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From (9.108) and (9.109) it therefore follows that the scalars, r- E andr H, both
satisfy the Helmholtz wave equation:

(V+ k*)(r-E)=0, (V+ k*)(r- HW) = 0 (9.111)
The general solution for r+ E is given by (9.92), and similarly for r+ H.

We nowdefine a magnetic multipole field of order (1, m) by the conditions,

i+
re Hi = c—” AAT)Yim(9, oy)

(9.112)
r EW) = 0

where

gi(kr) = APPhj?(kr) + APh}>(kr) (9.113)
The presence of the factor of /(/ + 1)/k is for later convenience. Using the curl
equation in (9.109) we can relate r- H to theelectricfield:

1 1
Zokr-H=—-r-(V xX E)=-(*xV)-E=L-E (9.114)

i i

where L is given by (9.101). With r-H given by (9.112), the electric field of the
magnetic multipole mustsatisfy

L- Ey(r, 0, p) — ld + 1)Zogi(kr) Yin(@, p) (9.115)

and r- Ej? = 0. To determine the purely transverse electric field from (9.115),
we first observe that the operator L acts only on the angular variables (0, d).
This meansthat the radial dependence of E{” must be given by g,(kr). Second,
the operator L acting on Y,,, transforms the m value according to (9.104), but
does not changethe / value. Thus the components of E{”can be at mostlinear
combinations ofY,,,’s with different m values and a common /, equalto the /
value on the right-hand side of (9.115). A moment’s thought showsthat for
L-E™to yield a single Y,,,, the components of E{” must be prepared before-
hand to compensate for whateverraising or lowering of m values is done byL.
Thus, in the term L_E_,, for example, it must be that E., is proportional to L, Y,,,.
What this amountsto is that the electric field should be

Elm” = Zogi(kr)LYim(O, o)
together with (9.116)

lm kZo lm

Equation (9.116) specifies the electromagnetic fields of a magnetic multipole of
order (/, m). Because the electric field (9.116) is transverse to the radius vector,
these multipole fields are sometimes called transverse electric (TE) rather than
magnetic.

The fields of an electric or transverse magnetic (TM) multipole oforder(1, m)
are specified similarly by the conditions,

(i + 1)
rs Ey = — LZ) —— flr)Yin (6, db)k (9.117)
re H® | o
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Then the electric multipole fields are

Hin = filkr)LYim(@, $) (9.118)
Z,

E® =°= x Min

The radial function f;(kr) is given by an expression like (9.113).
The fields (9.116) and (9.118) are the spherical wave analogs of the TE and

TM cylindrical modes of Chapter 8. Just as in the cylindrical waveguide, the two
sets of multipole fields (9.116) and (9.118) can be shown to form a complete set

of vector solutions to the Maxwell equations in a source-free region. Theter-
minology electric and magnetic multipole fields will be used, rather than TM and
TE, since the sources of each type of field will be seen to be the electric-charge

density and the magnetic-momentdensity, respectively. Since the vector spherical
harmonic, LY,,,, plays an importantrole, it is convenient to introduce the nor-

malized form,*

1
Xin(9, = ———— LY,,, (9, 9.119in, 8) FLY inl 8, o) (9.119)

with the orthogonality properties,

| Xm * Xm AD = bySam’ (9.120)

and

| Xi? (tf X X,,) dO = 0 (9.121)

for all J, l', m, m'.

By combining the twotypes offields we can write the general solution to the
Maxwell equations (9.107):

H = > act m)f(kr)Xim — = ay m)V x si(kr)Xin|
(9.122)

E = Z > E ag(l, m)V X fi(kr)Xim_ + ay(l, m)g(kr)Xin

where the coefficients a-(/, m) and ay,(/, m) specify the amountsofelectric (/, m)
multipole and magnetic (/, m) multipole fields. The radial functions f;(kr) and
g(kr) are of the form (9.113). The coefficients a;(/, m) and ayj(/, m), as well as
the relative proportions in (9.113), are determined by the sources and boundary

conditions. To make this explicit, we note that the scalars r-H and r-E are
sufficient to determine the unknownsina according to

dull, m)gi{kr) = Wa | Vint Ha (9.123)

Zoazr(l, m)f(kr) = aa! Yimt « E dO

*Xj, 1s defined to be identically zero for / = 0. Spherically symmetric solutions to the source-free
Maxwell’s equations exist only in thestatic limit k — 0. See Section 9.1.
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Knowledge of r-H and r-E at two different radii, 7; and r, in a source-free

region will therefore permit a complete specification of the fields, including de-
termination of the relative proportions of h}? and h{in f, and g;. Theuseofthe
scalars r- H and r- E permits the connection between the sources p, J and the

multipole coefficients a;(/, m) and aj,(I, m) to be established with relative ease
(see Section 9.10).

9.8 Properties ofMultipole Fields; Energy
and Angular Momentum ofMultipole Radiation

Before considering the connection between the general solution (9.122) and q

localized source distribution, we examine the properties of the individual multj-
pole fields (9.116) and (9.118). In the near zone (kr << 1) the radial function
fi(kr) is proportional to n,, given by (9.88), unless its coefficient vanishes iden-
tically. Excluding this possibility, the limiting behavior of the magnetic field for
an electric (/, m) multipoleis

Hi, -" L a (9.124)

where the proportionality coefficient is chosen for later convenience. Tofind the
electric field we must take the curl of the right-hand side. A useful operator
identity 1s

0
iVx L=rVv- v(1 + 7 > (9.125)

The electric field (9.118) is

EV) > > ZoV X (3) (9.126)

Since (Y,,,/r'"*) is a solution of the Laplace equation,the first term in (9.125)
vanishes. Consequently the electric field at close distances for an electric (/, m)
multipole is

Y,
EM! 5 -259(3) (9.127)

This is exactly the electrostatic multipole field of Section 4.1. We note that the

magnetic field H\is smaller in magnitude than E\/Z, by a factor kr. Hence,

in the near zone,the magnetic field of an electric multipole is always much smaller
than the electric field. For the magnetic multipole fields (9.116) evidently the
roles of E and H are interchanged accordingto the transformation,

EM > -ZH™, H® > EM”/Z, (9.128)

In the far or radiation zone (kr >> 1) the multipole fields depend on the
boundary conditions imposed. For definiteness we consider the example of out-

going waves, appropriate to radiation by a localized source. Then the radial func-
tion f(kr) is proportional to the spherical Hankel function h{”(kr). From the
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asymptotic form (9.89) we see that in the radiation zone the magnetic induction
for an electric (/, m) multipole goes as

ikr

 

 

HY — (-i) - LY, (9.129)

Then the electric field can be written

_ Nl ikr ikr

E® = Z, ve v=) x LY,, + “vx Yin (9.130)
r r

Since wehavealready used the asymptotic form of the spherical Hankelfunction,
we are not justified in keeping powers higher than the first in (1/r). With this
restriction and use of the identity (9.125) we find

ikr

E® = —Z,(-i*! *
of?) kr

 
1

c x L¥im — 5 eV? — V)¥in| (9.131)

where n = (r/r) is a unit vector in the radial direction. The second term is evi-
dently 1/kr times some dimensionless function of angles and can be omitted in
the limit kr >> 1. Then wefind that the electric field in the radiation zoneis

E® = ZH? xn (9.132)

where H{”? is given by (9.129). These fields are typical radiationfields, transverse

to the radius vector and falling off as r~’. For magnetic multipoles the same
relation holds because the Poynting vectoris directed radially outward for both
types of multipole.

The multipole fields of a radiating source can be used to calculate the energy
and angular momentumcarried off by the radiation. For definiteness we consider
a linear superposition of electric (/, m) multipoles with different m values, butall
having the sameJ, and, following (9.122), write the fields as

H, = > ay (I, m)X),h}?(krjeter
m (9.133)

E) = 7 ZV x

For harmonically varying fields the time-averaged energy density is

_ 7 (E- E* + 72H - H*) (9.134)

In the radiation zone the two terms are equal. Consequently the energy in a

spherical shell between r and (r + dr) (for kr >> 1)is

 dpoe SY ak(1, m')ap(I, m) | X*,, «Xm, dO (9.135)dU =
2k? Kt,

where the asymptotic form (9.89) of the spherical Hankelfunction has beenused.
With the orthogonality integral (9.120) this becomes

wy
7 aye = Jaz(1, m)|? (9.136)
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independentof the radius. For a general superposition of electric and Magnetic
multipoles the sum over m becomes a sum over / and m and |az|? becomes
laz|’ + |ay,|?. The total energy in a spherical shell in the radiation zoneis thus
an incoherent sum overall multipoles.

The time-averaged angular-momentum densityis

m = = Re[r x (E x H*)] (9.137)

Thetriple cross product can be expandedand theelectric field (9.133) substitute
to yield, for a superposition of electric multipoles,

m = - Re[H*(L - H)] (9.138)

Then the angular momentum in a spherical shell between r and (r + dr) in the
radiation zoneis

d
dM = ar Re >) ax(i, m’)az(I, m) | (L + Xim)*Xim dO (9.139)

@ mm’

With the explicit form (9.119) for X,,,, (9.139) can be written

dM
7we Re a a(1, m')a,z(l, m) | VinLYim AO (9.140)

From the properties of LY, listed in (9.104) and the orthogonality of the spher-
ical harmonics we obtain the following expressions for the Cartesian components

 

 

 

 

 

 

 

of dM/dr:

= = ‘oe Re > [VI — m)\( + m + 1) a;(l,m + 1)

mS m (9.141)
+ V(l+ m)(l — m + 1) aé(l, m — 1)Jaz(1, m)

dM Mo
—= 5Im » [Vd — ml + m + 1) ad(1,m + 1)
dr 4wk m (9.142)

— VL + ml — m + 1) ai, m — 1)Jazg(1, m)

dM. __ Ho 2ok» m |a,(, m)| (9.143)

These equations show that for a general /th-order electric multipole that consists

of a superposition of different m values only the z component of angular mo-
mentum is relatively simple.

For a multipole with a single m value, M, and My vanish, while a comparison

of (9.143) and (9.136) shows that

dM, __m dU 9.144
dr @ dr ( )

independentof r. This has the obvious quantum interpretation that the radiation
from a multipole of order (/, m) carries off mf units of z component of angular
momentum per photon of energy fw. Even with a superposition of different m

values, the same interpretation of (9.143) holds, with each multipole of definite
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m contributing incoherently its share of the z componentof angular momentum.

Now, however, the x and y componentsare in general nonvanishing, with mul-

tipoles of adjacent m values contributing in a weighted coherent sum. The be-
havior contained in (9.140) andexhibited explicitly in (9.141)—(9.143)is familiar
in the quantum mechanicsof a vector operatorandits representation with respect

to basis states of J* and J,.* The angular momentum of multipole fields affords

a classical example of this behavior, with the z component being diagonalin the
(/, m) multipole basis and the x and y componentsnot.

The characteristics of the angular momentum just presented hold true gen-

erally, even though our example (9.133) was somewhat specialized. For a super-
position of both electric and magnetic multipoles of various (/, m) values, the
angular momentum expression (9.139) is generalized to

 or ane Re &{leeemap(l, m) + a(t’, m'yay(l, m)] | (+ Xpm)*Xin dO
2woe

+ i!“tak. m‘aul, m) — aul’, m')az(1, m)]1] a. Xm)WX Xin io

(9.145)

Thefirst term in (9.145) is of the same form as (9.139) and represents the sum
of the electric and magnetic multipoles separately. The second term is an inter-

ference between electric and magnetic multipoles. Examination of the structure
of its angular integral showsthat the interference is between electric and mag-
netic multipoles whose / values differ by unity. This is a necessary consequence

of the parity properties of the multipole fields (see below). Apart from this com-

plication of interference, the properties of dM/drare as before.

The quantum-mechanical interpretation of (9.144) concerned the z compo-

nent of angular momentum carried off by each photon. In further analogy with

quantum mechanics we would expect the ratio of the square of the angular mo-

mentum to the square of the energy to have value

M® (M2 + M2 + M2), Ul+1== (My - aee (9.146)

But from (9.136) and (9.141)—(9.143) the classical result for a pure (/, m) multi-

pole is

  

Mo” |M.|? m2

ea= (9.147) 

The reason for this difference lies in the quantum natureof the electromagnetic
fields for a single photon. If the z component of angular momentum ofa single
photon is knownprecisely, the uncertainty principle requires that the other com-
ponents be uncertain, with mean square values such that (9.146) holds. On the

other hand,for a state of the radiation field containing many photons(the clas-

sical limit), the mean square values of the transverse components of angular
momentum can be madenegligible compared to the square of the z component.

*See for example, E. U. Condon andG. H.Shortley, The Theory of Atomic Spectra, Cambridge

University Press, Cambridge (1953), p. 63.
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Then theclassical limit (9.147) applies. For a (J, m) multipole field containing 1
photons it can be shown*that

[M(N)P | N?m? + NIL + 1) — m’?

[U(N)]? N*w
 (9.148)

This contains (9.146) and (9.147) as limiting cases.
The quantum-mechanicalinterpretation of the radiated angular momentum

per photon for multipole fields contains the selection rules for multipole trangj-
tions between quantum states. A multipole transition of order(J, m) will connect
an initial quantum state specified by total angular momentum J and z component
M to a final quantum state with J’ in the range |J — /| <J'’ = J + land ™’ =
M — m.Or,alternatively, with two states (J, M) and (J’, M’),possible multipole
transitions have (/, m) such that |J — J’|} <1 SJ +J' andm = M — M’.

To complete the quantum-mechanicalspecification of a multipole transition
it is necessary to state whetherthe parities of the initial and final states are the
same or different. The parity of the initial state is equal to the product of the
parities of the final state and the multipole field. To determine theparity ofa
multipole field we merely examine the behavior of the magnetic field H,,, under
the parity transformation of inversion through the origin (r > —r). One wayof
seeing that H,,, specifies the parity of a multipolefield is to recall that the inter-
action of a charged particle and the electromagnetic field is proportional to
(v- A). If H,,, has a certain parity (even or odd) for a multipole transition, then
the corresponding A,,, will have the opposite parity, since the curl operation
changes parity. Then, because v is a polar vector with odd parity, the states
connected by the interaction operator (v+ A) will differ in parity by the parity of
the magnetic field H,,,.

For electric multipoles the magneticfield is given by (9.133). The parity trans-
formation (r > —r) is equivalent to (r > r, 0 7 — 0, 6 @ + 7) in spherical
coordinates. ‘The operatorL is invariant under inversion. Consequently the parity
properties of H,,, for electric multipoles are specified by the transformation of
Yim(9, &). From (3.53) and (3.50)it is evident that the parity of Y,,, is (—1)!. Thus
we see that the parity of fields of an electric multipole of order (1, m) is (—1Y.
Specifically, the magnetic induction H,,, has parity (—1)’, while the electric field
E,,, has parity (—1)'*", since E,,, = iZ)V X H,,,/k.

For a magnetic multipole of order(1, m) the parity is (—1)'*'. In this case the
electric field E,,, is of the same form as H,,, for electric multipoles. Hence the
parities of the fields are just opposite to those of an electric multipole of the same
order.

Correlating the parity changes and angular-momentum changesin quantum
transitions, we see that only certain combinations of multipole transitions can
occur. For example,if the states have J = 5 and J’ = 3, the allowed multipole

orders are / = 1, 2. If the parities of the two states are the same, weseethat

parity conservation restricts the possibilities, so that only magnetic dipole and
electric quadruple transitions occur. If the states differ in parity, then electric
dipole and magnetic quadrupole radiation can be emitted or absorbed.

*C. Morette De Witt, and J. H. D. Jensen, Z. Naturforsch. 8a, 267 (1953). Their treatment parallels

ours closely, with our classical multipole coefficients a,(J, m) and ay(/, m) becoming quantum-me-

chanical photon annihilation operators (the complex conjugates, a; and a;;, become Hermitian con-

jugate creation operators).
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9.9 Angular Distribution of Multipole Radiation

For a general localized source distribution, the fields in the radiation zone are
given by the superposition

 
ikr—iwt

H— —i)!"a -(1, m)Xim + ay(l, m)n X Xinip >. ( yn" [ae(Z, m)X, o(Z, m) iml (9.149)

E —> ZH Xn

The coefficients a;(/, m) and a,,(1, m) will be related to the properties of the
source in the next section. The time-averaged powerradiated per unit solid angle

18

2

— = = > (—i)*"[ar(l, m)Xp, X n + ay(l, M)Xp,] (9.150)

Within the absolute value signs the dimensionsare those of magnetic field, but
the polarization of the radiation is specified by the directions of the vectors. We
note that electric and magnetic multipoles of a given (/, m) have the same angular
dependencebut have polarizations at right angles to one another. Thus the mul-
tipole order may be determined by measurementof the angular distribution of
radiated power, but the character of the radiation (electric or magnetic) can be

determined only by a polarization measurement.
For a pure multipole of order (/, m) the angular distribution (9.150) reduces

to a single term,

dP(l,m) _ Zo

dQ, 2k?

From definition (9.119) of X,,, and properties (9.104), this can be transformed
into the explicit form:

dP(l,m) — Zo |a(l, m)|? s(J — m)\l + m+ 1) |Vimeil

dQ kL +1) [+40 4+ ml - mt) [¥iniP +m [Yin
(9.152)

Ja(l, m)|? |Xon/? (9.151)

 

Table 9.1 lists some of the simpler angular distributions.
The dipole distributions are seen to be those of a dipole oscillating parallel

to the z axis (m = 0) and of two dipoles, one along the x axis and one along the

y axis, 90° out of phase (m = +1). The dipole and quadrupole angular distribu-
tions are plotted as polar intensity diagrams in Fig. 9.5. These are representative

of / = 1 and/ = 2 multipole angular distributions, although a general multipole

Table 9.1 Some Angular Distributions: |X,,,(6, 6)
 

 

 

m

l 0 +1 +2

1 3 1, 3 2
Dipole 8 ’ 167 (1 + cos’6)

5 5 52 b sin’@ cos*0 (1 — 3 cos*6 + 4 cos*6) —— (1 — cos*6)Quadrupole Sar 167 167
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l=2,m=0

  
l=1,m=f1

Figure 9.5 Dipole and quadrupole radiation patterns for pure (/, m) multipoles.

distribution of order / will involve a coherent superposition of the (2/ + 1) am-
plitudes for different m, as shown in (9.150).

It can be shown by meansof (3.69) that the absolute squares of the vector

spherical harmonics obey the sum rule,

+1
Dd,|Xim(6, 6)P = Fo (9.153) 

Hencethe radiation distribution will be isotropic from a source that consists of
a set of multipoles of order /, with coefficients a(/, m) independent of m, super-
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posed incoherently. This situation usually prevails in atomic and nuclearradiative
transitions unless the initial state has been prepared in a special way.

The total power radiated by a pure multipole of order(/, m) is given by the
integral of (9.151) over all angles. Since the X;,, are normalized to unity, the

powerradiated is

Z
P(l, m) = 52 |a(l, m)|? (9.154)

For a general source the angulardistribution is given by the coherent sum (9.150).
Onintegration over angles it is easy to show that the interference terms do not

contribute. Hence the total power radiated is just an incoherent sum of contri-
butions from the different multipoles:

Zo
P= Fe > []az(2, m)P + land, m)I7] (9.155)

9.10 Sources of Multipole Radiation; Multipole Moments

Having discussed the properties of multipole fields, the radiation patterns, and
the angular momentum and energy carried off, we now turn to the connection

of the fields with the sources that generate them. We assume that there exist
localized well-behaveddistributions of charge p(x, t), current J(x, ¢), and intrinsic
magnetization M(x, ¢). Furthermore, we assume that the time dependence can

be analyzed into its Fourier components, and we consider only harmonically

varying sources,

o(xje", (xe, M(x)ei" (9.156)

where it is understood that we take the real part of such complex quantities. A

more general time dependencecan be obtained by linear superposition (see also

Problem 9.1).
The Maxwell equations for E and H’ = B/pp»are

V-H’ = 0, V XE — ikZ,.H’ = 0 (9.157)

V-E = ple, Vx H’ +ikE/Z,=J3I+V Xx M

with the continuity equation,

iop = V-JI (9.158)

It is convenient to deal with divergenceless fields. Accordingly, we use asfield

variables, H’ and

EF’ =E+—J (9.159)
WE_

In the region outside the sources, E’ reduces to E and H’to H.In termsofthese

fields the Maxwell equations read

V-H=0, VXE'-ikzZ,H’=—vVxJ
WE (9.160)
VxV-E’ = 0, V xX H’ + IkE'/Z,
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The curl equations can be combinedto give the inhomogeneous Helmholtz wave
equations

(V+ k*)H’ = -Vx(J+V x M)

and (9.161)

(V*? + k*)E’ —iZkV x (4 + 7 Vx 5)

These wave equations, together with V - H’ = 0, V- E’ = 0, and thecurl equations
giving E’ in terms of H’orvice versa, are the counterparts of (9.108) and (9.109)
whensourcesare present.

Since the multipole coefficients in (9.122) are determined according to
(9.123) from the scalars r+ H’ andr- E’, it is sufficient to consider wave equations
for them, rather than the vectorfields E’ and H’. From (9.110), (9.161) and the
vector relation, r-(V X A) = (r X V)- A =iL-

A

forany vectorfield A, wefind
the inhomogeneous wave equations

(Vi +ky-H’ = -iL-(J+V x M (9.162)

1
(V? + k*)r- E’ zat (H + bv x 3)

The solutions of these scalar wave equations follow directly from the develop-
ment in Section 6.4. With the boundary condition of outgoing wavesat infinity,

 

we have

H’(x) = ee I(x’) +0" M(x')] a2r- H’(x) = ,. x’) + V’ x x’ x!
4a

J

|x — x’ (9.163)

Zok elk |x—-x'| 1. E’ — _ L’ . , + Vv’ x , d°? ’r (x) dn xox’ wx a J(x } x

To evaluate the multipole coefficients by meansof (9.123), wefirst observe that
the requirementof outgoing wavesatinfinity makes A!” = 0 in (9.113). Thus we
choose f)(kr) = g,(kr) = h}”(kr) in (9.122) as the representation of E and H
outside the sources. Next we consider the spherical wave representation (9.98)
for the Green function in (9.163) and assumethat the pointx is outside a spherical
surface completely enclosing the sources. Then in the integrations in (9.163),
r. =r',r, =r. The spherical wave projection needed for (9.123) is

ik|x—x’|

xox hy(kr)j(kr')Vin(O", b') (9.164)
e

 

1

By meansofthis projection wesee that a,(/, m) and a,(1, m) are given in terms
of the integrandsin (9.163) by

ik | 1
l, =| ji (kr)Y7,,,L-

(|

M+tsaV xd) a&
acm) Vil + 1) ee ( ke ° (9.165)

ae

an, m) =

Vil

+

1)

| ik)Yin : (J +V xX M) d°x

The expressions in (9.165) give the strengths of the various multipole fields

outside the source in terms ofintegrals over the source densities J and MA. They
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can be transformed into more useful forms by meansof the following identities:

Let A(x) be any well-behaved vectorfield. Then

L-A=iV-(r X A) (9.166)

| OL-(V x A) = iV(r- A) —-—(P?V-A)
r or

These follow from the definition (9.101) of L and simple vector identities. With
A = M in thefirst equation and A = J in the second,the integral for a;(/, m) in
(9.165) becomes

ag(l, m) = “TT J ienvin|¥ ° (r x M)

+ . Vir- J) — - ~ 3 °)| d°x

where we have used (9.158) to express V - J in termsof p. Use of Green’s theorem

on the second term replaces V* by —k’, while a radial integration by parts on the
third term casts the radial derivative over onto the spherical Bessel function. The

result for the electric multipole coefficient 1s

Gm) = | Y7 cP [ri(kr)] + ik(x + S)ji(kr)

CES TN) N
TT

E

D

)

im
iVi(l+

1

)

— ikV - (r x M)j,(Kr)

The analogous manipulation with the second equation in (9.165) leads to the
magnetic multipole coefficient,

d°x (9.167)

(1, m) ke | vs V-(r x Dji(kr) + V-M tri(kr)

OM IN) Tar

d

y

im
iVU(1+ 1

)

_ Rr . M)j)(kr)
d°x

(9.168)

These results are exact expressions, valid for arbitrary frequency and sourcesize.

For many applications in atomic and nuclear physics the source dimensions
are very small compared to a wavelength (kr,,,, << 1). Then the multipole co-

efficients can be simplified considerably. The small argument limit (9.88) can be
used for the spherical Bessel functions. Keeping only the lowest powersin kr for

terms involving p or J and JM, we find the approximate electric multipole
coefficient,

 

kit? 1+1
ar(l, m) = < (i(2i+ 1) \ 7

where the multipole moments are

(Qim + Oim) (9.169)

Om — | r'Yimp d°x

and (9.170)

—ik '
in Yim V(r X d°O im (1 4 Lec r lm (r M) Xx

The moment Q,,, 1s seen to be the same in form asthe electrostatic multipole

momentq,,, (4.3). The moment Q7/,, is an induced electric multipole moment due
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to the magnetization. It is generally at least a factor kr smaller than the normal
moment Q,,,. For the magnetic multipole coefficient ay,(/, m) the corresponding
long-wavelength approximationis

 

ik? (14. 1\""

where the magnetic multipole moments are

Mim — aa Yim Vv: (x x J) d°x

and (9.172)

Min = -| HV, VM ax

In contrast to the electric multipole moments Q,,, and Q},,, for a system with
intrinsic magnetization the magnetic moments M,,, and M1, are generally of the
same order of magnitude.

In the long-wavelength limit we see clearly that electric multipolefields are
related to the electric-charge density p, while the magnetic multipole fields are
determined by the magnetic-momentdensities, (r x J)/2 and M.

9.11 Multipole Radiation in Atoms and Nuclei

Althougha full discussionof radiative transitions in atoms and nuclei requires a
quantum-mechanical treatment, the qualitative aspects can be gleaned from our
classical formulas by means of semiclassical arguments and simple estimates of
the effective multipole moments.First of all, we note that the transition proba-
bility I’ (reciprocal meanlife) for emission of a photon of energy fw is given by
the radiated power divided by iw. From (9.154) for the power and (9.169) and
(9.171) for the amplitudes a, and ay in terms of the long-wavelength multipoles,
we find the transition probability for an electric multipole (J, m),

wZok”! l + ]

(a+ pip a
For a magnetic multipole, Qin + Qim — (1/c)[Min + Mim].

The effective multipole moments can be estimated as to order of magnitude
as follows. Suppose that for the system underconsideration the effective charge
is €, the effective mass of the radiating constituents is m, and the effectivesize is

R. Then the effective magnetization is |M| = O(eh/mR?), where eh/m is theef-
fective magnetic moment of the constituents. The most naive estimates of the

multipole coefficients are then

 

Pe m) — WI |Qun + Oiml (9.173)

hoOn| = OCR’: |Oin| = O(en
and (9.174)

1 h
= |Min + Min| = o( Re)
C mc
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With these order-of-magnitude estimates some qualitative features of atomic and
nuclear radiative transitions can be abstracted. In atomsand in nuclei the tran-
sition energies Aw are invariably small compared to the rest energy mc* of the

constituents. We thussee that |Q/,,| << |Qim| is a universal expectation. Electric
multipole transitions of order / (denoted by E/) are dominated bythetransitional

charge density, with negligible contribution from the “magnetization charge.”
On the other hand, magnetic multipole transitions (M/) generally have compa-
rable contributions from the orbital and intrinsic magnetizations.

In atomsthe electrons are the radiating constituents. The size of the system

is R = O(ao/Zes:), Where dp is the Bohr radius and Z.,, is of order unity for valence

electron transitions and of order Z for K- or L-shell x-ray transitions. From

(9.174) the relative size of the magnetic multipole moments with respect to the
electric of the same order/ is |M|/c|Q| = O(f/mcR) = O(Z.4,/137). For the same
transition energy, the transition probabilities will be in the ratio

Pull) _ Zee

ry” a) “”
Only for x-ray transitions in heavy elements are magnetic multipoles even re-
motely competitive with electric multipoles of the same order. [Note, however,

that the MI/ transitions have the opposite parity properties to the E/ for the

same /.]
Of interest is the relative size of transition probabilities for multipoles dif-

fering by one unit in order. Ignoring factors of order unity, we see from (9.173)

and (9.174) that

Temu(l + 1)

Tem)

In atoms the transition energies are of order Z2,mc’/(137)*, while the sizeis
R = O(137 h/mcZ.¢¢). We thus find KR = O(Z.4;/137) and the ratio for successive
El multipoles is of the same orderas (9.175). For atomic transitions in which the

angular-momentum selection rules permit several multipoles, the lowest multi-
pole generally dominates. For example,if the initial and final angular momenta

are J =4and J’ = sandthestates have the opposite parity, the allowed multipoles

are E1 and M2. The F1transition will dominate by a factor of order (Zerp/137)*.

If the parities are the same,the allowedtransitions are M1 and £2. Nowthe two
transition mechanisms may be comparable, with transition probabilities much
smaller than for opposite parities. In atoms the dominanttransitions are E1; high
angular momentum states de-excite by a cascade of E1 transitions, if at all

possible.
In nuclei the situation is somewhat different. Successive multipoles of the

sametypestill obey the estimate (9.176), but the transition energies vary signif-
icantly. With the nuclear radius R = 1.4 A‘? X 10°m as theeffectivesize,
numerically we have KR S [Aw(MeV)] A*?/140. Energies vary from a few keV
to several MeV.In heavy nuclei, this corresponds to a range, KR = 10*-10™.
Evidently, for energetic nuclear transitions successive multipoles of the same type

are not as suppressed as in atoms. For low energies, however, the suppression of

rate with multipole order is dramatic. M4 isomeric transitions with energies of
the order of 100 keV or less can have meanlives of hours. The nuclear estimates

= O(k?R?) (9.176)
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for magnetic relative to electric transition rates of the same order, and for an
electric multipole of one higher orderrelative to a magnetic transition, are

TiAl) re +1)  _((ho[Mev])? A*?
re) Pil) o( 4000 0-177)

In these estimates we have taken the effective magnetization to be roughly
3 eh/myR’, with a g factor of 3 to account for the magnetic moments of nucleons.

Our estimates of the nuclear transition rates are subject to exceptions as.
cribable to special properties of the nuclear states and interactions. In light to
medium mass nuclei, £1 transitions are strongly suppressed by the isospin sym-
metry of nuclear forces, at least at low energies. M1 transitions are far commoner
than £1transitions and just as intense. In rare earth and transuranic nuclei, F?
transitions are often 100 times stronger than our estimate becauseof significant
static and transitional quadrupole moments in these nonspherical nuclei. If a]-
lowed by spin-parity, £2 transitions then compete favorably with M1transitions.

A proper quantum-mechanical treatment of multipole radiation can be found
in Blatt and Weisskopf, Chapter XII. Applications to nucleartransitionsare cited
in the References and Suggested Readingat the end of the chapter.

 
 = O(0.2 A~*”);

9.12 Multipole Radiationfrom a Linear, Center-Fed Antenna

Asan illustration of the use of a multipole expansion for a source whose dimen-
sions are comparable to a wavelength, we consider the radiation from thin,
linear, center-fed antenna, as shownin Fig. 9.6. We havealready given in Section
9.4 a direct solution for the fields when the current distribution is taken to be
sinusoidal. This will serve as a basis of comparison to test the convergence of
the multipole expansion. We assume the antennato lie along the z axis from

—(d/2) = z = (d/2), and to have a small gap at its center so that it can be suitably

Zz

 
 

   

 

NU | A NU? Figure 9.6 Linear, center-fed

antenna.
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excited. The current along the antenna vanishesat the end points andis an even
function of z. For the moment wewill not specify it more than to write

I(z, t) = K|\z\je™, (5) = 0 (9.178)

Since the current flows radially, (r x J) = 0. Furthermorethereis no intrinsic
magnetization. Consequently all magnetic multipole coefficients a),(/, m) vanish.

To calculate the electric multipole coefficient az(/, m) (9.167) we need expres-
sions for the charge and currentdensities. The current density J is a radial current,
confined to the z axis. In spherical coordinates this can be written for r < (d/2)

 J(x) = =)5 [6(cos 6 — 1) — d(cos 6 + 1)] (9.179)

wherethe delta functions cause the current to flow only upward (or downward)

along the z axis. From the continuity equation (9.158) we find the charge density

1 dir) ee 6 — 1) — &(cos 6 + |
ar?
 p(x) = (9.180)

iw adr

These expressions for J and p can beinserted into (9.167) to give

d/2 1did
a,(l, m) = sae| ar|kiddo) ~ k dp dp [rikn)| (9.181)

x [ ao Yim5(cos 6 — 1) — 6(cos @ + 1)]

The integral over anglesis

| dO. = 276nolYio(0) — Yio(7)]

showing that only m = 0 multipoles occur. This is obvious from the cylindrical
symmetry of the antenna. The Legendre polynomials are even (odd) about 6 =
m/2 for 1 even (odd). Hence, the only nonvanishing multipoles have / odd. The
the angular integral has the value,

| dQ, = V4xr(21+ 1), ! odd, m = 0

With slight manipulation (9.181) can be written

4ar(21 + 1) ae d
agz(1, 0) = x [erosDy” {- 7. rick) 4a27 Ul ‘. J dr dr (9.182)

+ rider5 + 1) | dr

To evaluate (9.182) we must specify the current /(z) along the antenna.If
no radiation occurred,the sinusoidalvariation in time at frequency w would imply
a sinusoidal variation in space with wave number k = w/c. But as discussed in
Section 9.4.B, the emission of radiation modifies the current distribution unless
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the antennais infinitely thin. The correct current /(z) can be found only by Solving
a complicated boundary-value problem. Since our purpose here is to compare 4
multipole expansion with a closed form of solution for a known current distrj-
bution, we make the same assumption about /(z) as in Section 9.4.A, namely,

[(z) =I sin( — kl (9.183)

where / is the peak current, and the phase is chosen to ensure that the current
vanishesat the ends of the antenna. With a sinusoidal current the second Part of
the integrand in (9.182) vanishes. Thefirst part is a perfect differential. Conse-
quently we immediately obtain, with /(z) from (9.183),

_ 1 [4a+ || (kd\”, (kaauto) =[201=0)"T (Ht) ,(§)] 00a a
Since we wish to test the multipole expansion when the source dimensions

are comparable to a wavelength, we consider the special cases of a half-wave
antenna (kd = 7) and a full-wave antenna (kd = 27). Table 9.2 shows the / = 1
coefficient for these two values of kd, along with the relative values for / = 3, 5,
From thetable it is evidentthat (a) the coefficients decrease rapidly in magnitude
as / increases, and (b) higher / coefficients are more important the larger the
source dimensions. But even for the full-wave antenna it is probably adequate
to keep only / = 1 and / = 3 in the angular distribution and certainly adequate
for the total power (which involves the squares of the coefficients).

With only dipole and octupole terms in the angular distribution wefind that
the powerradiated per unit solid angle (9.150)is

dP Z, |ag(1, 0)|? az(3, 0)
TF =| LY ———LY 9.1dQ Ak? rho 7% az(1,0) 0-185)

The various factors in the absolute square are

2 3 42
ILY, o| = — sind

° 4a

2 63 sD 2 2ILY39|? = va 6(5 cos“ — 1) (9.186)

 
3V 21

(LY,.)* ° (LY3) = sin’0(5 cos’ 6 — 1)

TT

Table 9.2 Multipole Coefficients for Linear Antenna
 

 

kd a,(1,0) a;,(3, 0)/a,(1, 0) a;(5, 0)/a,(1, 9)

T ie f 4.95 x 107? 1.02 x 1073
Ta

27 Ver = 0.3242 2.39 x 10°?

 



Sect. 9.12 Multipole Radiation from a Linear, Center-Fed Antenna 447

With these angular factors (9.185) becomes
2

dP 3Zo1l* (3. 7 ar (3, 0)
— = \— — sin’0]|1 — _/5 ——~% (5 cos’6 - 1 9.187710 7 (2 sine) [peed cos’@ 1) (9.187)

where the factor A is equal to 1 for the half-wave antenna and (7/4) for the full

wave. Thecoefficient of (5 cos’@ — 1) in (9.187) is 0.0463 and 0.3033 for the half-
wave and full-wave antenna, respectively.

A numerical comparison of the exact and approximate angular distributions,

(9.57) and (9.187), is shown in Fig. 9.7. The solid curves are the exact results, the
dashed curves the two-term multipole expansions. For the half-wave case (Fig.

9.7a) the simple dipole result [first term in (9.187)] is also shown as a dotted
curve. The two-term multipole expansion is almost indistinguishable from the
exact result for kd = 7. Even the lowest order approximationis not very far off
in this case. For the full-wave antenna (Fig. 9.7b) the dipole approximationis
evidently quite poor. But the two-term multipole expansion is reasonably good,

differing by less than 5% in the region of appreciable radiation.
The total powerradiatedis, “seo to (9.155),

», |az(l, 0)/? (9.188)

 

Fe,

  

 
(a) kd=7 (b) kd=27

Figure 9.7. Comparison of exact radiation patterns (solid curves) for half-wave
(kd = 7) and full-wave (kd = 27) center-fed antennas with two-term multipole
expansions (dashed curves). For the half-wave pattern, the dipole approximation
(dotted curve) is also shown. The agreement between the exact and two-term multipole

results is excellent, especially for kd = 7.
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Figure 9.8 Total powerradiated by center-fed antenna with sinusoidal current
distribution (9.183) versus kd. The ordinate is 477P/Zo1*, with I the peak current in
(9.183). The curve labeled “‘Long-wavelength dipole approx.” employs the long-
wavelength dipole moment (9.170) rather than the exact (9.167) used for the curve
labeled “Exact dipole term.” The curve labeled “All multipoles” is the sum (9.188)
[actually up to £9].
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For the half-wave antenna the coefficients in Table 9.2 show that the power
radiated 1s a factor 1.00244 times larger than the simple dipole result, (3Z17/7).
For the full-wave antenna, the poweris a factor 1.10565 times larger than the
dipole form (3Z,17/47:).

A comparison of the total power (9.188) for the center-fed linear antenna
with the lowest multipole power, for both the exact lowest multipole andits long-
wavelength approximation,is shownin Fig. 9.8 versus kd. For kd S 27, the power

is dominated by the £1 multipole, as we have just seen, but for larger kd the

higher multipoles contribute more and more.It is noteworthy that the long-
wavelength dipole approximation departs significantly from the exact dipole re-
sult (and the total power) for kd > 7. The departure, which becomesgross for
larger kd, is a consequence of differences between exact multipole moments and
the long-wavelength approximations to them whenthe wavelength becomes com-

parable to or smaller than sourcesize.

References and Suggested Reading

The simple theory of radiation from a localized source distribution is discussed in all

modern textbooks. Treatments analogous to that given here may be found in
Panofsky and Phillips, Chapter 13
Smythe, Chapter 12
Stratton, Chapter 8
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More complete discussions of antennas and antenna arrays are given in applied
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Jordan and Balmain
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Schelkunoff and Friis
Silver

Treatments of antennas as boundary-value problems from various points of view can

be found in
Hallén

Jones

Schelkunoff, Advanced Antenna Theory

The subject of excitation of waveguides by localized sources and the use of multipole

moments is discussed by
Collin

The original literature on the description of small apertures (Bethe holes) in terms
of effective dipole moments has been cited in Section 9.5. The basic theory and some

applications appear in
Collin
Montgomery, Dicke, and Purcell (pp. 176 ff. and pp. 296ff.)

Van Bladel

The theory of vector spherical harmonics and multipole vector fields is discussed

thoroughly by
Blatt and Weisskopf, Appendix B
Morse and Feshbach,Section 13.3

Applications to nuclear multipole radiation are given in
Blatt and Weisskopf, Chapter XII
Siegbahn, Chapter XIJI by S. A. Moszkowski and Chapter XVI (II) by M.

Goldhaber and A. W. Sunyar

Problems

9.1 A commontextbook example of a radiating system (see Problem 9.2) is a config-
uration of chargesfixed relative to each other but in rotation. The charge density
is obviously a function of time, but it is not in the form of (9.1).

(a) Showthat for rotating charges one alternative is to calculate real time-depen-
dent multipole moments using p(x,t) directly and then compute the multipole
moments for a given harmonic frequency with the convention of (9.1) by in-
spection or Fourier decomposition of the time-dependent moments. Note that
care must be taken when calculating q,,,(t) to form linear combinationsthat

are real before making the connection.

(b) Consider a charge density p(x,t) that is periodic in time with period T = 277/wp.
By making a Fourier series expansion, show that it can be written as

pts, 1) = po(x) + > Rel2pu(xe
where

T
1

pax) = | px, neae
0

This shows explicitly how to establish connection with (9.1).
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9.2

9.3

9.4

9.5

9.6

(c) For a single charge q rotating about the origin in the x-y planein circle of
radius R at constant angular speed wp, calculate the / = 0 and/ = 1 multipole
moments by the methods of parts a and b and compare. In methodb expresg
the charge density p,(x) in cylindrical coordinates. Are there higher multj-
poles, for example, quadrupole? At what frequencies?

A radiating quadrupole consists of a square of side a with charges +g atalternate
corners. The square rotates with angular velocity w about an axis normalto the
plane of the square and throughits center. Calculate the quadrupole moments,the
radiation fields, the angular distribution of radiation, and the total radiated power,

all in the long-wavelength approximation. Whatis the frequency of the radiation?

Two halves of a spherical metallic shell of radius R and infinite conductivity are

separated by a very small insulating gap. An alternating potential is applied between
the two halves of the sphere so that the potentials are +V cos wt. In the long-
wavelength limit, find the radiation fields, the angular distribution of radiated
power, and the total radiated power from the sphere.

Apply the approach of Problem 9.1b to the current and magnetization densities of
the particle of charge g rotating aboutthe origin in the x-y planein circle of radius
R at constant angular speed wp). The motion is such that wR << c.

(a) Find (J,),, Jy)n, and (J,), in terms of cylindrical coordinates for all n. Also
determine the components of the orbital “‘magnetization,”’ (x x J,,)/2, and its
divergence [which plays the role of a magnetic charge density for magnetic
multipoles, as in M,,, (9.172)].

(b) What long-wavelength magnetic multipoles (/, m) occur and at what frequen-
cies? [Remember that the multipole order / does not necessarily equal the
harmonic numbern.]

(c) Use linear superposition to generalize your argumentto the four chargesro-
tating in Problem 9.2 at radius R = a/\/2. What harmonics occur, and what
magnetic multipoles at each harmonic? Is there a magnetic multipole contri-
bution at the E2 frequency of Problem 9.2? Is it significant relative to the E2
radiation?

(a) Show that for harmonic time variation at frequency w theelectric dipole scalar
and vector potentials in the Lorenz gauge and the long-wavelengthlimit are

ikr

 

e@(x) = pl —i(x) dmeg? n- p(1 ikr)

ikr

A(x) = -i 7— [this is (9.16)]

where k = o/c, mis a unit vector in the radial direction,p is the dipole moment

(9.17), and the time dependence e~‘” is understood.

(b) Calculate the electric and magnetic fields from the potentials and show that
they are given by (9.18).

(a) Starting from the general expression (9.2) for A and the corresponding ex-
pression for ®, expand both R = |x — x’| and ¢' = t — Ric to first order in
|x’ |/r to obtain the electric dipole potentials for arbitrary time variation

1 1 OPret
—n. +p.

4 MB Pret cr " ot
 P(x, t) =
4TTEQ

Ho OPre

AOD Oat



9.7

9.8

9.9

(b)

(c)

(a)

(b)

(a)

(b)

(c)

(d)
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where p,-, = p(t’ = t — ric) is the dipole moment evaluated at the retarded

time measured from theorigin.

Calculate the dipole electric and magneticfields directly from these potentials

and show that

1 OPret _ 1 x “PeMo
B(x, f) = — |-—sn Xx n

(x, 1) 4a cr? ot Cr at?

1 0 3 ° ~~ re 1 ar re
E(x, ¢) a {(: +t2\) n(n Pret) P / +> 0 x(n x “Pes)

ITE, c ot r cr ot

Show explicitly how you can go back and forth between these results and the
harmonicfields of (9.18) by the substitutions —iw <> d/at and pe“”“" <> pye,(t').

 

By means of Fourier superposition of different frequencies or equivalent
means, show for a real electric dipole p(t) that the instantaneous radiated
powerperunit solid angle at a distance r from the dipole in a direction n is

2 2

dP) = _40_ /n x t| xn
dQ 167°?

where t’ = t — r/c is the retarded time. For a magnetic dipole m(f), substitute

(1/c)m < n for (n X p) X n.

  

Show similarly for a real quadrupole tensor Q,,(t) given by (9.41) with a real
charge density p(x, ft) that the instantaneous radiated power per unit solid

angle is

d°Q ;
nx Pear), x n

2

dP(t) Lo

dQ 5767°°c"
 

  
where Q(n, f) is defined by (9.43).

Show that a classical oscillating electric dipole p with fields given by (9.18)
radiates electromagnetic angular momentum toinfinity at the rate

7
dt 1277

 m[p* X p]

Whatis the ratio of angular momentum radiated to energy radiated? Interpret.

For a charge e rotating in the x-y plane at radius a and angular speed w, show
that there is only a z component of radiated angular momentum with mag-
nitude dL,/dt = e’k*a?/6m€). What about a charge oscillating along the z axis?

What are the results corresponding to parts a and b for magnetic dipole

radiation?

Hint: The electromagnetic angular momentum density comes from more than the
transverse (radiation zone) components ofthe fields.

(a) From the electric dipole fields with general time dependence of Problem 9.6,
show that the total powerandthetotal rate of radiation of angular momentum

through a sphereat large radius r and time f¢ are

P(t) =—— (Be)

 

6TEC? ot?

ALemn __ 1 OPret x Pret

dt 67eEgc? Ot ot?

where the dipole momentp is evaluated at the retarded time ¢’ = t — ric.
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9.10

(b) The dipole momentis caused by a particle of mass m and charge e Moving
nonrelativistically in a fixed central potential V(r). Show that the radiateg
power and angular momentum for such a particle can be written as

2
tT (dV

P(t) =— |—
(") m (4

Mem _ 7 (dV) 7
dt m \rdr

where 7 = e*/67€ymc* (= 2e*/3mc° in Gaussian units) is a characteristic time,
L is the particle’s angular momentum,and the right-hand sides are evaluated
at the retarded time. Relate these results to those from the Abraham—Lorentz
equation for radiation damping [Section 16.2].

 

(c) Suppose the charged particle is an electron in a hydrogen atom. Showthat the
inverse time defined by the ratio of the rate of angular momentum radiated
to the particle’s angular momentum is of the order of a‘c/aj, where a =
e*/4e,hic ~ 1/137 is the fine structure constant and dy is the Bohr radius. How

does this inverse time compareto the observedrate of radiation in hydrogen
atoms?

(d) Relate the expressionsin parts a and b to those for harmonic time dependence
in Problem 9.8.

The transitional charge and current densities for the radiative transition from the
m = 0, 2p state in hydrogen to the 1s groundstate are, in the notation of (9.1) and
with the neglect of spin,

2e —3r/2a —iWotp(r, 9, , t) = Ve a - re YooVi0e °°
0

 

 —Wo r Ao x
J(r, 0 th) = —~+— ,0¢,t(7, 8, b ) — ( 3) p, t)

where dy = 47€,f7/me* = 0.529 X 107'° m is the Bohrradius, w) = 3e7/32 7€pfidy is
the frequency difference of the levels, and vg = e7/4me9h = ac ~ c/137 is the Bohr

orbit speed.

(a) Show that the effective transitional (orbital) ‘““magnetization’’ is

“M(r, 0, b, t) = -i a. tan 0(& sin @ — § cos d) - p(r, 8, 4, 2)

Calculate V - ‘“M”’ and evaluate all the nonvanishing radiation multipoles in
the long-wavelength limit.

(b) In the electric dipole approximation calculate the total time-averaged power
radiated. Express your answerin units of (fw) - (a*c/ag), where a = e7/47e(fhic
is the fine structure constant.

(c) Interpreting the classically calculated poweras the photon energy (Aa) times
the transition probability, evaluate numerically the transition probability in
units of reciprocal seconds.

(d) If, instead of the semiclassical charge density used above,the electron in the
2p state was described bya circular Bohrorbit of radius 2a), rotating with the
transitional frequency w,, what would the radiated power be? Express your
answer in the same units as in part b and evaluate the ratio of the two powers
numerically.

9.11 Three charges are located along the z axis, a charge +2g at the origin, and charges
—q at z = +a cos wt. Determine the lowest nonvanishing multipole moments,



9.12

9.13

9.14

9.15

9.16
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the angular distribution of radiation, and the total power radiated. Assumethat

ka <1.

An almost spherical surface defined by

R(0) = Ro[1 + BP2(cos 6)]

has inside of it a uniform volumedistribution of charge totaling Q. The small pa-
rameter G6 varies harmonically in time at frequency w. This correspondsto surface
waves on a sphere. Keeping only lowest order terms in 6 and making the long-
wavelength approximation, calculate the nonvanishing multipole moments, the an-

gular distribution of radiation, and the total powerradiated.

The uniform charge density of Problem 9.12 is replaced by a uniform density of
intrinsic magnetization parallel to the z axis and having total magnetic moment M.
With the same approximations as above calculate the nonvanishing radiation mul-
tipole moments, the angular distribution of radiation, and the total powerradiated.

An antennaconsists of a circular loop of wire of radius a located in the x-y plane
with its center at the origin. The current in the wire is

I = I, cos wt = Re Lhe”

(a) Find the expressions for E, H in the radiation zone without approximations
as to the magnitude of ka. Determine the powerradiated perunitsolid angle.

(b) What is the lowest nonvanishing multipole moment (Q,,, or M;,,)? Evaluate

this moment in the limit ka < 1.

Twofixed electric dipoles of dipole momentp are locatedin the x-y plane a distance
2a apart, their axes parallel and perpendicular to the plane, but their moments
directed oppositely. The dipoles rotate with constant angular speed abouta Z axis
located halfway between them. The motionis nonrelativistic (wa/c < 1).

(a) Find the lowest nonvanishing multipole moments.

(b) Show that the magnetic field in the radiation zone is, apart from an overall

phase factor,

ikr

H = 5 k7[(& + if) cos @ — Z sin 6 e’®] cos 6 <
T r

 

(c) Show that the angular distribution of the radiation is proportional to
(cos’@ + cos*@) and the total time-averaged powerradiatedis

 P _— k® 2,2

15 77€ mee

Hint: Problem 6.21 is relevant.

A thin linear antenna of length d is excited in such a way that the sinusoidal current
makesa full wavelength of oscillation as shownin the figure.

4 NU

~ ”

~~. Problem 9.16

(a) Calculate exactly the powerradiated per unit solid angle andplot the angular

distribution of radiation.

(b) Determine the total power radiated and find a numerical value for the radi-

ation resistance.
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9.17 Treat the linear antenna of Problem 9.16 by the multipole expansion method.

9.18

9.19

9.20

(a) Calculate the multipole moments (electric dipole, magnetic dipole, and elec.
tric quadrupole) exactly and in the long-wavelength approximation.

(b) Compare the shape of the angulardistribution of radiated powerfor the lowest
nonvanishing multipole with the exact distribution of Problem 9.16.

(c) Determine the total power radiated for the lowest multipole and the corre-

sponding radiation resistance using both multipole moments from part a.
Compare with Problem 9.16b. Is there a paradox here?

A qualitative understandingof the result for the reactance of a short antenna whose
radiation fields are described by the electric dipole fields of Section 9.2 can be
achieved by considering the idealized dipole fields (9.18).

(a) Show thatthe integral overall anglesat fixed distance r of €)|E|? — 1 |?

iS

1 ipl’
2T7E r°

 J fe [EP — wo [MP] do =
(b) Using (6.140) for the reactance, show that the contribution_X, to the reactance

from fields at distances r > a is

w |pX =—

. 67, |1;|° a

where J; is the input current.

(c) For the short center-fed antenna of Section 9.2 show that X, = — d?/247e,wa’,

corresponding to an effective capacitance 247e,a°/d*. With a = d/2, X, gives
only a small fraction of the total negative reactance of a short antenna. The
fields close to the antenna, obviously not dipole in character, contribute heav-

ily. For calculations of reactances of short antennas, see the book by
Schelkunoff and Friis.

Consider the excitation of a waveguide in Problem 8.19 from the point of view of
multipole moments of the source.

(a) For the linear probe antenna calculate the multipole moment componentsof
p,m, Q., Q%, that enter (9.69).

(b) Calculate the amplitudes for excitation of the TE; mode and evaluate the

powerflow. Compare the multipole expansion result with the answer givenin
Problem 8.19b. Discuss the reasons for agreement or disagreement. What
about the comparison for excitation of other modes?

(a) Verify by direct calculation that the static tangential electric field (3.186) ina
circular opening in a flat conducting plane, when inserted into the defining
equation (9.72) for the electric dipole momentper, leads to the expression

(9.75).

(b) Determinethe value of inwmes; given by (9.72) with the static electric field in
part a.

(c) Use the static normal magnetic field (5.132) for the corresponding magnetic
boundary problem with a circular opening to compute via (9.74) the magnetic
dipole moment mys, and compare with (9.75).

(d) Commenton the differences between the results of parts b and c and the use
of the definitions (9.72) in a consistent fashion. [See Section 9 of the article,
Diffraction Theory, by C. J. B. Bouwkampin Reports on Progress in Physics,

Vol. 17, ed. A. C. Strickland, The Physical Society, London (1954).]
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9.22

9.23

9.24
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The fields representing a transverse magnetic wave propagating in a cylindrical
waveguide of radius R are:

E, = J,Cyrye"re", H, =0

—mB E, k
E,=—>-— H,=-+><-E
nana Zp“

p, = (Bo: H,=—-§, 

Por’ ~ ZoB
where mm is the index specifying the angular dependence, f is the propagation con-
stant, y° = k* — B* (k = alc), where y is such that J,,(yR) = 0. Calculate the ratio
of the z componentof the electromagnetic angular momentumto the energyin the
field. It may be advantageous to perform someintegrationsby parts, and to use the
differential equation satisfied by E,, to simplify your calculations.

A sphericalhole of radius a in a conducting medium canserve as an electromagnetic
resonant cavity.

(a) Assuming infinite conductivity, determine the transcendental equations for
the characteristic frequencies w,,, of the cavity for TE and TM modes.

(b) Calculate numerical values for the wavelength A,,, in units of the radius a for

the four lowest modes for TE and TM waves.

(c) Calculate explicitly the electric and magnetic fields inside the cavity for the
lowest TE and lowest TM mode.

The spherical resonant cavity of Problem 9.22 has nonpermeable walls of large, but
finite, conductivity. In the approximation that the skin depth 6 is small compared
to the cavity radius a, show that the Q of the cavity, defined by equation (8.86),is
given by

for all TE modes

M
O
I
R

M
m
I
S

(i+ 1
QO = ( — we) for TM modes

Nim

where Xj, = (a/c) @,, for TM modes.

Discuss the normal modesof oscillation of a perfectly conducting solid sphere of
radius a in free space. (This problem wassolved by J. J. Thomsonin the 1880s.)

(a) Determine the characteristic equations for the eigenfrequencies for TE and

TM modesof oscillation. Show that the roots for w always have a negative
imaginary part, assuming a time dependenceof e‘”.

(b) Calculate the eigenfrequencies for the / = 1 and / = 2 TE and TM modes.
Tabulate the wavelength (defined in terms of the real part of the frequency)
in units of the radius a and the decay time (defined as the time taken for the
energy to fall to e' of its initial value) in units of the transit time (a/c) for

each of the modes.



CHAPTER 10

Scattering and Diffraction

The closely related topics of scattering and diffraction are important in many

branches of physics. Approaches differ depending on the relative length scales

involved—the wavelength of the waves on the one hand, andthesize of the

target (scatterer or diffractor) on the other. When the wavelength ofthe radiation
is large compared to the dimensionsof the target, a simple description in terms
of lowest order induced multipoles is appropriate. When the wavelength andsize
are comparable, a more systematic treatment with multipole fields is required.

In the limit of very small wavelength comparedto the size of the target, semi-
geometric methods can be utilized to obtain the departures from geometrical

optics. We begin with the long-wavelength limit of electromagnetic scattering,

with some simple examples. Then we develop a perturbation approachtoscat-
tering by a medium with small variations in its dielectric properties in order to

discuss Rayleigh scattering, the blue sky, and critical opalescence. To introduce

the more systematic approach with multipole fields, we first present the multipole
expansion of an electromagnetic plane wave and then apply it to the scattering

by a conducting sphere.

Diffraction is treated next, first the scalar Huygens—Kirchhoff theory, then a

vector generalization that leads naturally to a discussion of Babinet’s principle

of complementary screens. These tools are applied to diffraction by a circular

aperture, with connection to the low-order effective multipoles of Section 9.5 in
the long-wavelengthlimit. Scattering at very short wavelengths and the important

optical theorem complete the chapter.

10.1 Scattering at Long Wavelengths

456

A. Scattering by Dipoles Induced in Small Scatterers

The scattering of electromagnetic waves by systems whoseindividual dimen-
sions are small compared with a wavelength is a common and important occur-

rence. In such interactions it is convenient to think of the incident (radiation)
fields as inducing electric and magnetic multipoles that oscillate in definite phase
relationship with the incident wave and radiate energy in directions other than
the direction of incidence. The exact form of the angular distribution of radiated
energy is governed by the coherent superposition of multipoles induced by the

incidentfields and in general dependsonthestate of polarization of the incident
wave. If the wavelength of the radiation is long compared to the size of the
scatterer, only the lowest multipoles, usually electric and magnetic dipoles, are
important. Furthermore, in these circumstances the induced dipoles can be cal-

culated from static or quasi-static boundary-value problems,just as for the small

apertures of the preceding chapter (Section 9.5).
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The customary basic situation is for a plane monochromatic waveto bein-

cident on a scatterer. For simplicity the surrounding medium is taken to have
wu, = €, = 1. If the incident direction is defined by the unit vector no, and the

incident polarization vectoris €,, the incidentfields are

Einc — €)Eye“™o* (10.1)

Hin = No x Einc/Zo

where k = w/c and a time-dependence e~“” is understood. These fields induce
dipole moments p and m in the small scatterer and these dipoles radiate energy
in all directions, as described earlier (Sections 9.2, 9.3). Far away from the scat-
terer, the scattered (radiated) fields are found from (9.19) and (9.36) to be

1 5 eikr

E,. = k [(m X p) Xn—-—n xX me]
4TE, r (10.2)

H,. =nx E,./Zo

  

where is a unit vector in the direction of observation andr is the distance away
from scatterer. The powerradiated in the direction n with polarization e, per unit
solid angle, per unit incident flux (power per unit area) in the direction ny with
polarization €), is a quantity with dimensions of area per unitsolid angle. It is
called the differential scattering cross section*:

 

1
lo r 57, je* - E,,|?
 (n, €: Mo, €) = ——2 (10.3)
dQ) 1 we 5

7 JEG ° Einc|
0

The complex conjugation of the polarization vectors in (10.3) is important for
the correct handling of circular polarization, as mentioned in Section 7.2. With
(10.2) and (10.1), the differential cross section can be written

da kA
70 (nN, €; Mo, €9) = (dnesEs? le* +p + (m X e€*) = m/c|? (10.4)

The dependence of the cross section on mp and €p is implicitly contained in the
dipole moments p and m. Thevariation of the differential (and total) scattering
cross section with wave number as k* (or in wavelength as A~“) is an almost
universal characteristic of the scattering of long-wavelength radiation by anyfi-
nite system. This dependence on frequency is known as Rayleigh’s law. Only if

both static dipole moments vanish doesthe scattering fail to obey Rayleigh’s law;

the scattering is then via quadrupole or higher multipoles (or frequency-

dependent dipole moments) and varies as w° or higher. Sometimes the dipole
scattering is known as Rayleigh scattering, but this term is usually reserved for
the incoherent scattering by a collection of dipole scatterers.

B. Scattering by a Small Dielectric Sphere

Asa first, very simple example of dipole scattering we consider a smalldi-

electric sphere of radius a with y, = 1 and a uniform isotropic dielectric constant

*In the engineering literature the term bistatic cross section is used for 47 (da/dQ).
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€,(w). From Section 4.4, in particular (4.56), the electric dipole momentis foung

 

 

to be

=4 +), 1Pp — 47€ + 2 inc ( 0.5)

There is no magnetic dipole moment. Thedifferential scattering cross section js
2

do .4,.\|¢—1 « 5
dQ e +2 le Eo| (10.6)

  
The polarization dependenceis typical of purely electric dipole scattering. The
scattered radiationis linearly polarized in the plane defined by the dipole moment
direction (€)) and the unit vector n.

Typically the incident radiation is unpolarized. It is then of interest to ask
for the angular distribution of scattered radiation of a definite state of linear
polarization. The cross section (10.6) is averaged overinitial polarization €, for
a fixed choice of e. Figure 10.1 showsa possible set of polarization vectors. The
scattering plane is defined by the vectors no and n. The polarization vectors )
and e“are in this plane, while e= eis perpendicularto it. The differential
cross sections for scattering with polarizations e“ and e, averaged overinitial
polarizations, are easily shown to be

  

do _ k‘a® |e, — 1] wos?
dd. 2 |e, +2 (10.7)
do, _ Ka® |e, = 1/"
dQ, 2 |e+2 

 

where the subscripts || and | indicate polarization parallel to and perpendicular
to the scattering plane, respectively. The polarization I1(@) of the scattered ra-
diation is defined by

  

do, _ do;
dn dQIl(6) = ————— (10.8)
do, , do
dQ dQ

Z

0

nk 4no

ef?
* <3 c® =e®

Figure 10.1 Polarization and
propagation vectors for the

Y incident and scattered radiation.
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Figure 10.2 Differential scattering cross section (10.10) and the polarization of
scattered radiation (10.9) for a small dielectric sphere (dipole approximation).

From (10.7) wefind for the (electric dipole) scattering by a small dielectric sphere,

sin’ 6

  

Il(¢6) = ————— 10.9
(9) 1 + cos*6 (10.9)

The differential cross section, summed overscattered polarization,is
2

do a6 |& 7 1] 1
—_-_ = <= 5 1 + 2 1 °710 7) 5( cos’ 0) (10.10)

and thetotal scattering cross section 1s
2

dao S87 e,— 1
= — dQ = — k‘a? |———— 10.11"~~ a0 3°" le +2 (10.11)  

The differential cross section (10.10) and the polarization of the scattered radi-
ation (10.9) are shownas functions of cos 6 in Fig. 10.2. The polarization II(@)
has its maximum at 6 = 7/2. At this angle the scattered radiation is 100%linearly
polarized perpendicular to the scattering plane, and for an appreciable range of
angles on either side of 6 = 7/2 is quite significantly polarized. The polarization

characteristics of the blue sky are an illustration of this phenomenon,andare,in

fact, the motivation that led Rayleigh first to consider the problem. The reader
can verify the general behavior on a sunny day with a sheet of linear polarizer
or suitable sunglasses.

C. Scattering by a Small Perfectly Conducting Sphere

An example with interesting aspects involving coherence between different
multipoles is the scattering by a small perfectly conducting sphere of radiusa.
The electric dipole moment of such a sphere was shown in Section 2.5 to be

p = 4769@°Eine (10.12)
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The sphere also possesses a magnetic dipole moment. Fora perfectly conducting
sphere the boundary condition on the magnetic field is that the normal compo-
nent of B vanishes at r = a. Either by analogy with the dielectric spherein a
uniform electric field (Section 4.4) with e = 0, or from the magnetically permeable
sphere (Section 5.11) with ~ = 0, or by a simple direct calculation,it is foung
that the magnetic moment of the small sphereis

m = —270°Hn- (10.13)

For a linearly polarized incident wave the two dipoles are at right angles to each
other and to the incident direction.

The differential cross section (10.4) is

do 4 6 1 2

FG (Is €5 Mo €0) = K*a® |e* + ey — H(m x €*) + (My X €)? (10.14)
The polarization properties and the angular distribution of scattered radiation
are more complicated than for the dielectric sphere. The cross sections analogous
to (10.7), for polarization of the scattered radiation parallel to and perpendicular
to the plane of scattering, with unpolarized radiation incident, are

doy _ kira’ lcos 6 — 4/7
dQ 2 ? (10.15

do, _ Kira | 70 5 |1 — 5 cos oF

The differential cross section summed overboth states of scattered polarization
can be written

d
70 = k*a°[3(1 + cos’6) — cos 6] (10.16)

while the polarization (10.8) is

3 sin’6

5(1 + cos’) — 8 cos 6
 II(é) = (10.17)

The cross section and polarization are plotted versus cos @ in Fig. 10.3. The cross
section has a strong backward peaking caused byelectric dipole—magnetic dipole

interference. The polarization reaches II = +1 at 6 = 60° andis positive through
the whole angular range. The polarization thus tends to be similar to that for a

small dielectric sphere, as shown in Fig. 10.2, even though the angular distribu-
tions are quite different. The total scattering cross section is 0 = 107k*a‘/3, of
the same order of magnitudeas for the dielectric sphere (10.11) if (e, — 1) is not
small.

Dipole scattering with its w* dependence on frequency can be viewedas the

lowest order approximation in an expansion in kd, where d is a length typical of
the dimensions of the scatterer. In the domain kd ~ 1, more than the lowest

order multipoles must be considered. Then the discussion is best accomplished
by use of a systematic expansion in spherical multipole fields. In Section 10.4 the

scattering by a conducting sphere is examined from this point of view. When
kd >> 1, approximation methodsofa different sort can be employed,asisillus-
trated later in this chapter (Section 10.10). Whole books are devotedto the scat-
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Figure 10.3. Differential scattering cross section (10.16) and polarization of scattered
radiation (10.17) for a small perfectly conducting sphere (electric and magnetic dipole

approximation).

tering of light by spherical particles possessing arbitrary w, €, 0. Some references
to this literature are given at the end of the chapter.

D. Collection ofScatterers

As a final remark we note that if the scattering system consists of a number
of small scatters with fixed spatial separations, each scatterer generates an am-
plitude of the form (10.2). The scattering cross section results from a coherent

superposition of the individual amplitudes. Because the induced dipoles are pro-
portional to the incidentfields, evaluated at the position x; of the jth scatterer,
its moments will possess a phase factor, e“"°*. Furthermore,if the observation
point is far from the whole scattering system, (9.7) showsthat the fields (10.2)
for the jth scatterer will have a phase factor e-“"™. The generalization of (10.4)

for such a system is

da kA

dQ (477€Eo)"

where q = kny — kmis the vectorial change in wave vector during the scattering.

The presence of the phasefactors e’4” in (10.18) meansthat, apart from the

forward direction where q = 0, the scattering depends sensitively on the exact
distribution of the scatterers in space. The general behaviorcan beillustrated by
assumingthatall the scatterers are identical. Then the cross section is the product

of the cross section for one scatterer times a structure factor,*

2

j

> [e* e P; + (n x e*) ; m,/cle*

J

(10.18)
  

F(q) = (10.19)
  

*We do not consider here the effects of multiple scattering; that is, we assume that the mean free

path for scattering is large compared to the dimensionsofthe scattering array.
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Written out as a factor times its complex conjugate, ¥(q)is

Hq) = Leroy
i 7

If the scatterers are randomly distributed, the terms with j # j’ can be shownto

give a negligible contribution. Only the terms with j = j’ are significant. Thep
4(q) = N, the total number of scatterers, and the scattering is said to be an
incoherent superposition of individual contributions. If, on the other hand, the

scatterers are very numerous and havea regular distribution in space, the struc-
ture factor effectively vanishes everywhere exceptin the forwarddirection. There
is therefore no scattering by a very large regular array of scatterers, of which
single crystals of transparent solids like rock salt or quartz are examples. What
small amountof scattering does occuris caused by thermalvibrations away from

the perfect lattice, or by impurities, etc. An explicit illustration, also providing

evidence for a restriction of the foregoing remarks to the long-wavelength re-

gime, is that of a simple cubic array of scattering centers. The structure factoris
well known to be

sin?(Mae* sin?(“eé sin? (Mast;

a a {gaa
Ni sin'(22) NZ sine(22) N3 sine(2")

where is the lattice spacing, N,, N>, N3 are the numbersoflattice sites along

the three axes of the array, N = N,N,N; is the total numberof scatterers and

41, 92, 93 are the components of q along the axes. At short wavelengths
(ka > zr), (10.20) has peaks when the Bragg scattering condition, g;a = 0, 27,
47,..., 18 obeyed. This is the situation familiar in x-ray diffraction. But at long
wavelengths only the peak at g,a = 0 is relevant because (q;@)max = 2ka << 1.

In this limit #(q) is the product of three factors of the form [(sin x,)/x,]* with
x; = N,g,a/2. The scattering is thus confined to the region g; S 27/N,a, corre-

sponding to angles smaller than A/L, where A is the wavelength and L typical
overall dimension of the scattering array.

F(q) = N* (10.20)

10.2. Perturbation Theory ofScattering, Rayleigh’s Explanation
of the Blue Sky, * Scattering by Gases and Liquids,
Attenuation in Optical Fibers

A. General Theory

If the medium through which an electromagnetic waveis passing is uniform
in its properties, the wave propagates undisturbed and undeflected.If, however,

“Although Rayleigh’s name should undoubtedly be associated with the quantitative explanation of

the blue sky,it is of somehistorical interest that Leonardo da Vinci understood the basic phenomenon
around 1500. In particular, his experiments with the scattering of sunlight by wood smoke observed

against a dark background (quoted as items 300-302, pp. 237 ff, in Vol. I of Jean Paul Richter, The
Literary Works of Leonardo da Vinci, 3rd edition, Phaidon, London 1970) (also a Dover reprint
entitled The Notebooks of Leonardo da Vinci, Vol. 1, pp. 161 ff.) anticipate by 350 years Tyndall’s

remarkably similar observations[J. Tyndall, Philos. Trans. R. Soc. London 160, 333 (1870)].
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there are spatial (or temporal) variations in the electromagnetic properties, the
waveis scattered. Some of the energy is deviated from its original course. If the
variations in the properties are small in magnitude, the scattering is slight and

perturbative methods can be employed. We imagine a comparisonsituation cor-
responding to a uniform isotropic medium withelectric permittivity €) and mag-
netic permeability wo. For the present €) and mo are assumed independent of

frequency, although when harmonic time dependenceis assumedthis restriction

can be removedin the obvious way. Note that in this section €) and po are not

the free-space values! Throughthe action of some perturbing agent, the medium
is supposed to have small changes in its response to applied fields, so that
D # €—, B # uoH, over certain regions of space. These departures may be

functions of time and space variables. Beginning with the Maxwell equations in

the absence of sources,

V-B= QO, VxE=-—

wp (10.21)
V-D=42, VxH=—_

it is a straightforward matter to arrive at a wave equation for D,

xD 0
VD —_ Moko “are = —V x V x (D ~~ Eo) + Eo ar V x (B — oH) (10.22)

This equation is without approximation as yet, althoughlater the right-hand side

will be treated as small in some sense.*
If the right-hand side of (10.22) is taken as known, the equation is of the

form of (6.32) with the retarded solution (6.47). In general, of course, the right-
hand side is unknownand (6.47) must be regarded as an integral relation, rather
than a solution. Nevertheless, such an integral formulation of the problem forms
a fruitful starting point for approximations. It is convenient to specialize to har-
monic time variation with frequency w for the unperturbed fields and to assume
that the departures (D — €)E) and (B — oH) also havethis time variation. This
puts certain limitations on the kind of perturbed problem that can be described

by the formalism, but prevents the discussion from becoming too involved. With
a time dependence e“” understood, (10.22) becomes

where k* = po€ow*, and py and €, can be values specific to the frequency w. The
solution of the unperturbed problem,with the right-handside of (10.23) set equal

to zero, will be denoted by D(x). A formal solution of (10.23) can be obtained
from (6.45), if the right-handside is taken as known. Thus

ik|x—x’ ’ , _pave 2 [ae Of Ae xD ae
7

10.24
+1Eow V’ x (B —| ( )IX — x’|

*If prescribed sources p(x, t), J(x, f) are present, (10.22) is modified by the addition to the left-hand
side of

ad—| Vp + —p+ Mo€o 2 |
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If the physical situation is one of scattering, with the integrandin (10.24) confine
to somefinite region of space and D®describing a waveincident in somedirec.
tion, the field far away from the scattering region can be written as

ikr

 D> D+A, £ (10.25)
r

where the scattering amplitude A,, is

1 | VW’ XW xX (D - ©& EA,. — + | ax eikn-x ( 0 : (10.26)

Aa +1LEg@ V’ x (B —_ boH)

The steps from (10.24) to (10.26) are the same as from (9.3) to (9.8) for the
radiation fields. Some integrations by parts in (10.26) allow the scattering ampli-
tude to be expressed as

ke | [n x (D — eE)] Xn
A,. = — | AxeM

4m -—=n x (B ~ oH)

The vectorial structure of the integrand can be compared with the scattered
dipole field (10.2). The polarization dependence of the contribution from
(D — €E) is that of an electric dipole, from (B — oH) a magnetic dipole. In
correspondence with (10.4) the differential scattering cross section is

do e*- A?
0Spat (10.28)

where € is the polarization vector of the scattered radiation.
Equations(10.24), (10.27), and (10.28) provide a formalsolution to the scat-

tering problem posedat the beginning of the section. The scattering amplitude
A,. is not known, of course, until the fields are known at least approximately.
But from (10.24) a systematic scheme of successive approximations can be
developed in the same way as the Born approximation series of quantum-
mechanical scattering. If the integrand in (10.24) can be approximatedtofirst
order, then (10.24) provides a first approximation for D, beyond D©. This ap-
proximation to D can beusedto give a second approximation for the integrand,
and an improved D can be determined, and so on. Questions of convergence of
the series, etc. have been muchstudied in the quantum-mechanical context. The
series is not very useful unlessthe first few iterations converge rapidly.

(10.27)

B. Born Approximation

We will be content with the lowest order approximation for the scattering
amplitude. This is called the first Born approximation or just the Born approxi-

mation in quantum theory and wasactually developed in the present context by
Lord Rayleigh in 1881. Furthermore,weshall restrict our discussion to the simple

example of spatial variations in the linear response of the medium. Thus we
assume that the connections between D and E and B and H are

D(x) = [eo + de(x)JE(x) (10.29)
B(x) = [Ho + du(x)]H(x)

where de(x) and du(x) are small in magnitude compared with €) and po. The
differences appearing in (10.24) and (10.27) are proportional to S€ and dy. To
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lowest order then, the fields in these differences can be approximated by the

unperturbedfields:

~
D — @&E = D(x)

(10.30)

B — »oH = au) B(x)

0

If the unperturbedfields are those of a plane wave propagatingin a direction no,

so that D® and B®are

D(x) = €)Dye*”*

B(x) = /F2 ny x D(x)
E0

the scalar product of the scattering amplitude (10.27) and e*, divided by Do,is

de (x)
 

(1) “0
—*_ =a dx e' 0 ; (10.31)

+ (n X €*) + (My X €) (x)
0

where q = k(mp — n)is the difference of the incident and scattered wavevectors.
The absolute square of (10.31) gives the differential scattering cross section
(10.28).

If the wavelength is large compared with the spatial extent of de and dy, the
exponential in (10.31) can be set equal to unity. The amplitude is then a dipole
approximation analogous to the preceding section, with the dipole frequency
dependence and angulardistribution. To establish contact with the results already
obtained, suppose that the scattering region is a uniform dielectric sphere of

radius a in vacuum. Then 6e is constant inside a spherical volumeof radius a and
vanishes outside. The integral in (10.31) can be performedforarbitrary |q|, with
the result,

 * eA. 6 sin ga — cos€ = (ere) q a |

Do Eo q

In the limit g — 0 the square bracket approaches a°/3. Thus, at very low fre-
quencies or in the forward direction at all frequencies, the Born approximation
to the differential cross section for scattering by a dielectric sphere of radiusa is

2

O€dali = k*a°|—
120 (42) . 3€

Comparison with (10.6) shows that the Born approximation and the exact low
frequency result have the expectedrelationship.

jJe* + €9| (10.32)
  

C. Blue Sky: Elementary Argument

The scattering of light by gases,first treated quantitatively by Lord Rayleigh

in his celebrated work on the sunset and blue sky,* can be discussedin the present

*Lord Rayleigh, Philos. Mag. XLI, 107, 274, (1871); ibid. XLVII, 375 (1899); reprintedin his Scientific

Papers, Vol. I, p. 87, and Vol. 4, p. 397. Rayleigh’s papers are well worth reading as examples of a

masterful physicist at work.
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framework. Since the magnetic moments of most gas molecules are negligible
compared to the electric dipole moments,the scattering is purely electric dipole
in character. In the preceding section we discussed the angular distribution ang
polarization of the individual scatterings (see Fig. 10.2). We therefore confine
our attention to the total scattering cross section and the attenuation ofthe in-
cident beam. The treatmentis in two parts. Thefirst, elementary argumentjs
adequate for a dilute ideal gas, where the molecules are truly randomly distrib.
uted in space relative to each other. The second, based on density fluctuations
in the gas, is of more general validity. We now identify €) with the electric per-
mittivity of free space.

If the individual molecules, located at x,, are assumedto possess dipole mo-
ments pj = €0¥moik(x;), the effective variation in dielectric constant d€(X) in
(10.31) can be written as

de(x) — € >» Ymol d(x _ X;) (10.33)

j

The differential scattering cross section obtained from (10.31) and (10.28) is

da k’

TO. 16qe | Ynotl” le* + €0l?F(Q)

where #(q) is given by (10.19). For a random distribution of scattering centers
the structure factor reduces to an incoherent sum, and the cross section is just
that for one molecule, times the number of molecules. For a dilute gas the mo-
lecular polarizability is related to the dielectric constant by €, = 1+ NY¥mo1, Where
N 1s the numberof molecules per unit volume. Thetotal scattering cross section
per molecule of the gas is thus

k‘4 2k~~ |e - 1p =,
6aN 3a7N

 o In — 1 (10.34)

where the last form is written in terms of the index of refraction n, assuming
ln — 1| < 1. Thecross section (10.34) represents the powerscattered per mol-
ecule for a unit incident energy flux. In traversing a thickness dx of the gas, the
fractionalloss of flux is No dx. The incident beam thus has anintensity J(x) =
[je“*, where a is the absorption or attenuation coefficient (also called the extinc-

tion coefficient) of (7.53) and is given by

4

377N
 a= No = In — 1/7 (10.35)

These results, (10.34) and (10.35), describe what is known as Rayleigh scattering,
the incoherentscattering by gas molecules or other randomly distributed dipole
scatterers, each scattering according to Rayleigh’s w* law.

Rayleigh’s derivation of (10.35) was in the context of scattering of light by
the atmosphere. Evidently the k* dependence meansthatin the visible spectrum
the red is scattered least and the violet most. Light received away from the di-
rection of the incident beam is more heavily weighted in high-frequency (blue)
components than the spectral distribution of the incident beam, while the trans-
mitted beam becomesincreasingly red in its spectral composition, as well as di-
minishing in overall intensity. The blueness of the sky, the redness of the sunset,
the waneness of the winter sun, and the ease of sunburning at midday in summer
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are all consequences of Rayleigh scattering in the atmosphere. The index of

refraction of air in the visible region (4100-6500 A) and at NTPis (n — 1) =
2.78 X 10°*. With N = 2.69 x 10’? molecules/cm’, typical values of the attenu-
ation length A = a! are A = 30, 77, 188 km for violet (4100 A), green (5200
A), and red (6500 A) light, respectively. With an isothermal modelofthe at-
mosphere in which the density varies exponentially with height, the following

intensities at the earth’s surface relative to those incident on the top ofthe at-

mosphere at each wavelength can be estimated for the sun at zenith and sunrise-

sunset:

Color Zenith Sunrise-Sunset

Red (6500 A) 0.96 0.21
Green (5200 A) 0.90 0.024
Violet (4100 A) 0.76 0.000065

These numbers showstrikingly the shift to the red of the surviving sunlight at

sunrise and sunset.

The actualsituation is illustrated in Fig. 10.4. The curve A shows the power

spectrum of solar radiation incident on the earth from outside as a function of

photon energy. Curve B is a typical spectrum at sea level with the sun directly
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Figure 10.4 Power spectrum of solar radiation (in watts per square meter per electron

volt) as a function of photon energy (in electron volts). Curve A is the incident
spectrum above the atmosphere. CurveB is a typical sea-level spectrum with the sun at
the zenith. The absorption bands below 2 eV are chiefly from water vapor and vary
from site to site and day to day. The dashed curves give the expected sea-level
spectrum at zenith and at sunrise-sunset if the only attenuation is from Rayleigh

scattering by a dry, clean atmosphere.
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overhead.* The upper dashed curve is the result expected from curve A if the

only attenuation is Rayleigh scattering by a dry, clean, isothermal, exponential]
atmosphere.In reality the attenuation is greater, mainly because of the presence

of water vapor, which has strong absorption bandsin the infrared, and ozone,

which causes absorption of the ultraviolet, as well as other molecular species and

dust. The lower dashed curve indicates roughly the sunrise-sunset spectrum at
sea level. Astronauts orbiting the earth see even redder sunsets becausetheat-

mospheric path length is doubled.

Detailed observations on the polarization of the scatteredlight from the sky

have been reported.’ Just as with the attenuation, the reality departs somewhat

from the ideal of a dry, clean atmosphereof low density. At 90° the polarization

is a function of wavelength and reaches a maximum of approximately 75% at

5500 A.It is estimated to be less than 100% becauseof multiple scattering (6 70),
molecular anisotropy (6%), ground reflection (5%, and especially important in
the green when green vegetation is present), and aerosols (8%).

The formula (10.35) for the extinction coefficient is remarkable in its pos-
session of the factor N~' as well as macroscopic quantities such as the index of
refraction. If there were no atomicity (N — ©), there would be no attenuation.
Conversely, the observed attenuation can be used to determine N. This point

was urged particularly on Rayleigh by Maxwell in private correspondence.If the
properties of the atmosphere are assumed to be well enough known,therelative

intensity of the light from a definite star as a function of altitude can be used to

determine N. Early estimates were madein this way and agree with the results
of more conventional methods.

D. Density Fluctuations; Critical Opalescence

An alternative and more general approach to the scattering and attenuation
of light in gases and liquidsis to considerfluctuations in the density and so the

index of refraction. The volume V of fluid is imagined to be divided intocells

small compared to a wavelength, but each containing very many molecules. Each

cell has volume v with an average number N, = vN of molecules inside. The

actual number of molecules fluctuates around N, in a manner that depends on
the properties of the gas or liquid. Let the departure from the meanof the num-

ber of molecules in the jth cell be AN,. The variation in index of refraction de

for the jth cell is

‘aN ov

From the Clausius—Mossotti relation (4.70), this can be written

_ (€, 7 1)(€, + 2)

} 3Nu
 AN, (10.36)

*The data in Fig. 10.4 were derived from W. E. Forsythe, Smithsonian Physical Tables 9th revised
edition, Smithsonian Institution, Washington, DC (1954), Tables 813 and 815, and from K. Ya.

Kondratyev, Radiation in the Atmosphere, Academic Press, New York (1969), Chapter5.

'T. Gehrels, J. Opt. Soc. Am. 52, 1164 (1962).
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With this expression for de for the jth cell, the integral (10.31), now a sum over

cells, becomes

e*- AQ. k?(e, — 1)(e, + 2)

Dg “0 12aNe,

In forming the absolute square of (10.37) a structure factor similar to (10.19) will
occur. If it is assumedthat the correlation offluctuations in different cells (caused
indirectly by the intermolecular forces) only extends over a distance small com-

pared to a wavelength, the exponential in (10.37) can be put equal to unity. Then
the extinction coefficient a, given by

 > AN (10.37)
J

2

  

 

1 | e* - AW=—| |———<! ao
ann Do

is (10.38)

_ = ale)! |(e = Ie, + 2) * ANY
6aN 3 NV  

where ANj, is the mean square numberfluctuation in the volume V,defined by

ANY, = > AN,AN;
if

the sum being overall the cells in the volume V. With the use ofstatistical

mechanics* the quantity AN{ can be expressed in terms of the isothermal com-
pressibility B; of the medium:

 
AN2, 1 (av

= = —— (— 10.39vy NKTBr Br 7 (7) (10.39)

The attenuation coefficient (10.38) then becomes

1(*) (c, — Ie, + 2)
67N \c

2

| NKTBr (10.40) 

3

This particular expression, first obtained by Einstein in 1910, is called the
Einstein—Smoluchowski formula. For a dilute ideal gas, with |e — 1| << 1 and
NkTBr = 1, it reduces to the Rayleigh result (10.35). As the critical point is
approached, 8; becomesvery large (infinite exactly at the critical point). The
scattering and attenuation thus become large there. This is the phenomenon
knownascritical opalescence. The large scattering is directly related to the large
fluctuations in density near the critical point, as stressed originally by
Smoluchowski (1904). Very near the critical point our treatmentso far fails be-
cause the correlation length for the density fluctuations becomes greater than a

wavelength, as first pointed out by Ornstein and Zernicke (1914).
For large correlation length A we must retain the exponential phase factors

in (10.37). The absolute square of the scattering amplitude then involves a double
sum of ANAN,e“"“**?, which can be expressed as a Fourier transform of the
density correlation function. Because there is now additional angular dependence

from q, the angular distribution is no longer the simple dipole form.If a corre-

  

*See F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York (1965),
pp. 300-1, or L. D. Landau and E. M.Lifshitz, Statistical Physics, 3rd edition, Pergamon Press, New

York (1980), Chapter XII.
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lation function of Yukawa form e~"/r is assumed, it can be shown thatthe
differential attenuation coefficient for unpolarized incident radiation takes the
form

 40 16x (1 + cos’6) a@ 1+ Ny (10.41)

where q* = 2(w/c)*(1 — cos 6) and ais given by (10.40). For Aq <1,integration
over the normalized angular distribution gives back (10.40), but for A > ©, the

angular integration yields attenuation proportional to (c/Aw)* In(Aw/c) times
(10.40). The frequency dependence as w* away from thecritical pointis altereg
to roughly w*; the scattered light appears “‘whiter’”’ close to the critical point.

Wenote that, while our expressions diverge exactly at the critical point anq
therefore are unphysical, a better treatment yields large but finite attenuation.
One considerationis that the correlation length A cannot becomelargerthan the
dimensions of the fluid container.

References to the early literature can be found in Fabelinskii, who discusses
the application of light scattering to critical point phenomena and second-order
phase transitions. For treatments of the radial density correlation function, see
Rosenfeld (Chapter V, Section 6), or Landau and Lifshitz (op. cit.).

da(@) 3 ? + MTB

FE. Attenuation in Optical Fibers

It is of interest that the ultimate limiting factor setting the maximum distance
between repeater units in optical fiber transmission is the unavoidable attenua-
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Figure 10.5 Attenuation versus wavelength for a typical low-loss, single-modesilica
optical fiber (schematic). Rayleigh scattering sets the lower limit until infrared
absorption rises above 1.6 um. The peaksin the observed attenuation are caused by
water (OH ions) dissolvedin theglass.
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tion caused by Rayleigh scattering, and by infrared absorption at longer wave-
lengths. The isothermal compressibility of silica glass is By ~ 7 X 107’? m7/N,
while the relevant temperature T ~ 1400 K (called the fictive temperature) is
wherethe fluctuations are frozen in (approximately the annealing temperature).
The effective value of (e€, — 1)(e, + 2)/3 ~ 1.30 in (10.40) is somewhat smaller
than the 1.51 inferred from an index of refraction of n = 1.45 at A = 1.0 wm. The

net result is that a (km™~') ~ 0.2/[A (um)]*. The conversion to decibels perkilo-
meter (a factor of 4.343) gives a (dB/km) ~ 0.85/[A (um)]*, shown as the dash-
dotted curve in Fig. 10.5, which displays a schematic representation of typical
data for a low-loss, single-mode optical fiber. For wavelengths less than 1.5 wm,

the attenuation is dominated by Rayleigh scattering, plus the absorption by im-

purities such as the hydroxyl ions from very small amounts of water dissolved in

the glass. At wavelengths longer than 1.6 wm, infrared absorptionsets in strongly.
The minimum attenuation of about 0.2 dB/km occurs at A ~ 1.55 wm. The ab-

sorption meanfree path at the minimum is 22 km.

10.3 Spherical Wave Expansion of a Vector Plane Wave

In discussing the scattering or absorption of electromagnetic radiation by spher-
ical objects, or localized systems in general, it is useful to have an expansion of
a plane electromagnetic wave in spherical waves.

For a scalarfield s(x) satisfying the wave equation, the necessary expansion

can be obtained by using the orthogonality properties of the basic spherical so-

lutionsj,(kr) Y,,,(0, @). An alternative derivation makesuse of the spherical wave
expansion (9.98) of the Green function (e“/47R). Welet |x’ | — © on bothsides
of (9.98). Then we can put |x — x’| ~ r’ — n-x ontheleft-hand side, where n is
a unit vector in the direction of x’. On the right side r. = r’ and r. = r. Fur-

thermore wecan use the asymptotic form (9.89) for h\(kr’). Then wefind

ikr'’ ikr'’

Sgiknen = i —S) (i)!kr)Vin, 6)¥in(B, 6) (1042)
Agr kr’ tm

  

Canceling the factor e“”/r’ on either side and taking the complex conjugate, we

have the expansion of a plane wave

00 l

on™ = Aa 2 iji(kr) x Yim, b)Yin(O', ') (10.43)

where k is the wave vector with spherical coordinates k, 0’, ¢’. The addition
theorem (3.62) can be used to put this in a more compact form

C

ek™ = 1 (21 + 1)j(kr)Pi(cosy) (10.44)
1=0

where y is the angle between k and x. With (3.57) for P, cos(y), this can also be
written as

ex = SS N/a 4 1) j,(kr)¥iolV) (10.45)
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We now wish to make an equivalent expansion for a circularly polarizeg
plane wave with helicity + incident along the z axis,

E(x) = (€, + ie,)e'*

10.
cB(x) = e; X E = +iE (10.46)

Since the plane waveis finite everywhere, we can write its multipole expansion
(9.122) involving only the regular radial functionsj,(kr):

lm
Ela) = ¥ as mithXin + £6.mY  jlkD%n

_ (10.47)

cB(x) = S = a.(l, m)V X j(kr)X,, + b.(L, myilk%|
lm

To determine the coefficients a..(/, m) and b.(l, m) we utilize the orthogonality
properties of the vector spherical harmonics X,,,. For reference purposes we
summarize the basic relation (9.120), as well as some other useful relations:

J Lf)Xrm|* [gi(7)Xm] dQ. = fig On Omm’

[ OXrmel® «LV gir)Xin] dO = 0
\ ' (10.48)

a CLV X fA)Xp]* «(VX 21)Xin] dOk?

_ e 1 oa « O

In theserelations f;(r) and g,(r) are linear combinationsof spherical Bessel func-
tions, satisfying (9.81). The second andthird relations can be proved using the
operatoridentity (9.125), the representation

 
ro 1

V=-—-srxL
r or r

for the gradient operator, and the radial differential equation (9.81).
To determine the coefficients a.(/, m) and b..(1, m) wetakethe scalar product

of both sides of (10.47) with X7,,, and integrate over angles. Then with thefirst
and second orthogonality relations in (10.48) we obtain

a.(l, m)j,(kr) = | X7,, ° E(x) dO (10.49)

and

b.(l, m)j,(kr) = c | Xin * B(x) dO (10.50)

With (10.46) for the electric field, (10.49) becomes

a.(l, m)i(kr) = inn e= dQ (10.51)
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where the operators L.. are defined by (9.102), and the results of their operating
by (9.104). Thus we obtain

Vil+ ml = 1
a.(l, m)j(kr) = 4 ae me

If expansion (10.45) for e’“ is inserted, the orthogonality of the Y,,,’s evidently

leads to the result,

 

 Y*cedQ (10.52)

a(l,m) = iV 4(21 + 1) 6,4 (10.53)

From (10.50) and (10.46) it is clear that

b.(l, m) = +ia.(l, m) (10.54)

Then the multipole expansion of the plane wave (10.46) is

E(x) = yi V4m(21 + 1) eK 25= ~ vx jks
(10.55)

cB(x) = Si\/4a(21 + 1) =! V X jkr)X24, + HbR

For such a circularly polarized wave the m values of m = +1 have the obvious

interpretation of +1 unit of angular momentum per photonparallel to the prop-
agation direction. This was established in Problems 7.28 and 7.29.

10.4 Scattering of Electromagnetic Waves by a Sphere

If a plane wave of electromagnetic radiation is incident on a spherical obstacle,
as indicated schematically in Fig. 10.6, it is scattered, so that far away from the
scatterer the fields are represented by a plane wave plus outgoing spherical

waves. There may be absorption by the obstacle as well as scattering. Then the
total energy flow away from the obstacle will be less than the total energy flow
towardsit, the difference being absorbed. We will ultimately consider the simple
example of scattering by a sphere of radius a andinfinite conductivity, but will
for a time keep the problem more general.

Thefields outside the sphere can be written as a sum of incident and scattered

waves:

E(x) = Ein. + | (10.56)
B(x) = B,,. + B,.
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Figure 10.6 Scattering of radiation by a localized object.
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where E,,,. and B;,. are given by (10.55). Since the scattered fields are outgoing

wavesat infinity, their expansions mustbe of the form,

1< .
E.. = 5 > 'V42(21 + 1) (DMPEDX + ae vx HPUX,

i=1

1< ~ia.
cB,. = 5 » UV47(21 + 1)=) V x Al(kr)X,., + iB.DMKX,.

l=1

(10.57)
The coefficients a.(/) and B.(/) will be determined by the boundaryconditions
on the surface of the scatterer. A priori, it is necessary to keep a full sum over
m as well as | in (10.57), but for the restricted class of spherically symmetric
problemsconsidered here, only m = +1 occurs.

Formal expressions for the total scattered and absorbed powerin termsof
the coefficients of a(/) and B(/) can be derived from the scattered andtotalfields
on the surface of a sphereof radius a surroundingthescatterer, with the scattered
power being the outward component of the Poynting vector formed from the
scattered fields, integrated over the spherical surface, and the absorbed power
being the corresponding inward component formed from the total fields. With
slight rearrangementof the triple scalar products, these can be written

2

P,, = -~— Re | E,. - (n x B*,) dO (10.58)
2Ho
2

Pe = —— Re | E - (n x B*) dO (10.59)
2[Lo

Here n is a radially directed outward normal, E,, and B,, are given by (10.57),
while E and B are the sum of the plane wavefields (10.55) and the scattered
fields (10.57). Only the transverse parts of the fields enter these equations. We
already knowthat X,,, is transverse. The other type of term in (10.55) and (10.57)
is

VX fin=——FV+22 [efilex Xin (10.60)

where f, is any spherical Bessel function of order / satisfying (9.81). When the
multipole expansionsofthe fields are inserted in (10.58) and (10.59), there results
a double sum over / and /' of various scalar products of the form X%,,,- Xin,

Xin? (MX Xpyr) and (n xX X7,,)+(n X X,,,). On integration over angles, the
orthogonality relations (10.48) reduce the double sum to a single sum. Each term
in the sum involves products of spherical Bessel functions and derivatives of
spherical Bessel functions. Use of the Wronskians (9.91) permits the elimination
of all the Bessel functions andyields the following expressionsfor the total scat-

tering and absorption cross sections (the powerscattered or absorbed divided by

the incident flux, 1/j9c):

WT
On = 2 2 (21 + 1)[}a(/) |? + |B) 7]

(10.61)

avs = 343 > Ql +1)[2 ~ Jal) +1P~ |B) +IP)
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The total or extinction cross section is the sum of o,, and @ aps:

g, = “3 S\ (21 + 1) Refa(l) + BD] (10.62)
l

Not surprisingly, these expressions for the cross sections resemble closely the
partial wave expansions of quantum-mechanicalscattering.”

The differential scattering cross section is obtained by calculating the scat-

tered powerradiated into a given solid angle element dQ and dividing by the
incident flux. Using the result of Problem 10.6a, we find the scattering cross

section for incident polarization (€, + ie) to be
2

o > V21 + 1 [a.(I)X,.. = iB.) n x X41] (10.63)
dos. __

dQ 2

Thescattered radiation is in generalelliptically polarized. Only if a.(/) = B.(/)
for all / would it be circularly polarized. This meansthatif the incident radiation
is linearly polarized, the scattered radiation will be elliptically polarized;if the
incident radiation is unpolarized, the scattered radiation will exhibit partial po-
larization depending on the angle of observation. Examplesof this in the long-
wavelength limit were described in Section 10.1 (see Figs. 10.2 and 10.3).

The coefficients a.(/) and 6.(/) in (10.57) are determined by the boundary
conditions on thefields at r = a. Normally this would involve the solution of the
Maxwell equations inside the sphere and appropriate matching of solutions
across r = a. If, however,the scatterer is a sphere of radius a whose electromag-
netic properties can be described by a surface impedance Z, independentof po-
sition (for this the radial variation of the fields just inside the sphere must be

rapid comparedto the radius), then the boundary conditions take the relatively

simple form

E.., = Zen X B/ito (10.64)

where E and B are evaluated just outside the sphere. From (10.55), (10.57), and

(10.60) we have

Eran = >» iV Aa(2l + DA i + o HPKa
/

+ ro E(i+ 8BA) i)I x x..|
x Ox

- /
cn X B= > iV4x(2l + 4 oy i + at) i)Pas

l

=i PsBOHn x x..|

*Our results are not completely general. If the sum over m had been included in (10.57),the scattering

cross section would have a sum over / and m with the absolute squares of a(/, m) and B(/, m). The
total cross section would stayasit is, with a(/) > a(l,m = + 1) and B(/) > BU, m = +1), depending
on thestate of polarization ofthe incident wave (10.46). The absorption cross section can be deduced

from taking the difference of o, and o,..

and
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where x = ka andall the spherical Bessel functions have argument x. The bound.
ary condition (10.64) requires that, for each / value and for each term X,,, and
n X X,,, separately, the coefficients of E,,, and n xX B be proportional, according
to

Paned)E2Panl]65)l 0 ; : 1+B:pa ph= (2) - = i + BO i )

By meansofthe relation 2j, = h} + h\”, the coefficients a.(/) and B.(1) can be
written

1 a(2) _ p®hi ae{, (&h?”)

0

with 6..(/) having the same form, but with Z,/Z,) replaced by its reciprocal. We
note that with the surface impedance boundary condition the coefficients are the
same for both states of circular polarization.

For a given Z,, all the multipole coefficients are determined andthescatter-
ing 1s known in principle. All that remainsis to put in numbers. Before proceeding
to a specific limit, we make some observations.First, if Z, is purely imaginary
(no dissipation) or if Z, = 0 or Z, > ©, [a..(l) + 1] and [8.(/) + 1] are numbers
of modulus unity. This meansthat a..(/) and B.(/) can be written as

a(l) = (2-1), Bd) = (2! — 1) (10.67)
where the phase angles 6, and 6; are called scattering phase shifts. Specifically

tan 6, = j,(ka)/n,(ka)

al) +1= — (10.66)

d
| de CHOY (10.68)

tan 6) = To

we ome) |

if Z, = 0 (perfectly conducting sphere) and 6, << 5) for Z, > .
The second observationis that (10.66) can be simplified in the low- and high-

frequencylimits. For ka << 1, the spherical Bessel functions can be approximated
according to (9.88). Then we obtain the long-wavelength approximation,

—2i(ka)*! . [x — i(l + 1)Z,/Z,p
(21 + 1)[(27 — 1)!!/? x + ilZ,/Zo
 a.(l) = (10.69)

and the same form for B..(/), with (Z,/Z,) replaced by its inverse. For ka >> 1,
we use (9.89) and obtain

Zs/Lo 1+1_,—2ik 7
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with B.(/) = —a.(l) via the usual substitution. In the long-wavelength limit,
independent of the actual value of Z,, the scattering coefficients a.(/), B=(/)
become small very rapidly as / increases. Usually, only the lowest term (/ = 1)

need be retained for each multipole series. In the opposite limit of ka >> 1,
(10.70) showsthat for 1 < ka, the successive coefficients have comparable mag-

nitudes, but phases that fluctuate widely. For / ~ Imax = ka, there is a transition

region and for / >> Imax, (10.69) holds. The use of a partial wave or multipole
expansion for such a large numberof termsis a delicate matter, necessitating the
careful use of digital computers or approximation schemesof the type discussed
in Section 10.10.

Wespecialize now to the long-wavelength limit (ka < 1) for a perfectly
conducting sphere (Z, = 0), and leave examplesof slightly more complexity to

the problems. Only the / = 1 terms in (10.63) are important. From (10.69) we

find

a.(1) = = B.(1) = —5 (kay
In this limit the scattering cross section is

dCs 27 _ a»:
70 3 a’(ka)* |X,., ¥ 2in X X,.,/ (10.71)

From Table 9.1 we obtain the absolute squared terms,

3
In xX XP = IXuP =—- (1+ cos’ 6)

167

The cross terms can be easily worked out:

—3
[+i(n x X,.,)* » Xi] = Go cos 6

877

Thus the long-wavelength limit of the differential scattering cross section 1s

~~ = a’(ka)*[2(1 + cos’@) — cos 6] (10.72)

Equation (10.72) is the same as (10.16), found by other meansandis valid for
either state of circular polarization incident, or for an unpolarized incident beam.
The generalizations to arbitrary incident polarization and to different surface
boundary conditionsare left to the problemsat the end of the chapter.

The general problem of the scattering of electromagnetic waves by spheres
of arbitrary electric and magnetic properties when kais not small is complicated.

It was first systematically attacked by Mie and Debye in 1908-1909. By now,

hundreds of papers have been published on the subject. Details of the many
aspects of this important problem can be found in the books by Kerker, King

and Wu, Bowman, Senior, and Uslenghi and other sourcescited at the end of the

chapter. The book by Bowman, Senior, and Uslenghidiscussesscattering by other

regular shapes besides the sphere.
For scatterers other than spheres, cylinders, etc., there is very little in the

way of formal theory. The perturbation theory of Section 10.2 may be used in

appropriate circumstances.
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10.5 Scalar Diffraction Theory

Although scattering and diffraction are notlogically separate, the treatments ten
to be separated, with diffraction being associated with departures from geomet.
rical optics caused by the finite wavelength of the waves. Thus diffraction traqj-
tionally involves apertures or obstacles whose dimensionsare large comparedto
a wavelength. To lowest approximation the interaction of electromagnetic waves
is described by ray tracing (geometrical optics). The next approximation involves
the diffraction of the waves around the obstacles or through the apertures with
a consequent spreading of the waves. Simple arguments based on Fouriertrans-
forms show that the angles of deflection of the waves are confined to the region
6 = A/d, where A is the wavelength and d is a linear dimension of the aperture
or obstacle. The various approximations to be discussed below all work best for
Ald << 1, and fail badly for A ~ d or A > d.

The earliest work on diffraction is associated with the names of Huygens,
Young, and Fresnel. The first systematic attempt to derive the Fresnel theory
from first principles was madeby G.Kirchhoff (1882). Kirchhoff’s theory, despite
its mathematical inconsistency and its physical deficiencies, works remarkably
well in the optical domain and has been the basis of most of the work ondif-
fraction. Wefirst derive the basic Kirchhoff integral and its operative approxi-
mations, then commenton its mathematical difficulties, and finally describe the
modifications of Rayleigh and Sommerfeld that remove the mathematical
inconsistencies.

The customary geometry in diffraction involves two spatial regions I andII,
separated by a boundary surface S,, as shown in Fig. 10.7. The surface S, is
generally taken to be “‘at infinity,” that is, remote from the region ofinterest.
Sources in region I generate fields that propagate outward. The surface S, is

supposed to be made up of “opaque’’ portions (the boundary conditions are
discussed below) and apertures. The surface S, interacts with the fields generated

in region I, reflecting some of the energy, absorbing someofit, and allowing
some of the fields, modified by their interaction, to pass into region II. The an-
gular distribution of the fields in region II, the diffraction region, is called the

diffraction pattern.It is the diffracted fields in region II that we wish to express
in terms of the fields of the sources and their interaction with the screen and
apertures on S$), or more precisely, in terms of the fields on the surface §,. It

Sources

II

Figure 10.7 Possible diffraction geometries. Region I contains the sourcesof radiation.
Region II is the diffraction region, where thefields satisfy the radiation condition. The
right-handfigure is also indicative of scattering, with a finite scatterer in region I instead
of an active source, and the surface S, an arbitrary mathematical surface enclosing the
scatterer rather than a material screen with apertures.
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should be obvious that the geometry and mode of description is equally appli-
cable to scattering, with the sources in region I replaced by a scatterer (thought
of as a source being driven by the incident wave).

Kirchhoff’s method uses Green’s theorem (1.35) to express a scalar field (a
componentof E or B)inside a closed volume V in termsof the values of thefield
and its normal derivative on the boundary surface S. Let the scalar field be
ys(x, t), and let it have harmonic time dependence, e“””. Thefield yy is assumed
to satisfy the scalar Helmholtz wave equation,

(V? + k’)w(x) = 0 (10.73)

inside V. We introduce a Green function for the Helmholtz wave equation
G(x, x’), defined by

(V? + k*)G(x, x’) = —d(x — x’) (10.74)

In Green’s theorem (1.35), we put d = G, w = w, make use of the wave equations

(10.73) and (10.74), and obtain, in analogy to (1.36),

W(x) = > [ys(x’)n’ - V’G(x, x’) — G(x, x’)n’ + V’(x’)] da’ (10.75)

where n’ is an inwardly directed normalto the surface $. Equation (10.75) holds

if x is inside V;if it is not, the left-hand side vanishes.

The Kirchhoff diffraction integral is obtained from (10.75) by taking G to be
the infinite-space Green function describing outgoing waves,

ikR

AiR
 G(x, x’) = (10.76)

where R = x — x’. With this Green function, (10.75) becomes

 -1$°') vy+u(r+ 2) 5 | ae 10.77YO Ts RLY YT! cr) RY 4 0-77)
This is almost the Kirchhoff integral. To adapt the mathematicsto the diffraction
context we consider the volume to be that of region II in Fig. 10.7 and the
surface S to consist of S, + S,. The integral over S is thus divided into twoparts,
one over the screen and its apertures ($,), the other over a surface “‘at infinity”
(S,). Since the fields in region II are assumed to be transmitted through Sj, they
are outgoing wavesin the neighborhood of S,. The fields, hence (x), will satisfy
a radiation condition,

 
ek” 1 dp 1

6 —— ik — - 10.78porn, 1% (a2) ann
With this condition on yf at S, it is easily seen that the contribution from S, in
(10.77) vanishesat least as the inverse of the radius of the hemisphereor sphere
as the radius goesto infinity. There remains the integral over S,. The Kirchhoff

integral formula reads

1 e'kR i \R
- _— '.1 Wa + ikl 1 +—]= da' 10.79

WO) Fr Js Rk” vy c( a) EY a 00-7)1

 

with the integration only over the surface S, of the diffracting “screen.”
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To apply (10.79) it is necessary to know the values of y and dy/dn on the
surface S,. Unless the problem has beensolved by other means, these values are
not known. Kirchhoff’s approach was to approximate the values of w and dw/an
on S, in order to calculate an approximation to the diffracted wave. The
Kirchhoff approximation consists of the assumptions:

1. and d/dn vanish everywhere on S, except in the openings.

2. The values of y and dys/dn in the openings are equal to the values of the
incident wave in the absence of any screen or obstacles.

The standard diffraction calculations of classical optics are all based on the
Kirchhoff approximation.It is obvious that the recipe can have only limited va-
lidity. There is, in fact, a serious mathematical inconsistency in the assumptions
of Kirchhoff. It can be shown for the Helmholtz wave equation (10.73), as well

as for the Laplace equation,that if y and 0y//on are both zero on anyfinite surface,
then w% = 0 everywhere. Thus the only mathematically correct consequence of

the first Kirchhoff assumption is that the diffracted field vanishes everywhere.
This is, of course, inconsistent with the second assumption. Furthermore, (10.79)

does not yield on S, the assumedvalues of y and dw/on.
The mathematical inconsistencies in the Kirchhoff approximation can bere-

moved by the choice of a proper Green function in (10.75). Just as in Section
1.10, a Green function appropriate to Dirichlet or Neumann boundary conditions
can be constructed. If ys is known or approximated on the surface Sj, a Dirichlet
Green function Gp(x, x’), satisfying

 

Gp(x, x’) = 0 for x’ on S (10.80)

is required. Then a generalized Kirchhoff integral, equivalent to (10.79),is

0G
W(x) = | s(x’) — (x, x’) da’ (10.81)

Sy

and a consistent approximationis that w = 0 on S, except in the openings and

is equal to the incident wave in the openings. If the normal derivative of y is to
be approximated, a Neumann Green function Gj(x, x’), satisfying

0G
—*(x,x’)=0  forx’onS (10.82)
on

is employed. Then the generalized Kirchhoff integral for Neumann boundary

conditions reads

h(x) = —I, = (x’)Gy(x, x’) da’ (10.83)

Again a consistent approximation scheme can be formulated.
For the important special circumstance in which the surface S; is an infinite

plane screen at z = 0, as shown in Fig. 10.8, the method of images can be used

to give the Dirichlet and Neumann Green functions explicit form:

1 eikR elk

Gpn(x, x’) = An (= + =) (10.84)
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Figure 10.8 Diffraction geometry for a
point source at P’, a plane screen with
apertures, and an observation pointat
P. The distances from the element of
area da’ in the aperture to the points P
and P’ are r and 7’, respectively. The
angles 6 and @’ are those between r and
n, and r’ and —n, respectively.

 

 
where R = x — x’, and R’ = x — x”, x” being the mirror image of x’. Explicitly
we have

R=[@-xY +t-yyPtarzyye
R'=[@-— xPty ter zy]

The generalized Kirchhoff integral (10.81) (y approximated on S,) then takes
the form,

 k kk i\n’-R
s(x) Sa I, R ( + fa) R u(x’) da (10.85)

An analogous expression can be written for (10.83), both results attributable to
the ubiquitous Rayleigh.*

Comparison of (10.85) with (10.79) shows that (10.85) can be obtained from
(10.79) by omitting the first term in the square brackets and doubling the second

term. The Neumannresult (10.83) specialized to a plane screen is equivalent, on
the other hand, to doublingthe first term and omitting the second. It might thus
appear that the three approximate formulas for the diffracted field are quite
different and will lead to very different results. In the domain where they have
any reasonable validity they yield, in fact, very similar results. This can be un-
derstood by specializing the diffraction problem to a point source at position P’
on one side of a plane screen and an observation point P on the otherside, as
shown in Fig. 10.8. The amplitude of the point source is taken to be spherically
symmetric and equal to e’“”/r’. Both P and P’ are assumed to be many wave-
lengths away from the screen. With the Kirchhoff approximation in (10.79) and
equivalent assumptionsin (10.85) and its Neumann boundary condition counter-
part, the diffracted fields for all three approximations can be written in the com-
mon form,

  WP) = & 6(6, 6") da’ (10.86)
2771 apertures / r’

*FEquation (10.85) was also used by Sommerfeld in his early discussions of diffraction. See

Sommerfeld, Optics, pp. 197ff.
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where the obliquity factor (6, 6’) is the only point of difference. These factors
are

cos 6 (yw approximated on S$})

0
O(6, 6’) = {cos 6’ (2 approximated on 5

3(cos@ + cos 6’) (Kirchhoff approximation)

where the angles are defined in Fig. 10.8. For apertures whose dimensions are
large comparedto a wavelength, the diffracted intensity is confined to a narrow
range of angles and is governed almostentirely by the interferences between the
two exponential factors in (10.86). If the source point P’ and the observation
point P are far from the screen in termsof the aperture dimensions,the obliquity
factorin (10.86) can be treated as a constant. Then the relative amplitudesofthe
different diffracted fields will be the same. For normalincidence all obliquity
factors are approximately unity where there is appreciable diffracted intensity.
In this case even the absolute magnitudesare the same.

The discussion above explains to some extent why the mathematically in-
consistent Kirchhoff approximation has any successat all. The use of Dirichlet
or Neumann Green functions gives a better logical structure, but provideslittle
practical improvement without further elaboration of the physics. An important
deficiency of the discussionsofaris its scalar nature. Electromagnetic fields have
vector character. This must be incorporated into anyrealistic treatment, evenif
approximate. In the next section we proceed with the task of obtaining the vector
equivalent of the Kirchhoff or generalized Kirchhoff integral for a plane screen.

10.6 Vector Equivalents of the KirchhoffIntegral

The Kirchhoff integral formula (10.79) is an exact formal relation expressing the
scattered or diffracted scalar field W(x) in region II of Fig. 10.7 in terms of an
integral of w and dy/dn overthe finite surface S,. Corresponding vectorialrela-
tions, expressing E and in termsof surface integrals, are useful as a basis for
a vectorial Kirchhoff approximation for diffraction (Section 10.7) and scattering
(Section 10.10), and also for formal developmentssuchas the proofof the optical
theorem (Section 10.11).

To derive a Kirchhoff integral for the electric field, we begin with (10.75)for
each rectangular componentof E and write the obvious vectorial equivalent,

E(x) = > [E(n’ - V’G) — G(n’ - V')E] da’ (10.87)

provided the point x is inside the volume V bounded bythe surface S. Here,as
in (10.75), the unit normal n’is directed into the volume V. Eventually wewill
specify G to be the infinite-space Green function, (10.76), but for the present we
leave it as any solution of (10.74). Because we wish to use certain theorems of
vector calculus that apply to well-behaved functions, while G is singular at
x’ = X, we must exercise somecare. We imaginethat the surface S consists of an
outer surface S’ and an infinitesimally smaller inner surface S” surrounding the
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point x’ = x. Then, from Green’s theorem,the left-hand side of (10.87) vanishes.
Of course, evaluation of the integral over the inner surface $”, in the limitasit

shrinks to zero around x’ = x, gives —E(x). Thus (10.87) is restored in practice,
but by excluding the point x’ = x from the volume V the necessary good math-
ematical behavior is assured. With this understanding concerning the surface S,
we rewrite (10.87) in the form

0 = > [2E(n’ - V'G) — n’ + V'(GE)] da’

The divergence theorem can be used to convert the second term into a volume

integral, thus yielding

0 = ¢ 2E(n’ - V'G) da’ + | V’(GE) d?x’
S Vv

With the use of V7A = V(V- A) — V x (V x A)for any vectorfield A, and the
vector calculus theorems,

I, Vd d°x = > nd da
(10.88)

| Vx Adx=4 (n x A) da
Vv S

where ¢ and A are any well-behaved scalar and vector functions (and n is the
outward normal), we can express the volume integral again as a surfaceintegral.
Wethus obtain

0 = > [2E(n’ - V’G) — n’'(V’ « (GE)) + n’ x (V’ x (GE))] da’

Carrying out the indicated differentiation of the product GE, and making use of
the Maxwell equations, V’: E = 0, V’ X E = iwB,wefind

0 = ¢ lio(n’ X B)G + 2E(n’- VG) - n'(E-V'G) +9 x (VG X E)] da’
S

Expansion of the triple cross product and a rearrangement of termsyields the
final result,

E(x) = > [io(n’ x B)G + (n' X E) x V'G + (n’- E)V’G] da’ (10.89)

where now the volume V boundedbythe surface S contains the point x' = x. An
analogous expression for B can be obtained from (10.89) by means of the sub-
stitutions, E — cB and cB — —E.

Equation (10.89) is the vectorial equivalent of the scalar formula (10.75). To
obtain the analog of the Kirchhoff integral (10.79), we consider the geometry of
Fig. 10.7 and let the surface S be made up of a finite surface $, surrounding the
sources or scatterer and a surface S, “‘at infinity.’’ There is no loss of generality

in taking S, to be a spherical shell of radius rp — ~. The integral in (10.89) can
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be written as the sum of two integrals, one over S; and one over S$. On the

surface S, the Green function (10.76) is given, for large enough 7, by

ikr’

G > eikn'-x

Agr’
 

and its gradient by

V'G — —ikn'G

Then the contribution from S$, to (10.89) is

> = ik > [c(n’ x B) — (i X E) X ’ —- nf’ - E)]G da’

,
Thefields in region II are diffracted or scattered fields and so satisfy the condition
of outgoing waves in the neighborhood of $5. In particular, the fields E and B
are mutually perpendicular and transverse to the radius vector. Thus, on S,,
E =cn’ X B + O(1/ré). This showsthat

f,-o(;)
and the contribution from the integral over S$, vanishes as 797 — ©. For the ge-

ometry of Fig. 10.7, then, with S, at infinity, the electric field in region II satisfies

the vector Kirchhoff integral relation,

OT

inp [c(n’ X B) — EJG da’

E(x) = 7 [io(n’ x B)G + (n’ x E) x V’G + (n'- E)V'G] da’ (10.90)

where G is given by (10.76) andthe integral is only over the finite surface S$.
It is useful to specialize (10.90) to a scattering situation and to exhibit a

formal expression for the scattering amplitude as an integral of the scattered
fields over S,. The geometry is shownin Fig. 10.9. On both sides of (10.90) the

   

 

Scattered waveIncident wave
(E,, B,)(E;, B;)

Figure 10.9 Scattering geometry. An incident plane wave with wave vector ky and
fields (E;, B,) is scattered by an obstacle (the scatterer), giving rise to scattered fields
(E,, B,) that propagate as spherically diverging waves at large distances. The surface 5;

completely encloses the scatterer.
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fields are taken to bethe scattered fields (E,, B,), that is, the total fields (E, B)

minus the incident wave (E;, B;). If the observation point P is far from thescat-
terer, then the Green function and the scattered electric field take on their as-

ymptotic forms,

ikr1 e .
G ! __ —ik-x’

(x, x") > 4n7 r “

ikr

 

E(x)> * . F(k, Ko)

where k is the wave vectorin the direction of observation, Ky is the incident wave

vector, and F(k, ko) is the (unnormalized) vectorial scattering amplitude.In this
limit, V’G = —ikG. Thus (10.90) can be written as an integral expression for the
scattering amplitude F(k, ko):

F(k, ko) = z > e**To(n’ x B,) +k x (n’ x E,) — k(n’ - E,)] da’ (10.91)

Note carefully how F(k, k,) depends explicitly on the outgoing direction of k.
The dependence on the incident direction specified by ko is implicit in the scat-
tered fields E, and B,. Since we know that k - F = 0, it must be true that in (10.91)

the componentparallel to k of the first integral cancels the third integral. It is
therefore convenientto resolve the integrandin (10.91) into componentsparallel

and perpendicularto k, and to exhibit the transversality of F explicitly:

1 a.y| CK X(n’ X B,Filk) = Zak x f em] in Bs) _ 'X E,| da’ (10.92
TI s k " a )

Alternatively, we can ask for the amplitude of scattered radiation with wave
vector k and polarization e. This is given by

e* - F(k, k,) = z > e**lwe* + (n’ X B,) + €* + (k X (n’ X E,))] da’

(10.93)

The terms in square brackets can be interpretedas effective electric and magnetic

surface currents on S; acting as sourcesfor the scattered fields. The various equiv-

alent forms (10.91)—(10.93) are valuable as starting points for the discussion of
the scattering of short-wavelength radiation (Section 10.10) and in the derivation
of the optical theorem (Section 10.11).

10.7 Vectorial Diffraction Theory

The vectorial Kirchhoff integral (10.90) can be used as the basis of an approxi-
mate theory of diffraction in exactly the same manneras described below (10.79)
for the scalar theory. Unfortunately, the inconsistencies of the scalar Kirchhoff
approximationpersist.

For the special case of a thin, perfectly conducting, plane screen with aper-
tures, however,it is possible to obtain vectorial relations, akin to the generalized

Kirchhoff integral (10.81) or (10.85), in which the boundary conditions are sat-
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isfied; these relations, moreover, are amenableto consistent approximations. The

plane screen is taken at z = 0, with the sources supposed to be in the region
z <0, and the diffracted fields to be observed in the region z > 0. It is convenient
to divide the fields into two parts,

E=E®+E’, B = B® + B’ (10.94)

where E®, B®are the fields produced by the sources in the absenceof any
screen or obstacle (defined for both z < 0 and z > 0), and E’, B’ arethefields
caused by the presence of the plane screen. For z > 0, E’, B’ are the diffracted
fields, while for z < 0, they are the reflected fields. We will call E’, B’ the scattered
fields when considering both z < 0 and z > 0. Thescattered fields can be con-
sidered as having their origin in the surface-current density and surface-charge

density that are necessarily produced onthe screento satisfy the boundary con-
ditions. Certain reflection properties in z of the scattered fields follow from the
fact that the surface-current and -charge densities are confined to the z = 0 plane.
A vector potential A’ and a scalar potential ®’ can be used to construct E’ and
B’. Since the surface current flow has no z component, A! = 0. Furthermore,
A, Ay, and ®’ are evidently even functions of z. The relation of thefields to the
potentials showsthat the scattered fields have the reflection symmetries,

Ey, Ey, Bt are even in Z
10.95

Ey, By, By are odd in z ( )

The fields that are oddin z are not necessarily zero over the whole plane z = 0.
Where the conducting surface exists, EF? # 0 implies an associated surface-charge
density, equal on the twosidesof the surface. Similarly, nonvanishing tangential

components of B imply a surface-current density, equal in magnitude and direc-
tion on both sides of the screen. Only in the aperture does continuity require
that £7, By, By vanish. This leads to the statement that in the apertures of a

perfectly conducting plane screen the normal componentof E andthe tangential
components of B are the sameas in the absenceof the screen.

The generalized Kirchhoff integral (10.83) for Neumann boundary condi-
tions can be applied to the components of the vector potential A’. The normal
derivatives on the right can be expressed in terms of components of B’. The
result, written vectorially is

1 eikR

A’'(x) = = (n X B’) — da' (10.96)
277 screen R

In view of the preceding remarks about the surface current and the tangential
components of B’, (10.96) could perhaps have been written downdirectly. The

scattered magnetic field can be obtained by taking the curl of (10.96):

1 eikR

B'(x) =~ Vx | (n < B’) — da' (10.97)
2 screen R

In (10.96) and (10.97) the integrand can be evaluated on either side of the screen
with n being normalto the surface. For definiteness, we specify that n is a unit

normalin the positive z direction and the integrandis to be evaluated at z = 0".
The integration extends over the metallic part of the screen; B{,, = 0 in the
apertures. The electric field E’ can be calculated from E’ = (i/wue)V x B’.

Equation (10.97) can be used for approximations in a consistent way.It is



Sect. 10.7 Vectorial Diffraction Theory 487

most useful whenthe diffracting obstacles consist of one or morefinite flat seg-
ments at z = 0, for example, a circular disc. Then the surface current on the
obstacles can be approximated in some way—forinstance, by using the incident
field B®in the integrand. We then have a vectorial version of the generalized
Kirchhoff’s approximation of the preceding section.

It is useful to construct an expression equivalent to (10.97) for the electric
field. From the symmetry of the source-free Maxwell equations with respect to
E and B itis evident that the electric field E’ can be expressed by analogy with

(10.97), as

ikR1
E’(x) = +5, x | (n X E’) > da' (10.98)

where it is assumed that E’ is known on the whole surface §, at z = 0*. The

upper (lower) sign applies for z > 0 (z < 0). It can be verified that (10.98)satisfies
the Maxwell equationsandyields consistent boundary values at z = 0. The reason
for the difference in sign for z 2 0, as comparedto (10.97) for B’, is the opposite
reflection properties of E’ compared to B’ [see (10.95)].

There is a practical difficulty with (10.98) as it stands. The integration in
(10.98) is over the whole plane at z = 0. We cannotexploit the vanishing of the

tangential componentsofthe electric field on the metallic portions of the screen
becauseit is thetotal electric field whose tangential components vanish, not those
of E’. The difficulty can be removed byuse of linear superposition. We add E
to the integrand in (10.98) to obtain the full electric field, and subtract the cor-
responding integral. We thus have, for the diffracted electric field,

1 ikR

E’(x) = +— V X | (n X E) <_ dq’! — E(x) (10.99)
277 S, R

where

1 eikR

E(x) = +— V x | (n x E®) — da’ (10.100)
27 S; R

The integrand in (10.99) now has support only in the apertures of the screen,as
desired. But whatis the extra electric field E“? Just as (10.98) gives the extra
(diffracted) field for z > 0 in terms of a surface integral of itself over the whole
screen, so (10.100) is equal to the “source” field E® in the region z > 0. But
because E“”is defined by an integral over the surface at z = 0, it respects the
symmetries of (10.95). A moment’s thought will show that this behavior means
that for z < 0 the sum E® + E™describesthefields of the sources in the presence
of a perfectly conducting plane (with no apertures) at z = 0: E“(andits partner
B™) are the reflectedfields!

If in (10.99) we transfer E™to the left-hand side, we find for z > 0 thetotal
electric field, now called the diffracted field, given by

1 eikR

Eais(X) = —- V X | (n X E) — da’ (10.101)
277 apertures R

where the integration is only over the apertures in the screen and E is total
tangential electric field in the apertures. In the illuminated region (z < 0) the
total electric field is

E(x) = E(x) + E(x) — Eoig(x) (10.102)
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wherefor both regions Egir(x) is given by (10.101). This solution for the diffracteg
electric field in terms of the tangential electric field in the apertures of a perfectly
conducting plane screen wasfirst obtained by Smythe.* It can serve as the basis
of a consistent scheme of approximation, with the approximatesolutionsfor Fdite
satisfying the required boundary conditions at z = 0 and atinfinity. Some ey.
amples are discussedin a later section and in the problems.

10.8 Babinet’s Principle of Complementary Screens

Before discussing examples of diffraction we wish to establish a useful relation
called Babinet’s principle. Babinet’s principle relates the diffraction fields of one
diffracting screen to those of the complementary screen. Wefirst discuss the
principle in the scalar Kirchhoff approximation. The diffracting screen is assumed
to lie in some surface S, which divides space into regions I and II in the senseof
Section 10.5. The screen occupiesall of the surface S except for certain apertures,
The complementary screenis that diffracting screen which is obtained byreplac-
ing the apertures by screen and the screen by apertures. If the surface of the
original screen is S, and that of the complementary screenis S,, then S, + S, =
S, as shown schematically in Fig. 10.10.

If there are sources inside S (in region I) that giverise to a field s(x), then
in the absenceofeither screen the field w(x) in region II is given by the Kirchhoff
integral (10.79) where the surface integral is over the entire surface S. With the
screen S, in position, the field y,(x) in region II is given in the Kirchhoff ap-
proximation by (10.79) with the source field y in the integrand and the surface
integral only over S, (the apertures). Similarly, for the complementaryscreen S,,
the field w(x) is given in the same approximation by a surface integral overS.,.
Evidently, then, we have the following relation between the diffraction fields w,
and w,:

Wa t+ th = (10.103)

This is Babinet’s principle as usually formulated in optics. If y represents an
incident plane wave, for example, Babinet’s principle says that the diffraction

 
Figure 10.10 <A diffraction screen S, and its
complementary diffraction screen S,. 

*W.R. Smythe, Phys. Rev. 72, 1066 (1947). See also Smythe, Section 12.18.



Sect. 10.8 Babinet’s Principle of Complementary Screens 489

patterns away from the incident direction are the same for the original screen
and its complement.

The result (10.103) also follows from the generalized Kirchhoff integrals
(10.81) or (10.83) if the amplitude or its normal derivative is taken equalto that
of the incident wave in the apertures and zero elsewhere, in the spirit of the
Kirchhoff approximation. All these formulations of Babinet’s principle are un-
satisfactory in two respects: They are statements aboutscalar fields, and they are
based on a Kirchhoff approximation.

A rigorous statement of Babinet’s principle for electromagnetic fields can be
madefor a thin, perfectly conducting plane screen and its complement. Theresult
follows from the twoalternative formulations of this diffraction problem given
in the preceding section. The original diffraction problem andits complementary
problem are defined by the source fields and screensas follows:

ORIGINAL

EO, BO. S., (10.104)

COMPLEMENT

E® = cB, B® = -—EM/c; S,

The complementarysituation has a screen that is the complementofthe original
and has source fields with opposite polarization characteristics. For the original
screen §, the electric field for z > 0 is, according to (10.101),

1 ikR

E(x) = 5-V x I (n x E) = da’ (10.105) 

For the complementary screen S, we choose to use (10.97) instead of (10.101) to
express the complementary scattered magnetic field B; for z > 0 as

ikR1
B(x) = a,” x I (n < BL) > da' (10.106)

In both (10.105) and (10.106) the integration is over the screen S, because of the
boundary conditions on E and B? in the two cases. Mathematically, (10.105) and
(10.106) are of the same form. From thelinearity of the Maxwell equations and
the relation between the original and complementary sourcefields,it follows that
in the region z > 0 thetotal electric field for the screen S, is numerically equal

to c times the scattered magnetic field for the complementary screen S;,:

E(x) = cB2(x)
The otherfields are related by

B(x) = —E2(x)/c

where the minussign is a consequenceof the requirement of outgoing radiation
flux at infinity, just as for the source fields. If use is made of (10.94) for the
complementary problem to obtain relations betweenthetotalfields in the region

z > 0, Babinet’s principle for a plane, perfectly conducting thin screen andits

complementstates that the original fields (E, B) and the complementaryfields
(E., B.) are related according to

E — cB. = E® (10.107)
B + E,/c = BO



490 Chapter 10 Scattering and Diffraction—SI

Figure 10.11 Equivalent radiators according to Babinet’s
principle.

 

for z > 0, provided the complementary diffraction problems are defined by
(10.104). These relationsare the vectorial analogs of (10.103); they are exact, not
approximate, statements for the idealized problem of a perfectly conducting
plane screen. For practical situations (finite, but large, conductivity; curved
screens whose radii of curvature are large compared to aperture dimensions,
etc.), the vectorial Babinet’s principle can be expected to hold approximately.It
says that the diffracted intensity in directions other than that of the incidentfield
is the same for a screen and its complement. The polarization characteristics are
rotated, but this conforms with the altered polarization of the complementary
source fields (10.104).

The rigorous vector formulation of Babinet’s principle is very useful in mi-
crowave problems. For example, consider a narrowslotcutin an infinite, plane,
conducting sheet and illuminated with fields that have the magnetic induction
along the slot and the electric field perpendicular to it, as shown in Fig. 10.11.
The radiation pattern from the slot will be the same as that of a thin linear
antenna with its driving electric field along the antenna,as considered in Sections
9.2 and 9.4. The polarization of the radiation will be opposite for the two systems.
Elaboration of these ideas makesit possible to design antennaarrays by cutting

suitable slots in the sides of waveguides.*

10.9 Diffraction by a Circular Aperture;
Remarks on Small Apertures

The subject of diffraction has been extensively studied since Kirchhoff’s original
work, both in optics, where the scalar theory based on (10.79) generally suffices,
and in microwave generation and transmission, where more accurate solutions

are needed. Specialized treatises are devoted entirely to the subject of diffraction
and scattering. We will content ourselves with a few examplesto illustrate the
use of the scalar and vector theorems (10.79), (10.85) and (10.101) and to com-
pare the accuracy of the approximation schemes.

Historically, diffraction patterns were classed as Fresnel or Fraunhofer dif-
fraction, depending on the relative geometry involved. There are three length
scales to consider, the size d of the diffracting system, the distance r from the
system to the observation point, and the wavelength A. A diffraction pattern only
becomes manifest for r >> d. Then in expressionslike (10.86) or (10.101) slowly
varying factors in the integrands can be treated as constants. Only the phase

*See, for example, Silver, Chapter 9.
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Figure 10.12

factor KR in e** needs to be handled with some care. With r >> d, it can be

expandedas

kR=kr—kn-x’ + [r? (n-x’)*] + ---

where n = x/r is a unit vector in the direction of observation. The successive
terms are of order (kr), (kd), (kd)(d/r),.... The term Fraunhofer diffraction
applies if the third and higher terms are negligible compared to unity. For small
diffracting systems this always holds, since kd < 1, and we have supposed

d/r << 1. But for systems that are large compared to a wavelength, (kd*/r) may

be of order unity or larger even though d/r < 1. Then the term Fresneldiffraction
applies. In most practical applications the simpler Fraunhoferlimit is appropriate.

Far enough from any diffracting system it always holds. We consider only the
Fraunhofer limit here (except for Problem 10.11).

If the observation point is far from the diffracting system, expansion (9.7)
can be used for R = |x — x’|. Keeping only lowest order terms in (1/kr), the
scalar Kirchhoff expression (10.79) becomes

ikr

 W(x) = —*
Agr

[ e**Tn. W'ub(x’) + ik + mys(x’)] da’ (10.108)

where x’ is the coordinate of the element of surface area da’, r is the length of

the vector x from the origin O to the observation point P, and k = k(x/r)is the

wavevectorin the direction of observation, as indicated in Fig. 10.12. For a plane

surface we can use the vector expression (10.101), which reducesin this limit to

ieik"

 E(x) = k Xx | n X E(x’)e*™da’ (10.109)
Sy27Yr

As an example of diffraction we consider a plane wave incident at an angle

a on a thin, perfectly conducting screen with a circular hole of radiusa in it. The
polarization vector of the incident wave lies in the plane of incidence. Figure

10.13 shows an appropriate system of coordinates. The screen lies in the x-y plane

with the opening centered at the origin. The waveis incident from below,so that

the domain z > 0 is the region of diffraction fields. The plane of incidenceis
taken to be the x-z plane. The incident wave’selectric field, written out explicitly
in rectangular components,is

E, = E,(€, cosa — €; sin a)e*@osetesin®) (10.110)

In calculating the diffraction field with (10.108) or (10.109) we will make the
customary approximation that the exact field in the surface integral may bere-

placed by the incidentfield. For the vector relation (10.109) we need

(n x E,)--0 = Fo€> COS @ eiksinax’ (10.111)
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Figure 10.13 Diffraction by a circular
hole of radiusa.

 

Then, introducing plane polar coordinates for the integration over the opening,
we have

ikr

E(x) =— wees (k x €,) [ p ap | dBei*rlsinacosB—sin 6cos(¢@ — B)] (10. 112)

Wr

where 0, ¢ are the spherical angles of k. If we define the angular function,

é = (sin’@ + sin’a — 2 sin @ sina cos ¢)"””

the angular integral can be transformed into

1 277 . .

_ | dB’eKPEcosB _ Jo(kpé)

TT 40

Then the radial integral in (10.112) can be donedirectly. The resulting electric
field in the vector Smythe—Kirchhoff approximationis

ie’ J,(ka€) 

 

 

E(x) = aE, cos a(k X €>) kat (10.113)

The time-averaged diffracted powerper unit solid angle is

dP kay 2d, (k707 P; COS a (ka) (cos*@ + cos*¢ sin*6) zeae)i( ag) (10.114)

where

Ee

P, = (2) Ta” COS a (10.115)

is the total power normally incident on the aperture. If the openingis large com-

pared to a wavelength (ka >> 1), the factor [2J,(kaé)/ka€]|’ peaks sharply to a
value of unity at € = 0 andfalls rapidly to zero (with small secondary maxima)
within a region Ag ~ (1/ka) away from & = 0. This means that the main partof
the wave passes through the opening in the manner of geometrical optics; only

slight diffraction effects occur.* For ka ~ 1 the Bessel function varies compara-

*To see this explicitly we expand é around the geometrical optics direction 6 = a, ¢ = 0:

E= V(6—- a) cos’a + ¢? sin?a
 

For ka >> it is evident that kaé >> 1 as soon as 6 departs appreciably from a, or ¢ from zero, OF
both.
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tively slowly in angle; the transmitted waveis distributed in directions very dif-

ferent from the incident direction. For ka << 1, the angular distributionis entirely
determined by the factor (k X €,) in (10.113). But in this limit the assumption of
an unperturbedfield in the aperture breaks down badly.

The total transmitted power can be obtained byintegrating (10.114) overall

angles in the forward hemisphere. The ratio of transmitted power to incident

poweris called the transmission coefficient T:
2

sin@d6 (10.116)
  

277 ar/2
co

T= —* | a | (cos?6 + cos’sin*6)
0WT O

J,(ka)

g

In the two extreme limits ka >> 1 and ka << 1, the transmission coefficient

approachesthe values,

r 1, ka > 1

i(kaY cosa, ka<<1

The long-wavelength limit (ka << 1) is suspect because of our approximations,
but it shows that the transmission is small for very small holes. For normalinci-

dence (a = 0) the transmission coefficient (10.116) can be written

ar/2
2

T= | Ji(ka sin (2, — sin ) dé
0 sin 0

With the help of the integral relations,

ar/2 2Z
dé Joy, (t

J2(z sin 0) —— = Font) dt
sn6 /o ¢ (10.117)

a!/2 1 (*
J7(z sin 6)sin 0 dé = 7 I Jn,(t) dt

and the recurrence formulas (3.87) and (3.88), we can put the transmission co-
efficient in the alternative forms

1 2
1-— — > Jomsi(2ka)

T _ ka m=0

1 2ka

1 - aka I A) dt

The transmission coefficient increases more or less monotonically as ka increases,

with small oscillations superposed. For ka >> 1, the second form can be used to

obtain an asymptotic expression

1 1 7
T=1 2ka DWakay” sin(2k 4 + (10.118)

which exhibits the small oscillations explicitly. These approximate expressions

for T give the general behavioras a function of ka, but they are not very accurate.
Exact calculations, as well as more accurate approximate ones, have been made

for the circular opening. These are compared with each other in the book by

King and Wu(Fig. 41, p. 126). The correct asymptotic expression does not contain

the 1/2ka term in (10.118), and the coefficient of the term in (ka)~*”is twice as
large.
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We now wish to compare our results of the vector Smythe—Kirchhoff ap-
proximation with the usual scalar theory based on (10.79). For a wave notnor.
mally incident, the question immediately arises as to what to chooseforthescalar
function w(x). Perhaps the most consistent assumption is to take the magnitude
of the electric or magnetic field. Then the diffracted intensity is treated consis-
tently as proportional to the absolute square of (10.79). If a componentof E or
B is chosen for y, we must then decide whether to keep or throw awayradia]
components of the diffracted field in calculating the diffracted power. Choosing
the magnitude of E for y, we have, by straightforward calculation with (10.108),

ee . (cosa + cos @\ J,(kaé)
a Eo

r 2 kaé
 

 w(x) = —ik

as the scalar equivalent of (10.113). The powerradiated per unit solid angle in
the scalar Kirchhoff approximationis

dP ka)’
T= PS cos of

2
2J,(kaé)

bag (10.119)
dQ, At

2

cos a + cos @

2 COS @

  

where P; is given by (10.115). If the alternative scalar formula (10.85) is used,
the obliquity factor (cos a + cos 9)/2 in (10.119) is replaced by cos8.

If we compare the vector Smythe—Kirchhoff result (10.114) with (10.119), we
see similarities and differences. Both formulas contain the same “diffraction”
distribution factor [J,(kaé)/ka€]’ and the same dependence on wave number. But
the scalar result has no azimuthal dependence (apart from that containedin 6),

whereas the vector expression does. The azimuthal variation comes from the

polarization propertiesof the field, and must be absentin a scalar approximation.
For normal incidence (a = 0) and ka >> 1 the polarization dependenceis un-
important. The diffraction is confined to very small angles in the forward direc-
tion. Then all scalar and vector approximations reduce to the common
expression,

J, (ka sin 6) °

ka sin 6

dP (ka)

dQ) ‘og
 (10.120)

 

The vector and scalar approximations are compared in Fig. 10.14 for the

angle of incidence equal to 45° and for an aperture one wavelength in diameter
(ka = 7). The angular distribution is shownin the plane of incidence (containing

the electric field vector of the incident wave) and a plane perpendicularto it. The

solid (dashed) curve gives the vector (scalar) approximation in each case. We see
that for ka = 7 there is a considerable disagreement between the two approxi-
mations. There is reason to believe that the Smythe—Kirchhoff result is close

to the correct one, even though the approximation breaks down seriously for
ka = 1. The vector approximation and exact calculations for a rectangular open-

ing yield results in surprisingly good agreement, even downto ka ~ 1.*

*See J. A. Stratton and L. J. Chu, Phys. Rev., 56, 99 (1939), for a series of figures comparing the

vector Smythe—Kirchhoff approximation with exact calculations by P. M. Morse andP. J. Rubenstein,
Phys. Rev. 54, 895 (1938). The alert reader may be puzzled by the apparentdiscrepancyin the dates

of Smythe’s publication (Joc. cit.) and of Stratton and Chu. The twocalculations yield the sameresult,
though quite different in appearance anddetail of derivation, the earlier one involvinga line integral

around the boundaryof the aperture as well as a surface integral overit.
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Figure 10.14 Fraunhofer diffraction pattern for a circular opening one wavelength in
diameter in a thin, plane, conducting sheet. The plane waveis incident on the screen at
45°. The solid curves are the vector Smythe—Kirchhoff approximation, while the dashed
curves are the scalar approximation. (a) The intensity distribution in the plane of
incidence (E plane). (b) The intensity distribution (enlarged 2.5 times) perpendicular to

the plane of incidence (H plane).

The diffraction by apertures or obstacles whose dimensions are small com-
pared to a wavelength requires methods different from the Kirchhoff or
Kirchhoff-like approximation. The exact formula (10.101) for a plane screen can

be used as a starting point. If the radiation fields of (10.101) are expandedin

multipoles, as in Sections 9.2—9.3, effective multipole moments (9.72) and (9.74)
can be identified in terms of integrals of the exact electric field in the aperture.

The derivation of these effective moments is left as Problem 10.10. Once the
dipole moments of an aperture are known, the diffraction can be calculated

merely by using the dipole fields of Sections 9.2 and 9.3. The example of a circular

aperture with effective moments (9.75) is left to the problems. The whole dis-
cussion of the physical picture parallels that of Section 9.5.C andis not repeated

here.

10.10 Scattering in the Short-Wavelength Limit

Scattering in the long-wavelength limit was discussed in Sections 10.1 and 10.2.

The opposite limit, similar to the Kirchhoff domain of diffraction,is a scattering

by obstacles large compared to a wavelength. Just as for diffraction by a screen,

the zeroth approximation is given by classical ray theory. The wave aspects of

the fields give corrections to this, with the scattering confined to angular regions
only slightly away from the paths of geometrical optics. For a thin, flat obstacle,

the techniques of Section 10.7, perhaps with Babinet’s principle, can be used.

But for other obstacles we base the calculation on the integral expression (10.93)

for the scattering amplitude in terms of the scattered fields E,, B, on a surface

S; just outside the scatterer.

In the absence of knowledge about the correct fields E, and B, on the surface,
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we must make some approximations.If the wavelength is short comparedto the
dimensions of the obstacle, the surface can be divided approximately into an
illuminated region and a shadowregion.* The boundary between these regions
is sharp only in the limit of geometrical optics. The transition region can be Shown
to have a width of the order of (2/kR)"°R, whereR is a typical radius of curvature
of the surface. Since R is of the order of magnitude of the dimensions of the
obstacle, the short-wavelength limit will approximately satisfy the geometrica]
condition. In the shadow region the scattered fields on the surface must be very
nearly equal and opposite to the incident fields, regardless of the nature of the
scatterer, provided it is “opaque.” In the illuminated region, on the other hand,
the scattered fields at the surface will depend on the properties of the obstacle.
If the wavelength is short compared to the minimum radius of curvature, the
Fresnel equations of Section 7.3 can be utilized, treating the surface as locally
flat. Eventually we will specialize to a perfectly conducting obstacle, for which
the tangential E, and the normal B, must be equal and opposite to the corre-
sponding incidentfields, while the tangential B, and normal E,will be approxi-

mately equalto the incident values [see (10.95)].
Because of the generality of the contribution from the shadowregion,itis

desirable to consider it separately. We write

e*.F = e*. Fo + E*« Fy (10.121)

If the incident waveis a plane wave with wave vector ky and polarization €5,

E, = Eeoe™ (10.122)
B, — ko x E,/kc

the shadow contribution, from (10.93) with E, = —E;, B, ~ —B,, is

E |
e* - Fy, = ro ik e*-[n’ X (Ky X €)) + k X (n’ X €)Je“*o-™* da’ (10.123)

where the integration is only over the part of S; in shadow. A rearrangementof
the vector products allows (10.123) to be written

E
e* - Fy, = = [ e* - [(k + Ky) X (n’ X €) + (n’ = €)Kyle"*® da’

(10.124)
In the short-wavelength limit the magnitudes of ky+ x’ and k-x’ are large com-
pared to unity. The exponential factor in (10.124)will oscillate rapidly and cause
the integrand to have a very small average value except in the forward direction
where k = ko.In that forward region, 6 S 1/kR, the second term in the square

bracket is negligible comparedto thefirst because (€* - ky)/k is of the order of

sin 6 << 1 (remember e* - k = 0 and ky ~ k). Thus (10.124) can be approximated

by

e*. Fy = Eo e* + & | eho“)*'(ky en’) da’
277 sh

*For a very similar treatmentof the scattering of a scalar wave by a sphere, see Morse and Feshbach
(pp. 1551-1555).
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The integral over the shadowedside of the obstacle has, in this approximation,

the remarkable property of depending only on the projected area normalto the

incident direction and notat all on the detailed shape of the obstacle. This can

be seen from the fact that (Kj-m’) da’ = k dx' dy' = k d*x, is just k times the

projected element of area and (Ky — k)- x’ = k(1 — cos @)z’ —k, +x, = —k,-X,.
Here we have chosen ky along the z axis, introduced two-dimensionalvectors,

K, = x’e, + y'e.,k, = k,e, + ke in the plane perpendicular to ko, and approx-

imated to small angles. Thefinal form of the shadow contributionto the scattering

when KR >> 1 and @ << 1 is therefore
ke |

e* - Fy, = > E,(€* + €0) [. eax d?x, (10.125)

In this limit all scatterers of the same projected area give the same shadow-

scattering contribution. The polarization character of the scattered radiation is

given by the factor e* - €y. Since the scattering is at small angles, the dominant

contribution has the same polarization as the incident wave. In quantum-

mechanical language we say that the shadowscattering involves no spinflip.

For example, consider a scatterer whose projected areais a circular disc of

radius a. Then

| J,(ka sin 6)ik - 2 "1
L xy = OO . 2[. e d°x, 27a ka sin 8 (10.126)

and the shadow-scattering amplitude is

J (ka sin 6
e* + Fy, = ika°E,(€* + €0) Athasin) (10.127)(ka sin 0)

The scattering from the illuminated side of the obstacle cannotbe calculated

without specifying the shape and nature of the surface. We assume, for purposes

of illustration, that the illuminated surface is perfectly conducting. In utilizing

(10.93) we must know the tangential components of E, and B, on S,;. AS men-

tioned in the introductory paragraphs of this section, in the short-wavelength

limit these are approximately opposite and equal, respectively, to the correspond-

ing componentsofthe incidentfields. Thus the contribution from the illuminated

side is

Eo ‘(k,—k)-x’
e* - Fy, = Aon Sit e*-[—n’ X (ky X €)) + k X (’ X €)Jeo" da’ (10.128)

Comparison with the shadow contribution (10.123) at the same stage shows a

sign difference in the first term. This is crucial in giving very different angular

behaviors of the two amplitudes. The counterpart of (10.124)is

E | |
e*- Fy, = ro |€% + [kk — Ky) X (nl X €) — (+ €o)ko]e“*™ da’ (10.129)

For kR >> 1, the exponential oscillates rapidly as before, but now,in the forward

direction, where we anticipate the major contribution to the integral, the other

factor in the integrand goesto zero. This can be traced to the presenceof (k — ko)

in the first term, rather than the (k + k) of the shadow amplitude (10.124). The

illuminated side of the scatterer thus gives only a modest contribution to the
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scattering at small angles. This makes perfect sense if we think of the limit of
geometrical optics. The illuminated side must give the reflected wave, and the
reflection is mainly at angles other than forward.

To proceed further we must specify the shape of the illuminated portion of
the scatterer, as well as its electromagnetic properties. We assumethatthe surface
is sphericalof radiusa. Since the contribution is not dominantly forward, we must
consider arbitrary scattering angles. The integrand in (10.129) consists of a re]-
atively slowly varying vector function of angles times a rapidly varying exponen-
tial. As discussed in Section 7.11, the dominant contribution to such an integral
comes from the region of integration where the phase of the exponentialis sta-
tionary. If (6, @) are the angular coordinates of k and (a, B) those of n’, relative
to ko, the phase factoris

f(a, B) = (Ko — k)+ x’ = kal(1 — cos 6) cosa — sin @ sina cos(B — d)|

The stationary pointis easily shownto be at angles ao, Bo, where

6
+ —

2
A —

Bo =

These angles are evidently just those appropriate for reflection from the sphere
according to geometrical optics. At this point the unit vector n’ points in the
direction of (k — k,). If we expand the phase factor around a = ao, B = Bo, we
obtain

N
I
]

60f(a, B) = —2ka sin 5 c — (x + cos” 5 ») + | (10.130)

where x = a — a, y = B — Bo. Thenintegral (10.129) can be approximated by
evaluating the square bracket there at a = ao, B = Bo:

2
e*. F, ~ “ Eo sin Ge2kasin(6/2) «x . c,|dx gitrosinerrn’|ay eilkasin(6/2)cos*(6/2]y

Tl

(10.131)

 

where e¢, is a unit polarization vector defined by

€, = —€ + 2(n, ° E,)n,

n, being a unit vector in the direction of (k — ky). The vector e, is just the
polarization expected for reflection, having a component perpendicular to the
surface equal to the corresponding componentof €) and a component parallel to
the surface opposite in sign, as shown in Fig. 10.15. The x and y integrals in

(10.131) can be approximated using | eldy = Vaila provided 2ka sin(6/2)

>> I, giving

e*- Fi, = Ep 5 oe 2ikasin@2) ex . ¢ (10.132)

For 2ka sin(6/2) large, the reflected contribution is constant in magnitude as a
function of angle, but it has a rapidly varying phase; as 6 — 0, it vanishes as @.
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Figure 10.15 Polarization of the reflected wave relative to the incident polarization: n,

is normal to the surface at the point appropriate for reflection according to geometrical

optics. To avoid complexity in the figure, the wave vectors ky and k are not shown, but

they are perpendicular to €, and e€,, respectively, and so oriented as to make their

difference parallel to n,.

Comparison of the shadow amplitude (10.127) with the reflected amplitude

(10.132) showsthat in the very forward direction the shadow contribution dom-

inates in magnitude overthe reflected amplitude by a factor of ka >> 1, while at

angles where ka sin@ >> 1, the ratio of the magnitudes is of the order of

1/(ka sin*6)". Thus, the differential scattering cross section (10.3), summed over

the outgoing and averagedoverthe initial polarizationstates, is given in the two

regions by

 

; 2
a(kay? J, (ka sin 0) | a< 10

do | ka sin 6 ka 10.133)

dQ. \a@ (10.
—, Q >> _

4 ka

The scattering in the forward direction is a typical diffraction pattern with a

central maximum and smaller secondary maxima,while at larger anglesit is iso-

tropic. At intermediate angles there is some interference between the two am-

plitudes (10.127) and (10.132), causing the cross section to deviate from the sum

of the two terms shownin (10.133). Actually, in the present approximation this

interference is very small for ka >> 1. There is more interference in the exact

solution, as shown in Fig. 10.16, where the dips below unity are indicative of

destructive interference.*

The total scattering cross section is obtained by integrating overall angles.

Neglecting the interference terms, we find from (10.133) that the shadow dif-

fraction peak gives a contribution of za’, and so doesthe isotropic part. The total

scattering cross section is thus 27a’, one factor of the geometrical projected area

coming from direct reflection and the other from the diffraction scattering that

must accompanythe formation of a shadow behindthe obstacle. The latter part

of the total cross section can be shownto be independentof the detailed shape

of the scatterer in the short-wavelength limit (Problem 10.16). Similarly, for a

general scatterer that is “opaque,” the reflected or absorbed part of the total

cross section will also be equal to the projected area, although withoutspecifying

*For a linearly polarized waveincident, the amountof interference depends on the orientation of the

incidentpolarization vectorrelative to the plane of observation containing k and ko. For € in this

plane the interference is much greater than for €) perpendicularto it. See King and Wu (Appendix)

or Bowman, Senior, and Uslenghi (pp. 402-405) for numerousgraphswith different valuesof ka.
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Figure 10.16 Semilogarithmic plot of the scattering cross section for a perfectly
conducting sphere as a function of scattering angle, with an unpolarized plane wave
incident and ka = 10. The solid curve is the exact result (King and Wu). The dashed
curve is the approximation based on the sum of the amplitudes (10.127) and (10.132).

the propertiesof the illuminated surface, we cannot say howit is divided between
scattering and absorption.

Optical Theorem and Related Matters

A fundamentalrelation, called the optical theorem, connects the total cross sec-
tion of a scatterer to the imaginary part of the forward scattering amplitude. The
theorem follows from very general considerations of the conservation of energy
and powerflow, and hasits counterpart in the quantum-mechanical scattering of
particles through the conservation of probability.

To establish the theorem, we considerthe scattering geometry shown in Fig.
10.9. A plane wave with wavevector k, andfields (E,, B;,) is incident in vacuum
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on a finite scatterer that lies inside the surface S,. The scattered fields (E,, B,)

propagate out from the scatterer and are observed far away in the direction of

k. Thetotalfields at all points in space are, by definition,

E=E, + E,, B = B, + B,

The scatterer is, in general, dissipative and absorbs energy from the incident

wave. The absorbed powercan be calculated by integrating the inward-going

componentof the Poynting vectorof the fotal fields over the surface 5}:

1
Pivs = ~~— Re(E X B*)-n’ da’ (10.134)

2Mo 51

The scattered power is normally calculated by considering the asymptotic

form of the Poynting vector for the scattered fields in the region where these are

simple transverse fields falling off as 1/r. But since there are no sources between

S, andinfinity, the scattered power can equally well be evaluated as an integral

over S, of the outwardly directed componentof the scattered Poynting vector:

1
Pecatt == Re(E, X Be) +n’ da’ (10.135)

2Mo JS;

The total power P taken from the incident wave, either by scattering or

absorption, is the sum of (10.134) and (10.135). With some obvious substitutions

and rearrangements, the total power can be written

1
P= -—-~—® Re[E, x By + Ej X B,]-n’ da’

2Mo JS;

With the incident wave written explicitly as

E;, = Eo€oe™”™* (10.136)
1

cB; = 7 ko X E;

the total power takes the form,

1 oe! k) X (n’ X E,
P= — RelFi ¢ e7*Korx c -(n’ X B,) + €5° o (n | ia’} 

Comparison with (10.93) for the scattering amplitude showsthat the total power

is related to the forward (k = ko, € = €o) Scattering amplitude according to

P= 2 Im[E5 €6 - F(k = k)] (10.137)
kZo

This is the basic result of the optical theorem, although it is customary to express

it in a form that is independent of the magnitude of the incident flux. The total

cross section o, (sometimescalled the extinction cross section in optics) is defined

as the ratio of the total power P to the incident powerper unit area, | Eo |7/2Zo.

Similarly, the normalized scattering amplitude f is defined relative to the ampli-

tude of the incident wave at the origin as

F(k, Ko)
f(k, Ko) = E

0
(10.138)
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Figure 10.17 A plane wave incident normally on a slab of dielectric of thicknessd.
The scatterers in the slab give rise to a scattered wave that adds coherently to the
incident wave to give a modified wave at the observation point O behindtheslab.

In terms of o, and f the optical theorem reads

Oo, = = Im[e> - f(k = ky)] (10.139)

The notation in (10.139) corresponds to the standard quantum-mechanical con-

ventions. For particles with spin the relevant forward scattering amplitudeis the

one in which none of the particles change their spin state. For electromagnetic

radiation (photons) this is indicated by the presence of the amplitude e€@ - f for
scattered radiation with the samepolarization finally as it wasinitially.

The optical theorem relates different aspects of the scattering and absorption
of electromagnetic wavesfor a single scatterer. It is also possible to connect the
forward scattering amplitude for a single scatterer to the macroscopic electro-

magnetic properties, namely the dielectric constant, of a medium composedofa

large numberof scatterers. We will content ourselves with a brief elementary

discussion and refer the readerto the literature for more detailed and rigorous

treatments.* Consider a plane wave (10.136) incident normally from the left on

a thin slab of uniform material composed of N identical scattering centers per
unit volume,as shownin Fig. 10.17). The incident wave impingesonthescattering

centers, causing each to generate a scattered wave. The coherent sum of the

incident wave and ofall the scattered waves gives a modified wave to the right

of the slab. Comparison of this modified wave at the observation point O with
that expected for a wave transmitted through a slab described by a macroscopic,
electric susceptibility e(w) then leads to a relation between e€ andthescattering
amplitude f.

*See, for example, the very readable review by M. A. Lax, Rev. Mod. Phys. 23, 287 (1951), or M.L.
Goldberger and K. M. Watson, Collision Theory, Wiley, New York (1964), Chapter 11, especially
pp. 766-775.
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The thickness and the density of the slab are assumed to be so small that
only single scatterings in the slab need be considered and, as a consequence,the

effective exciting field at each scatterer is just the incidentfield itself. The scat-

tered field produced at the observation point O with cylindrical coordinates
(0, 0, zo) by the N d*x scatterers in the infinitesimal volume element d*x at the
point x(p, @, z) in the slab is, in this approximation,

ikR

dE, = = f(k, 0, b)Epel**N d3x

where we have written the scattering amplitude in terms of the scattering angles
6 and @, with sin 6 = p/R, and have assumedthat the observation point is many
wavelengths from the slab. The distance from the volume element to O is

R = [p? + (Z — z)*]'”. The presence of the phase factor of the incident waveis
necessary to account for the location of the scatterers at x, rather than at the

origin of coordinates. The total scattered field is obtained by integration over the

volumeof the slab:

 
d oo ikR

E, = NE,| aa | dz e'* | p dp “ f(k, 6, b) (10.140)
0 0 0 R

Since p dp = R dR,this expression can be written

d oo

E, = NE,| ae | dz eX | dR e'** f(k, 0, d) (10.141)
0 O |Zg—Z|

where cos 0 = (Z) — z)/R. We nowtreat e““* dR as a differential and integrate

by parts to obtain for the R integration,
co

 
| AR o** f(k, 8, b) = = e** K(k, 6, 6)
|Zq-2| R=|Z9-Z|

1 {~ Zo «£\ ; d
+ — dR AR f(k, 6,

ik J\zo-z ( R? )e d(cos 0) ( >)

Provided the indicated derivative of f is well behaved, the remaining integralis

of the orderof 1/(k |z) — z|) times the original. Since we have assumedthat the
observation point is many wavelengths from the slab, this integral can be ne-

glected. Neglecting the oscillating contribution at the upper limit R — © (this

can be made to vanish somewhat more plausibly by assuming that the number

N of scattering centers per unit volumefalls to zero at very large p), we have the

result

  

| dR eikR f(k, 6, od) =— = elk \zo— Z| f(k, 0)

IZo—Z|

The scattered field at O is therefore

2
E, = = NEf(k, 0) [ dz e'klz*|%0~2\I]

Since Z) > z by assumption, we havefinally

2E, == NEof(k, 0)e**d (10.142)
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The total electric field at the observation point O is

27iNd
E — Fee + k f(k, 0) (10.143)

 

correctto first order in the slab thickness d. The amplitude at O for a wavewith

the samepolarization state as the incident waveis

271Nd
 e5 °E= Ee + €5 ° f(k, 0) (10.144)

Suppose that we nowconsiderthe slab macroscopically, withits electromag-
netic properties specified by a dielectric constant €(w)/€ appropriate to describe
the propagation of the wave of frequency w = ck andpolarization €>. A simple

calculation using the formulas of Chapter 7 showsthat the transmitted waveat
Z = Zo is given by

; d
€5 - E(macroscopic) = Foe + ik(e/ey — 1) 4 (10.145)

correct to first order in d, but with no approximation concerning the smallness of
| €/é) — 1]. Comparison of (10.144) and (10.145) showsthatthe dielectric constant
can be written in terms of the forward scattering amplitude as

AaN
2 e* - £(k, 0) (10.146) E(w)/eg = 1 +

A numberof observationsare in order. It is obvious that our derivation has been
merely indicative, with a numberof simplifying assumptions and the notion of a

macroscopic description assumed rather than derived. More careful consider-
ations show that the scattering amplitude in (10.146) should be evaluated at the
wave numberk’ in the medium,notat the free-space wave number k,andthat
there is a multiplier to the second term that gives a measureof the effective

exciting field at a scatterer relative to the total coherentfield in the medium. The

reader can consult the literature cited above for these and other details. Suffice
it to say that (10.146) is a reasonable approximation for not too dense substances
and provided correlations among neighboring scatterers are not important. It is

worthwhile to illustrate (10.146) with the simple electronic oscillator model used
in Chapter 7 to describe the dielectric constant. The dipole momentof the atom
is given by (7.50), summedover the variousoscillators:

2
e _

p= m1 >» f(@; — a — iwy;) "Eq €o
j

From (10.2) we infer that the atomic scattering amplitudeis

1 &
{(k) = —— —
(k) 4irég mM

S f(@; — aw— iwy;) '(k X €)) X k
J

The scalar product of €§ with the forward scattering amplitude is then

ek?

4TreEgm
 e§ - f(k =k) = > f(@F — w — iwy)™

J
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Substitution into (10.146) yields the dielectric constant

2

E(w)/ey9 = 1 + Ne >» fi(o — wo — ivy)! (10.147)
Eom j

in agreementwith (7.51).
Contact can be established between (10.146) and the optical theorem

(10.139) by recalling that the attenuation coefficient a is related to the total cross
section of a single scatterer through a = No, and to the imaginary part of the

wave numberin the medium through a = 2 Im(k’). From (10.146) and the re-
lations (7.54) for the real and imaginary parts of k’ in terms of €(w) we find

4AaN
Re(k’) Im[e5 ° f(Re k’, 0)| (10.148)a = No; =

where I have improved (10.146) by evaluating f at the wave numberin the me-
dium, as described above. Equation (10.148) indicates that, if we considerscat-
tering by a single scatterer embedded in a medium,the optical theorem and other

relations will appear as before, provided we describe the “‘kinematics”correctly

by using the local wave number k’ in the medium. The samesituation holds in

the scattering of electrons in a solid, for example, where the effective mass or

other approximationis used to take into account propagation throughthelattice.

As a final commenton the optical theorem we note the problem of approx-

imations for f. The optical theorem is an exact relation. If an approximate ex-
pression for f is employed, a manifestly wrong result for the total cross section

may be obtained. For example, in the long-wavelength limit we find from (10.2)
and (10.5) that the scattering amplitude for a dielectric sphere of radiusa is

e-—1)\,
= ——_ x xf (s ; 5) (k €&) Xk

The forward amplitudeis

e* - f(k = ky) = Ka? &—1 (10.149)
€é, + 2

Fora lossless dielectric, this amplitude is real; the optical theorem (10.139) then
yields o, = 0. On the other hand, we know that the total cross section is in this

case equal to the scattering cross section (10.11):

Ee, -— 1

€é, + 2

2

ST 14 6Te (10.150)
  

Even with a lossy dielectric (Im € # 0), the optical theorem yields a total cross

section,

_ 127ka° Im e,
= 1O; re + 20 (10.151)

while the scattering cross section remains (10.150). These seeming contradictions

are reflections of the necessity of different orders of approximation required to

obtain consistency between the two sides of the optical theorem. In the long-

wavelength limit it is necessary to evaluate the forward scattering amplitude to
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higher order in powers of w to find the scattering cross section contribution jpn
the total cross section by means of the optical theorem. Forlossless or nearly

lossless scatterers it is therefore simplest to determine the total cross section
directly by integration of the differential scattering cross section over angles. For
dissipative scatterers, on the other hand, the optical theorem yields a nonzero
answerthat has a different (usually a lower power) dependence on w and other
parameters from that of the scattering cross section. This contributionis, of
course, the absorption cross section to lowest explicit order in w. It can becal-

culated from first principles with (10.134), but the optical theorem provides an
elegant and convenient method. Examples of these considerations are given in
the problems. An analogoussituation occurs in quantum-mechanicalscattering
by a real potential where the first Born approximation yields a real scattering

amplitude. The second Born approximation has an imaginarypartin the forward
direction that gives, via the optical theorem, a total cross section in agreement

with the integrated scattering cross section of the first Born approximation.
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Problems

10.1 (a) Showthat for arbitrary initial polarization, the scattering cross section of a
perfectly conducting sphere of radius a, summed overoutgoingpolarizations,

is given in the long-wavelength limit by

d 5 1
“0 (Eo, No, n) = Ka’3 _ |p ° n| —_ A |n ° (No x E,) |° — Ao° n|

where n, and n are the directions of the incident and scattered radiations,

respectively, while € is the (perhaps complex) unit polarization vector of the

incident radiation (€5 + €) = 1; Mp* €9 = 0).

(b) If the incident radiation is linearly polarized, show that the cross sectionis

d 5 3,
“0 (€, Mo, nN) = Kat? (1 + cos*#) — cos 6 — 3 sin*@ cos 20

where n- ny = cos # and the azimuthalangle ¢ is measured from the direction

of the linear polarization.
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10.2

10.3

10.4

10.5

(c) What is the ratio of scattered intensities at 6 = w/2, ¢ = 0 and @ = m2,

g@ = m/2? Explain physically in terms of the induced multipoles and their
radiation patterns.

Electromagnetic radiation with elliptic polarization, described (in the notation of
Section 7.2) by the polarization vector,

€ = + re’“e_)
1

Vig

is scattered by a perfectly conducting sphere of radius a. Generalize the amplitude
in the scattering cross section (10.71), which applies for r = 0 or r = %&, and

calculate the cross section for scattering in the long-wavelength limit. Show that

d 5 3
aS = Kat? (1 + cos’0) — cos 9 — — ( 
dQ, 4\1l+r

) sin*6 cos(2¢ — °)

Compare with Problem 10.1.

A solid uniform sphere of radius R and conductivity o acts as a scatterer of a
plane-wave beam of unpolarized radiation of frequency w, with wR/c < 1. The
conductivity is large enough that the skin depth 6 is small comparedto R.

(a) Justify and use a magnetostatic scalar potential to determine the magnetic
field around the sphere, assuming the conductivity is infinite. (Remember
that w # 0.)

(b) Use the technique of Section 8.1 to determine the absorptioncross section

of the sphere. Show that it varies as (w)'” provided o is independent of
frequency.

An unpolarized wave of frequency w = ckis scattered by a slightly lossy uniform
isotropic dielectric sphere of radius R much smaller than a wavelength. The sphere
is characterized by an ordinary real dielectric constant e, and a real conductivity
ao. The parameters are such that the skin depth 6 is very /arge compared to the

radius R.

(a) Calculate the differential and total scattering cross sections.

(b) Show that the absorption cross section is

(RZoo)= 120R?Wars A" (e, + 2) + (Zoalk?
 

(c) From part a write down the forwardscattering amplitude anduse the optical
theorem to evaluate the total cross section. Compare your answer with the
sum of the scattering and absorption cross sections from parts a and b.

Comment.

Thescattering by the dielectric sphere of Problem 10.4 wastreated as purely elec-
tric dipole scattering. This is adequate unless it happens that the real dielectric
constant €/€, is very large. In these circumstances a magnetic dipole contribution,

even though higher order in kR, may be important.

(a) Show that the changing magnetic flux of the incident wave induces an azi-
muthal current flow in the sphere and produces a magnetic dipole moment,

m= AmaLo (kRy = B...

Ko
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10.7

10.8

10.9
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(b) Show that application of the optical theorem to the coherent sum of the
electric and magnetic dipole contributions leadsto a total cross section,

1

(e, + 2)? + (Zoolky
 Oo, = I2ak(RZ0)| + = (KR)

(Compare Landau and Lifshitz, Electrodynamics of Continuous Media,

p. 323).

(a) Show that for the scattered wave (10.57) the normalized scattering amplitude

(10.138) is

== ie YS VIFT [a()Xi2; + iB(n X X,1]
1

where the polarization vector of the incident waveis (€,; + ien)/V2.

(b) Deduce an expression for the total cross section of o, from the optical the-
orem (10.139) and the above expressionforf.

Discuss the scattering of a plane wave of electromagnetic radiation by a nonper-
meable, dielectric sphere of radius a and dielectric constante,.

(a) By finding the fields inside the sphere and matching to the incident plus
scattered wave outside the sphere, determine without anyrestriction on ka
the multipole coefficients in the scattered wave. Define suitable phase shifts

for the problem.

(b) Consider the long-wavelength limit (ka < 1) and determine explicitly the
differential and total scattering cross sections. Compare yourresults with

those of Section 10.1.B.

(c) Inthe limit «, — % compare yourresults to those for the perfectly conducting

sphere.

Consider the scattering of a plane wave by a nonpermeable sphereof radius a and
very good, but not perfect, conductivity following the spherical multipole field
approach of Section 10.4. Assume that ka < 1 and that the skin depth 6 < a.

(a) Show from the analysis of Section 8.1 that

Z ké
— = —(| —-j

(b) In the long-wavelength limit, show that for / = 1 the coefficients a.(/) and

B.(/) in (10.65) are

(9-8a a

1+2 +i2a i —
2a 2a

 a(1) = 5 (kay

B.(1) = >(kay
(c) Write out explicitly the differential scattering cross section, correct to first

order in 6/a and lowest orderin ka.

(d) Using (10.61), evaluate the absorption cross section. Show thatto first order
in 5 it is O44, = 37(kd)a*. How different is the value if 6 = a?

In the scattering of light by a gas very nearthe critical point the scatteredlight is
observed to be “‘whiter’’ (i.e., its spectrum is less predominantly peaked toward
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10.10

10.11

the blue) than far from the critical point. Show that this can be understood bythe
fact that the volumes of the density fluctuations become large enough that
Rayleigh’s law fails to hold. In particular, consider the lowest order approximation
to the scattering by a uniform dielectric sphere of radius a whosedielectric constant
€, differs only slightly from unity.

(a) Show that for ka >> 1, the differential cross section is sharply peaked in the

forward direction and the total scattering cross section is approximately

o = 5 (ka)*\e, — 1|?a*

with a k*, rather than k*, dependence on frequency.

(b) Show that for arbitrary ka the total cross section to lowest orderin (e, — 1)

is the expression given in part a, multiplied by the function

F(z) =1+5z7- “(1 — cos 2z) — z~* sin 2z

<4 - t
— 4(z~7 — z74) —at

where z = 2ka. [This result is due to Lord Rayleigh, 1914]

The aperture or apertures in a perfectly conducting plane screen can be viewed
as the location of effective sources that produce radiation (the diffracted fields).
An aperture whose dimensions are small compared with a wavelength acts as a
source of dipole radiation with the contributions of other multipoles being
negligible.

(a) Beginning with (10.101) show that the effective electric and magnetic dipole
moments can be expressedin terms of integrals of the tangential electricfield
in the aperture as follows:

p= en | (x ° Eyan) da (9.72)

m=| (x Bua) da
iw

where E,,, is the exact tangential electric field in the aperture, nis the normal

to the plane screen, directed into the region of interest, and the integration
is over the area of the openings.

(b) Show that the expression for the magnetic momentcan be transformed into

2
m = — | x(n - B) da (9.74)

a

Be careful about possible contributions from the edge of the aperture where
some components of the fields are singular if the screen is infinitesimally
thick.

A perfectly conducting flat screen occupies half of the x-y plane (i.e., x < 0). A
plane waveofintensity J) and wave numberk is incident along the z axis from the
region z < 0. Discuss the values of the diffracted fields in the plane parallel to the
x-y plane defined by z = Z > 0. Let the coordinates of the observation point be

(X, 0, Z).
(a) Show that, for the usual scalar Kirchhoff approximation and in the limit

Z >> X and VkZ >1, the diffracted field is

(+
W(X, 0, Z, t) ~ IieikZ—iwt i)) EY eit? dt

where & = (k/2Z)'*X.
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(b) Showthat the intensity can be written

I
I= |p= 5 [(C(é) + 3)? + (S(E) + 3)']

where C(é) and S(€) are the so-called Fresnel integrals. Determine the as-
ymptotic behavior of J for é large and positive (illuminated region) and é
large and negative (shadow region). What is the value of J at X = 0? Make
a sketch of J as a function of X for fixed Z.

(c) Use the vector formula (10.101) to obtain a result equivalentto thatof parta.

Compare the two expressions.

A linearly polarized plane wave of amplitude E, and wave numberk is incident
on a circular opening of radius a in an otherwise perfectly conducting flat screen.
The incident wave vector makes an angle a with the normalto the screen. The
polarization vector is perpendicular to the plane of incidence.

(a) Calculate the diffracted fields and the powerper unit solid angle transmitted
through the opening, using the vector Smythe—Kirchhoff formula (10.101)
with the assumption that the tangential electric field in the opening is the

unperturbedincidentfield.

(b) Compare yourresult in part a with the standard scalar Kirchhoff approxi-
mation and with the result in Section 10.9 for the polarization vector in the

plane of incidence.

Discuss the diffraction of a plane wave by a circular hole of radius a, following
Section 10.9, but using a vector Kirchhoff approximation based on (10.90) instead

of the Smythe formula (10.101).

(a) Show that the diffracted electric field in this approximation differs from
(10.112) in two ways,first, that cos a is replaced by (cos 6 + cos @)/2, and
second, by the addition of a term proportional to (k x €;). Compare with
the obliquity factors 0 of the scalar theory.

(b) Evaluate the ratio of the scattered power for this vector Kirchhoff approxi-

mation to that of (10.114) for the conditions shownin Fig. 10.14. Sketch the

two angular distributions.

A rectangular opening with sides of length a and b = a defined by x = +(a/2),
y = +(b/2) exists in a flat, perfectly conducting plane sheetfilling the x-y plane.
A plane waveis normally incident with its polarization vector making an angle 6

with the long edges of the opening.

(a) Calculate the diffracted fields and power per unit solid angle with the vector
Smythe-Kirchhoff relation (10.109), assuming that the tangential electric
field in the openingis the incident unperturbedfield.

(b) Calculate the corresponding result of the scalar Kirchhoff approximation.

(c) For b = a, B = 45°, ka = 47, compute the vector and scalar approximations
to the diffracted power per unit solid angle as a function of the angle @ for
¢ = 0. Plot a graph showing a comparison betweenthe tworesults.

A cylindrical coaxial transmission line of inner radius a and outer radius b hasits
axis along the negative z axis. Both inner and outer conductors end at z = 0, and
the outer one is connected to an infinite plane copper flange occupying the whole
x-y plane (except for the annulus of inner radius a and outer radius b around the
origin). The transmissionline is excited at frequency w in its dominant TEM mode,
with the peak voltage between the cylinders being V. Use the vector Smythe—
Kirchhoff approximation to discuss the radiated fields, the angular distribution of

radiation, and the total powerradiated.
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10.16

10.17

10.18

10.19

(a) Show from (10.125) that the integral of the shadow scattering differentia]
cross section, summed over outgoing polarizations, can be written in the
short-wavelength limit as

1 de ty.
Osh = | wx, | d’x' - 12 | exKk 7k,

and therefore is equal to the projected area of the scatterer, independentof
its detailed shape.

(b) Apply the optical theorem to the “‘shadow” amplitude (10.125) to obtain the
total cross section under the assumption that in the forward direction the
contribution from the illuminated side of the scatterer is negligible in

comparison.

(a) Using the approximate amplitudes of Section 10.10, show that, for a linearly
polarized plane wave of wave numberk incident on a perfectly conducting
sphere of radius a in the limit of large ka, the differential scattering cross
section in the & plane (€9, Kp, and k coplanar)is

ad
0 (E plane) = 1 c cot*6 Ji(ka sin 6) + 1

6
— 4 cot 6 J,(ka sin 0) sin(2 ka sin ‘)

and in the H plane (€9 perpendicular to ky and k) is

2a
1 c cosec’6 J{(ka sin #) + 1

da
10 (H plane) =

. 6
+ 4 cosec 0 J,(ka sin 6) sin(2 ka sin )

(The dashed curvein Fig. 10.16 is the average of these two expressions.)

(b) Look up the exact calculations in King and Wu (Appendix) or Bowman,
Senior and Uslenghi (pp. 402-405). Are the qualitative aspects of the inter-
ference between the diffractive and reflective amplitudes exhibited in part a
in agreementwith the exact results? What about quantitative agreement?

Discuss the diffraction due to a small, circular hole of radius a in a flat, perfectly

conducting sheet, assuming that ka < 1.

(a) If the fields near the screen on the incident side are normal Eye“ and

tangential Boe“’, show that the diffracted electric field in the Fraunhofer

zone 1S

eikr—iat k k k

E = *a°| — X + — X Ey X =Sar 4 2 § Bot ( ° t)
wherek is the wave vector in the direction of observation.

(b) Determinethe angular distribution of the diffracted radiation and show that

the total power transmitted through the hole is

 

P  —_— kA 6 4 2B2 + E2

2nz, @4C Bo Fo)
Specialize the discussion of Problem 10.18 to the diffraction of a plane wave by
the small, circular hole. Treat the general case of oblique incidence at an angle a
to the normal, with polarization in and perpendicular to the plane of incidence.

(a) Calculate the angular distributions of the diffracted radiation and compare
them to the vector Smythe—Kirchhoff approximation results of Section 10.9

and Problem 10.12 in the limit ka < 1.
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(b) For the conditions of Fig. 10.14 (but for ka < 1) compute the diffraction
intensity in the plane of incidence and comparethe relative values with the
solid curve in Fig. 10.14. (Use a protractor and a ruler to read off the values

from Fig. 10.14 at several angles.)

(c) Show that the transmission coefficient [defined above (10.116)] for the two

states of polarization are

64 4 + sin?a

1 Opa 4 cos a
_ 64

270

Note that these transmission coefficients are a factor (ka)* smaller than those
given by the vector Smythe—Kirchhoff approximation in the samelimit.

T, (ka)* cos a

10.20 A suspension of transparent fibers in a clear liquid is modeled as a collection of
scatterers, each being a right circular cylinder of radius a and length L of uniform
dielectric material whose electric susceptibility differs from the surrounding me-

dium by a small fractional amount de/e.

(a) Show thatto first order in 5é/e the scattering cross section per scatterer for

unpolarized radiation of wave number is

do _ |Se|" kat?
dQ E 32

whereJ,(z) is the Bessel function of order unity and q, (q,) is the component
of the wave numbertransfer parallel (perpendicular) to the cylinderaxis.

(b) In the limit of very slender cylinders (ka < 1), show that the scattering cross

section, averaged over the orientation of the cylinder (appropriate for an

ensemble of randomly orientedfibers), is

singh)|
2

da Se} k*a*L? 2
—__ — {[— + 2 — Si(gL) —() (1 cos of= Si(qL) ( gL}

E 32

where Si(x) = | [(sin x)/x] dx is the sine integral (Abramowitz and Stegun,
0

p. 231) and q* = 2k*(1 — cos 6).

(c) Plot the square-bracketed quantity in part b as a function of q*L* on the
range (0, 100). Verify that the cross section is the expected one when
kL <1 and show that when kL >> 1 (but ka < 1) thetotal scattering cross

section is approximately

117°
Oscatt ~ 60

. 2

2J,(qia)  sin(q)L/2)

qa qyL/2
  (1 + cos’6)

   

 

  

2Sel sg 1 In(kL)
— + —_

e| “4 i olee kL

Commenton the frequency dependence.

 

  



CHAPTER 11

Special Theory of Relativity

 

 

Beginning with Chapter 11 we employ Gaussian units instead of SI units for electro-

magnetic quantities. Explicit factors of c appear in a natural mannerin these units,

making them more appropriate than SI units for relativistic phenomena. Theissue of

“rationalization” (suppression of explicit factors of 477 in the Maxwell equations)is

another matter. Some workers, especially quantum field theorists, prefer Heaviside—

Lorentz units—see the Appendix.

es

  

314

The special theory of relativity has, since its publication by Einstein in 1905,

become a commonplace in physics, as taken for granted as Newton’s laws

of classical mechanics, the Maxwell equations of electromagnetism, or the

Schrédinger equation of quantum mechanics. Daily it is employed by scientists

in their consideration of precise atomic phenomena,in nuclearphysics, and above

all in high-energy physics.

The origins of the special theory ofrelativity lie in electromagnetism.In fact,

one can say that the development of the Maxwell equations with the unification

of electricity and magnetism and optics forced special relativity on us. Lorentz

above all laid the groundwork with his studies of electrodynamics from 1890
onwards. Poincaré made important contributions, butit fell to Einstein to make
the crucial generalization to all physical phenomena, not just electrodynamics,

and to stress the far-reaching consequencesof the second postulate. The special

theory of relativity is now believed to apply to all forms of interaction except
large-scale gravitational phenomena.It serves as a touchstone in modern physics
for the possible forms of interaction between fundamental particles. Only theo-
ries consistent with special relativity need to be considered. This often severely
limits the possibilities.

The experimentalbasis and the historical development of the special theory

of relativity, as well as many of its elementary consequences, are discussed in
many places. A list of books andarticles is given at the end of the chapter. We
content ourselves with a summaryof the key points and some examples of recent
definitive experimental confirmations. Then the basic kinematic results are sum-

marized, including coordinate transformations, proper time and timedilatation,
the relativistic Dopplershift, and the addition of velocities. The relativistic energy

and momentum of particle are derived from generalprinciples, independentof

the force equation. Then the idea of the Lorentz group and its mathematical
description is presented and a specific representation in terms of 4 < 4 matrices
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is given. The important phenomenon of Thomas precession is then discussed.

The experimental basis for the invariance of electric charge, the covariance of

electrodynamics, and the explicit transformation properties of electric and mag-

netic fields follow. The chapter concludes with a treatment of the relativistic
equations of motion for spin and a remark on the notation and conventions of

relativistic kinematics.

11.1 The Situation Before 1900, Einstein’s Two Postulates

In the 40 years before 1900 electromagnetism and optics were correlated and
explained in triumphal fashion by the wave theory based on the Maxwell equa-
tions. Since previous experience with wave motion had always involved a medium

for the propagation of waves, it was natural for physicists to assume that light

needed a medium through which to propagate. In view of the knownfacts about

light, it was necessary to assume that this medium, called the ether, permeated

all space, was of negligible density, and had negligible interaction with matter.It
existed solely as a vehicle for the propagation of electromagnetic waves.

The hypothesis of an ether set electromagnetic phenomenaapart from the

rest of physics. For a long time it had been Knownthat the laws of mechanics
were the samein different coordinate systems moving uniformly relative to one

another. We say that the laws of mechanics are invariant under Galilean trans-

formations. To emphasize the distinction between classical mechanics and elec-

tromagnetism let us consider explicitly the question of Galilean relativity for
each. For two reference frames K and K' with coordinates (x, y, z, t) and

(x', y', z', t’'), respectively, and moving with relative velocity v, the space and
time coordinates in the two frames are related according to Galilean relativity

by

=x-—vl (11.1)

t'=t ,

provided the origins in space and time are chosen suitably. As an example of a

mechanical system, considera group of particles interacting via two-body central

potentials. In an obvious notation the equation of motion of the ith particle in

the reference frame K’is

av;
i HW = —V; » Vi[xi — X;1) (11.2)

J

 m

From the connections (11.1) between the coordinates in K and K’it is evident
that vj = v; — v, V; = V,, dv,/dt' = dv,/dt, and x; — x’ = x; — x;. Thus (11.2) can

be transformedinto

mn dv;

’ dt
 

= -V; » Vii(1x; — x;|) (11.3)

namely Newton’s equation of motion in the reference frame K.

The preservation of the form of the equationsof classical mechanics under

the transformation (11.1) is in contrast to the change in form of the equations
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governing wave phenomena. Suppose that a field w(x’, t’) satisfies the wave
equation

 ( 7-35 )u=c (11.4)7 Oxi? c* at’”

in the reference frame K’. By straightforward use of (11.1) it is found that in
terms of the coordinates in the reference frame K the wave equation (11.4)
becomes

1 Oo 2 0 1(w - 55-3 yve-dvvy vy =o (11.5)

The form of the wave equationis not invariant under Galilean transformations.
Furthermore, no kinematic transformation of w can restore to (11.5) the appear-
ance of (11.4).* For sound wavesthe lack of invariance under Galilean transfor-
mations is quite acceptable. The wind throws our voices. Sound waves are com-

pressions and rarefactions in the air or in other materials, and the preferred
reference frame K’ in which (11.4) is valid is obviously the frame in which the
transmitting medium isatrest.

So it also appeared for electromagnetism. Thevital difference is this. Sound

waves and similar wave phenomena are consequences of Galilean classical me-

chanics. The existence of preferred reference frames where the phenomenaare

simple is well understood in terms of the bulk motions of the media of propa-

gation. For electromagnetic disturbances, on the other hand, the medium seemed
truly ethereal with no manifestation or purpose other than to support the
propagation.

When Einstein began to think about these matters there existed several
possibilities:

1. The Maxwell equations were incorrect. The proper theory of electromag-

netism was invariant under Galilean transformations.

2. Galilean relativity applied to classical mechanics, but electromagnetism had

a preferred reference frame, the frame in which the luminiferous ether was

at rest.

3. There existed a relativity principle for both classical mechanics and electro-
magnetism, but it was not Galilean relativity. This would imply that the laws

of mechanics were in need of modification.

Thefirst possibility was hardly viable. The amazing successes of the Maxwell

theory at the hands of Hertz, Lorentz, and others made it doubtful that the

*The reader might wish to ponderthe differences between the wave equation and the Schrédinger

equation under Galilean transformations. If in K’ the Schrédinger equation reads

h? ow’
—_— V2 r4 VY ro fi, —

2m ¥ or’

then in K the equation has the same form for the wave function # provided is a Galilean invariant

and w = w' exp[i(m/h)v-x — i(mv?/2h)t]. The Schrédinger equation is invariant under Galilean
transformations.
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equations of electromagnetism were in serious error. The second alternative was

accepted by most physicists of the time. Efforts to observe motion of the earth

and its laboratories relative to the rest frame of the ether, for example, the

Michelson—Morley experiment, had failed. But for this important experimentat
least, the null result could be explained by the FitzGerald—Lorentz contraction
hypothesis (1892) whereby objects moving at a velocity v through the ether are
contracted in the direction of motion according to the formula

L(v) = Lo. /1 - u (11.6)

This rather unusual hypothesis apparently lies outside electromagnetism,sinceit
applies to bulk matter, but Lorentz later argued that it was rooted in electrody-
namics. He and Poincaré showed that the Maxwell equations are invariant in

form under what are known as Lorentz transformations (see Section 11.9) and
that the contraction (11.6) held for moving charge densities, etc., in electrody-

namics. With the idea that matter is electromagnetic in nature (the discovery of
the electron encouraged this hypothesis), it is plausible to assume that (11.6)
holds for macroscopic aggregates of electrons and atoms. Lorentz thus saved the
ether hypothesis from contradiction with the Michelson—Morley experiment.

Other experiments caused embarrassmentto the ether idea. Fizeau’s famous

experiments (1851, 1853) and later similar experiments by Michelson and Morley
(1886) on the velocity of light in moving fluids could be understood only if one
supposed that the ether was dragged along partially by the moving fluid, with
the effectiveness of the medium in dragging the ether related to its index of

refraction!
Apparently it was the implausibility of the explanation of the Fizeau obser-

vations, more than anything else, that convinced Einstein of the unacceptability

of the hypothesis of an ether. He chosethe third alternative above and sought

principles of relativity that would encompassclassical mechanics, electrodynam-

ics, and indeed all natural phenomena. Einstein’s special theory ofrelativity is

based on two postulates:

1. POSTULATE OF RELATIVITY

The laws of nature andthe results of all experiments performedin a given

frame of reference are independentof the translational motion of the system
as a whole. More precisely, there exists a triply infinite set of equivalent

Euclidean reference frames moving with constant velocities in rectilinear

paths relative to one another in which all physical phenomena occurin an
identical manner.

For brevity these equivalent coordinate systems are called inertial reference
frames. The postulate of relativity, phrased here moreorless as by Poincaré,is

consistent with all our experience in mechanics where only relative motion be-
tween bodiesis relevant, and has been an explicit hypothesis in mechanics since

the days of Copernicus, if not before. It is also consistent with the Michelson—

Morely experiment and makes meaningless the question of detecting motion

relative to the ether.
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2. POSTULATE OF THE CONSTANCY OF THE SPEED OF LIGHT

The speed oflight is finite and independent of the motionofits source.

This postulate, untested when Einstein proposedit (and verified decisively only
in recent years—see Section 11.2.B), is simplicity itself. Yet it forces on us such
a radical rethinking of our ideas about space and time that it was resisted for
many years.

Because special relativity applies to everything, not justlight, it is desirable
to express the second postulate in terms that conveyits generality:

2’. POSTULATE OF A UNIVERSAL LIMITING SPEED

In every inertial frame,thereis a finite universal limiting speed C for physica]
entities.

Experimentally, the limiting speed C is equal to the speed c of light in vacuum.
Postulate 2’ (with the first postulate) can be used equally to derive the Lorentz
transformation of coordinates (see Problem 11.1). Our own derivation in Section
11.3 is the traditional one, based on Postulates 1 and 2, but, as Mermin has
emphasized,* the generalstructure of the Lorentz transformation can be deduced
from thefirst postulate alone, plus some obvious assumptions, without reference
to the speed of light, except as the empirical parameter that distinguishes the
transformation from the Galilean (see Problem 11.2).

The history of the special theory of relativity and its gradual establishment
through experimentsis dealt with in an extensive literature. Some referencesare

given at the end of the chapter. Of particular note is the ‘“‘Resource letter on
relativity” published in the American Journal of Physics [30, 462 (1962)]. This

article contains references to books and journalarticles on the history, experi-
mental verification, and laboratory demonstrations on all aspects of special
relativity.

In passing we remark that Einstein’s postulates require modification of the

laws of mechanics for high-speed motions. There was no evidence at the time

indicating a failure of Galilean relativity for mechanics. This is basically because

relativistic particles and their dynamics were unknownuntil the discovery of beta

rays around 1900. Poincaré had speculated that the speed of light might be a
limiting speed for material particles, but Einstein’s special theory of relativity
originated from his desireto treat all physical phenomenain the same wayrather
than from any needto ‘“‘fix up” classical mechanics. The consequencesof the

special theory for mechanical concepts like momentum and energyare discussed
in Section 11.5.

11.2. Some Recent Experiments

Although we omit discussion of the standard material, appealing to the reader’s

prior knowledge and the existence of many booksonthespecial theory ofrela-
tivity, there are two experiments worthy of note. One concernsthefirst postulate,

namely the search for an “ether drift’? (evidence of motion of the laboratory
relative to the ether) and the other the secondpostulate.

*N. D. Mermin, Relativity without light, Am. J. Phys. 52, 119-124 (1984).
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A. Ether Drift

The null result of the Michelson—Morley experiment (1887) established that
the velocity of the earth through the presumed ether wasless than one-third of

its orbital speed of approximately 3 < 10* m/s. The experiment was repeated
many times with various modifications, always with no firm evidence of motion

relative to the ether. A summaryofall available evidence is given by Shankland
et al. [Rev. Mod. Phys. 27, 167 (1955)].

As already noted, these null results can be explained without abandoning
the concept of an ether by the hypothesis of the FitzGerald—Lorentz contraction.

The discovery by Méssbauer (1958) of ‘“‘recoilless’’ emission or absorption of
gammarays (called the Mossbauereffect) allows comparison of frequencies to

astounding precision and gives the possibility of very accurate ether drift exper-

iments based on the Dopplershift. In the Méssbauereffect the recoil momentum
from the emission or absorption of a gammaray is taken up by the whole solid

rather than by the emitting or absorbing nucleus. This meansthat the energy of

recoil is totally negligible. A gammarayis emitted with the full energy Ep of the
nuclear transition, not the reduced energy E ~ E, — E}/2Mc’, where M is the

mass of the recoiling nucleus, resulting from the recoil. Furthermore, with such

recoilless transitions there are no thermal Doppler shifts. The gamma-ray line

thus approaches its natural shape with no broadening or shift in frequency. By

employing an absorber containing the same material as the emitter, one can study

nuclear resonance absorption oruse it as an instrumentfor the study of extremely
small changes of frequency.

To understand the principle of an ether drift experiment based on the

Mossbauereffect, we need to recall the classic results of the Doppler shift. The

phase of a plane waveis an invariant quantity, the same in all coordinate frames.

This is because the elapsed phase of a wave is proportional to the number of

wavecrests that have passed the observer. Since this is merely a counting oper-

ation, it must be independent of coordinate frame. If there is a plane electro-
magnetic wave in vacuum its phase as observed in the inertial frames K and K’,

connected by the Galilean coordinate transformation (11.1), is

$= of _a:*"| = w(t _* =) (11.7)
C C

If ¢ and x are expressed in termsof ¢’ and x’ from (11.1), we obtain

n-v n-x’ n’- x’

C C C

Since this equality must hold for all t' and x’, it is necessary that the coefficients

of t’, x1, x3, x3 on both sides be separately equal. We therefore find

 

   

/
n-n

w! = oft ss 4 (11.8)
6

 

c F=cC—-hev

These are the standard Doppler shift formulas of Galilean relativity.

The unit wave normal n is seen from (11.8) to be an invariant, the same in

all inertial frames. The direction of energy flow changes, however, from frame
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to frame. To see this, consider the segments of a plane wave sketchedin Fig. 11.1.

The segments can be thought of as schematic representations of wave packets
Att =t' = 0 the center of the segmentis at the point A in both K and kK’, fg
inertial frame K is the preferred reference frame(etherat rest) the wave packet
movesin the direction n, arriving after one unit of time at the point B in frame
K. The distance AB is equal to c. In frame K’ the center of the wave packet
arrives at the point B’ after one unit of time. Because of the Galilean transfor-
mation of coordinates (11.1) the point B’ differs from B by a vectorial amount
—v, as indicated in the bottom half of Fig. 11.1. The direction of motion of the
wave packet, assumed to be the direction of energy flow,is thus not parallel to
nin K’, but along a unit vector m shown in Fig. 11.1 and specified by

cn — Vv

m (11.9)
—|en— vy

Since the experiments involve photon propagation in the laboratory,it js
convenient to have the Doppler formulas (11.8) expressed in terms of the m
appropriate to the laboratory rather thann.It is sufficient to have n in terms of
m correct to first order in v/c. From (11.9) we find

n = ( _= *°)m + ~2 (11.10) 

Cc Cc

where Yo is the velocity of the laboratory relative to the ether rest frame.
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\\ Figure 11.1
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Consider now a plane wave whose frequencyis in the ether rest frame, wo
in the laboratory, and w, in an inertial frame K, moving with a velocity vy, =
u, + vo relative to the ether rest frame. From (11.8) the observed frequencies

are

nev,
@, = w| 1 - —

C

Cc

If w, is expressed in terms of the laboratory frequency w, and the wave normal

n is eliminated by means of (11.10), the result, correct to order v*/c’, is easily
shown to be

a, (m + ‘)| (11.11)
Cc Cc

where u, is the velocity of the frame K, relative to the laboratory, m is the

direction of energy propagationin the laboratory, a, is the frequency of the wave
in the laboratory, and vgis the velocity of the laboratory with respect to the ether.

Equation (11.11) forms the basis of the analysis of the Méssbaueretherdrift
experiments. It is a consequenceof the validity of both the wave equationin the

ether rest frame and Galilean relativity to transform to other inertial frames.
Since it involves vo, it obviously predicts an ether drift effect. Consider two

Mossbauer systems, one an emitter and the other an absorber, moving with ve-

locities u, and wu, in the laboratory. From (11.11) the difference in frequency
between emitter and absorberis

@, — @ 1 V
2hg — a) (m+ ©]

Wo C C

 
O, = of —_

If the emitter and absorber are located on the opposite ends of a rod of length
2R that is rotated about its center with angular velocity (, as indicated in Fig.

11.2, then (u, — u,)-m = O and thefractional frequency differenceis

@, —~ Wo  20R sin Ot | (vo),| (11.12)
Wo C

where (vo), is the componentof Vo perpendicular to the axis of rotation.
A resonant absorption experiment of this type was performed in 1963 in

Birmingham.* The Mossbauerline was the 14.4 keV gammarayin °’Fe,following
the B* decay of °’Co. The isotope °’Fe is stable and occurs with a natural abun-
dance of 2.2%; the absorber was madewith iron enriched to 52% in °’Fe. The

cobalt source was emplanted in °°Fe. The emitter and absorberfoils were located
as in Fig. 11.2 with R ~ 4 cm. The observed fractional width of the Méssbauer
line was Aw/w = 2 < 10°’. Counters fixed in the laboratory and located sym-
metrically along a diameterof the circle in the plane of the source and absorber
recorded the gamma rays transmitted through the absorber. Two rotational
speeds, 0, = 1257 s~' and 0, = 7728 s~’, were alternated during each 4-hour
cycle that data were taken and a diurnal effect connected to the earth’s rotation

*D. C. Champeney, G. R. Isaak, and A. M. Khan, Phys. Lett. 7, 241 (1963). See also G. R.Isaak,

Phys. Bull. 21, 255 (1970).
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was sought. From (11.12) it can be seen that with © ~ 6000 s"' and R = 4 cm,
an ether drift velocity of 200 m/s would produce a total change of frequency of
the magnitude of the Méssbauerline width. The data showed no diurnal change
in transmission to an accuracy of 1 or 2%. The authors conclude that the mag-
nitude of the component of vo past the earth in a plane perpendicular to the
earth’s axis of rotation is |(vo),| = 1.6 + 2.8 m/s, a null result. An improved

experimentalong the samelines in 1970 gave limit of 5 cm/s (see Isaak,op.cit.).
A conceptually similar experiment was performed in 1958 using ammonia

masers.* The ammonia molecules have a well-defined direction and nonzero

speeds when they enter the maser cavity. According to (11.11) there is therefore

a shift in the frequency. If the frequencies of two masers whose ammonia mol-
ecules travel in opposite directions are compared, there should be an observable
beat frequency. Furthermore,if the two masersare rotated together through 180°,

the beat frequency should change by Aw/@ = 4 |Umoi* Vol/c’. The null result of
this experiment set the componentofether drift velocity at less than 30 m/s.

These two Doppler shift experiments set observable ether drift speed limits
6000 and 1000 times smaller than the speed of the earth in its orbit and make
the idea that we can ever detect any motionrelative to some ‘‘absolute’’ reference

frame quite implausible.

B. Speed ofLightfrom a Moving Source

The second postulate of Einstein, that the speed of light is independent of

the motion of the source, destroys the concept of time as a universal variable
independent of the spatial coordinates. Because this was a revolutionary and

unpalatable idea, many attempts were madeto invent theories that would explain

all the observed facts without this assumption. The most notable andresilient
scheme was Ritz’s version of electrodynamics (1908-1911). Ritz kept the two
homogeneous Maxwell equations intact, but modified the equations involving

the sources in such a waythat the speed of light was equal to c only when mea-

sured relative to the source. The Ritz theory is in accord with observation for
the aberration of star positions, the Fizeau experiments, and the original

*C. J. Cedarholm, G. F. Bland, B. L. Havens, and C. H. Townes, Phys. Rev. Lett. 1, 342 (1958). See

also T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes, Phys. Rev. 133, A1221 (1964).
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Michelson—Morley experiment. It is customary, however, to cite Michelson—

Morley experiments performed with extraterrestrial light sources (the sun or

other stars) and light from binary stars as establishing the second postulate and
ruling out Ritz’s theory. Unfortunately, it seems clear that most of the early
evidence is invalid because of the interaction of the radiation with the matter
through whichit passes before detection.*

There are, however, some more recent experiments that do not suffer from

the criticism of Fox. The mostdefinitive is a beautiful experiment performedat
CERN,Geneva, Switzerland, in 1964.’ The speed of 6 GeV photons produced
in the decay of very energetic neutral pions was measuredby timeofflight over
paths up to 80 meters. The pions were produced by bombardmentof a beryllium

target by 19.2 GeV protons and had speeds (inferred from measured speedsof
charged pions produced in the same bombardment) of 0.99975c. The timing was
donebyutilizing the rf structure of the beam. Within experimental error it was
found that the speed of the photons emitted by the extremely rapidly moving
source was equalto c. If the observed speed is written as c' = c + kv, where v
is the speed of the source, the experiment showed k = (0 + 1.3) x 10%.

The CERN experiment established conclusively and on a laboratory scale

the validity of the second postulate (2) of the special theory of relativity. Other
experiments* on charged particles and neutrinos independently establish the
validity of postulate 2’. See also Section 11.5.

C. Frequency Dependenceof the Speed ofLight in Vacuum

The speed of light is known to an accuracy of a few parts in 10’ from mea-

surements at infrared frequencies and lesser accuracy at higher frequencies (or

equivalently, the meter is defined to this precision). One can ask whether there
is any evidence for a frequency dependence of the speed of electromagnetic

waves in vacuum. One possible source of variation is attributable to a photon
mass. The group velocity in this case 1s

C(w) = (1 — <) (11.13)

where the photon rest energy is fiwy. As discussed in the Introduction, the
mere existence of normal modes in the earth-ionosphere resonantcavity sets a

limit of w) < 10c/R where R is the radius of the earth. From radiofrequencies
(w ~ 108 s~') to m > &, the change in velocity of propagation from a photon

mass is therefore less than Ac/c = 107".
Anothersource of frequency variation in the speed oflight is dispersion of

the vacuum, a concept lying outside special relativity but occurring in models
with a discrete space-time. The discovery of pulsars makeit possible to test this

*See the papersof criticism by J. G. Fox, Am. J. Phys. 30, 297 (1962), 33, 1 (1965); J. Opt. Soc. 57,
967 (1967). The second papercited is a detailed discussion of Ritz’s emission theory anda critique

of the various arguments against it. See also T. Alvager, A. Nilsson, and J. Kjellman, Ark. Fys. 26,

209 (1963).

*T. Alvager, J. M. Bailey, F. J. M. Farley, J. Kjellman, and I. Wallin, Phys. Lett. 12, 260 (1964); Ark.

Fys. 31, 145 (1965).

*G. R. Kalbfleisch, N. Baggett, E. C. Fowler, and J. Alspector, Phys. Rev. Lett. 43, 1361 (1979).
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idea with high precision. Pulsar observations cover at least 13 decades of fre-
quency, with any one observing apparatus having a certain ‘“‘window”’ in. the
frequency spectrum. The quite small time duration of the pulse from some Pulsars
permits a simple estimate for the upper limit of variation on the speed of light
for two frequencies w, and @, inside the frequency window of each apparatus:

cC(@,) — c(@2)

C

c At
= ——-

D
 

 

 
where Atis the pulse duration and D is the distance from the source to observer.
For the Crab pulsar Np 0532, At = 3 X 107* s and D ~ 6 X 10° light-years go
that (c At/D) = 1.7 X 10°“. Various overlapping observations from ~4 x 108 Hy
throughthe optical region and up to photon energies of 1 MeV indicate constancy
of the speedat the level of Ac/c < 10~™*by this simple estimation.* Forhigher
energies, an experimentat the Stanford Linear Accelerator’ compared the speed
of 7 GeV photons with that of visible light and found Ac/c < 107°. Up to very
high energies, then, there is no evidence for dispersion of the vacuum. Thespeed
of light is a universal constant, independentof frequency.

11.3 Lorentz Transformations and Basic Kinematic
Results ofSpecial Relativity

Asis well known,the constancy of the velocity of light, independent of the mo-
tion of the source,gives rise to the relations between space and timecoordinates

in different inertial reference frames known as Lorentz transformations. Wede-

rive these results in a more formal manner in Section 11.7, but for the present

summarize the elementary derivation and important consequences, omitting the
details that can be found in the many textbookson relativity. The reader who
wishes more than a reminder can consult the books listed at the end of the
chapter.

A. Simple Lorentz Transformation of Coordinates

Consider two inertial reference frames K and K’ with a relative velocity v

between them. The time and space coordinates of a point are (t, x, y, z) and

(t’, x’, y’, z') in the frames K and K’, respectively. The coordinate axes in the

two framesare parallel and orientedso that the frame K’is movingin the positive

z direction with speed v, as viewed from K.Forsimplicity, let the origins of the
coordinates in K and K’ be coincident at t = ¢’ = 0. If a light source at rest at

the origin in K (and so moving with a speed v in the negative z direction, as seen
from K’) is flashed on andoff rapidly at t = ¢t’ = 0, Einstein’s second postulate
implies that observers in both K and K’ will see a spherical shell of radiation
expanding outward from the respective origins with speed c. The wave front

reaches a point (x, y, z) in the frame K at a time tf given by the equation,

ct? — (x* + y? + 27) =0 (11.14)

*J. M. Rawls, Phys. Rev. D5, 487 (1972).
"B. C. Brownet al., Phys. Rev. Lett. 30, 763 (1973).
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Similarly, in the frame K’ the wave front is specified by

ct? — (x? + y* + z'7) = 0 (11.14’)

With the assumption that space-time is homogeneousandisotropic, as im-
plied by the first postulate, the connection between the twosets of coordinates

is linear. The quadratic forms (11.14) and (11.14’) are then related by

cr? — (x + yp? + 2/7) = Ac??? — A? + WY + 2’) (11.15)

where A = A(v) is a possible change of scale between frames. With the choice of
orientation of axes and considerations of the inverse transformation from K’ to

K it is straightforward to show that A(v) = 1 for all v andthat the time and space
coordinates in K’ are related to those in K by the Lorentz transformation

X) = ¥(X% — Bx)

x1 = yy - BXo) (11 16)

X= Xp

X3 = X3

where we have introduced the suggestive notation x) = cf, x; = Z, X2 = X,

x3, = y andalso the convenient symbols,

V

y=(1- py”
The inverse Lorentz transformationis

Xo = y(xo + BXx1)
—_— V4 + V4

x4 you Bx) (11.18)

Xz = X2

X3 = X43

It can be found from (11.16) by direct calculation, but we know from thefirst
postulate that it must result from (11.16) by interchange of primed and unprimed
variables along with a changein the sign of 8. According to (11.16) or (11.18),
the coordinates perpendicular to the direction of relative motion are unchanged

while the parallel coordinate andthe time are transformed. This can be contrasted

with the Galilean transformation (11.1).
Equations (11.16) and (11.17) describe the special circumstance of a Lorentz

transformation from one frame to another moving with velocity v parallel to the

x, axis. If the axes in K and K’' remain parallel, but the velocity v of the frame

K' in frameK is in an arbitrary direction, the generalization of (11.16) is

X6 = y%o — B-x) (11.19)

WF > (B+ x)B — yBXo |

The first equation here follows almosttrivially from the first equation in (11.16).

The second appears somewhat complicated, butis really only the sorting out of
components of x and x’ parallel and perpendicular to v for separate treatment

in accord with (11.16).

x’ = xt 
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The connection between f and y given in (11.17) and the ranges 0 S g < 1,

1 = y = ~ allowthe alternative parametrization,
7

B = tanh ¢

and so

y = cosh¢é (11.20)

yB = sinh ¢

where ¢ is known asthe boost parameter or rapidity. In termsof ¢ thefirst two

equations of (11.16) become

be °

|= x, cosh £ — x, sinh é (11.21)
—Xy sinh ¢ + x, cosh Zbe —

~ |

The structure of these equationsis reminiscent of a rotation of coordinates, but
with hyperbolic functions instead of circular, basically because of the relative
negative sign between the space and time terms in (11.14) [see Section 11.7 and
(11.95)].

B. 4- Vectors

The Lorentz transformation (11.16), or more generally (11.19), describes the
transformation of the coordinates of a point from oneinertial frame to another.
Just as for rotations in three dimensions, the basic transformation law is defined

in terms of the coordinates of a point. In three dimensionswecall x a vector and
speak of x1, X2, x3 as the componentsof a vector. We designate by the same name

any three physical quantities that transform underrotations in the same wayas
the componentsof x.It is natural therefore to anticipate that there are numerous

physical quantities that transform under Lorentz transformations in the same
manner as the time and space coordinates of a point. By analogy we speak of

4-vectors. The coordinate 4-vectoris (Xo, x1, X2, X3); we designate the components

of an arbitrary 4-vector similarly as (Ap, A;, Az, A3),* where A,, A>, A; are the

components of a 3-vector A. The Lorentz transformation law equivalent to

(11.16) for an arbitrary 4-vectoris

Ap = y(Ao — B- A)

| = yA, — BAo) (11.22)

AL =A,

where the parallel and perpendicular signs indicate componentsrelative to the

velocity v = cB. The invariance from one inertial frame to another embodied
through the second postulate in (11.15) has its counterpart for any 4-vector in
the invariance,

2 _ JA’? = A2 - JAP (11.23)

*Because we are deferring the explicit algebraic treatment of the Lorentz group to Section 11.7, we
do not write a single symbolfor this 4-vector. As written, they are the componentsof the contravariant

4-vector A®.
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where the components (Aj, A’) and (Ao, A) refer to any twoinertial reference
frames. For two 4-vectors (Ao, Ay, Az, A3) and (Bo, By, Bz, B3) the ‘scalar prod-

uct” is an invariant, that 1s,

AB — A’-B' = A,B) - A-B (11.24)

This result can be verified by explicit construction of the left-hand side, using

(11.22) for the primed components, or using (11.23) for the sum of two 4-vectors.
It is the Lorentz transformation analog of the invariance of A - B under rotations

in three dimensions.

C. Light Cone, Proper Time, and Time Dilatation

A fruitful conceptin special relativity is the idea of the light cone and “‘space-
like” and “‘timelike”’ separations between twoevents. Consider Fig. 11.3, in which

the time axis (actually ct) is vertical and the space axes are perpendiculartoit.
For simplicity only one space dimension is shown. At t = 0a physical system, say
a particle, is at the origin. Because the velocity of light is an upper bound onall
velocities, the space-time domain can be divided into three regions by a “cone,”
called the light cone, whose surface is specified by x7 + y* + z* = c’t’. Light
signals emitted at t = 0 from the origin would travel out the 45°lines in thefigure.
But any material system has a velocity less than c. Consequently as time goes on
it would trace out a path, called its world line, inside the upper half-cone: for

example, the curve OB. Since the path of the system lies inside the upper half-

conefor times t > 0, that region is called the future. Similarly the lower half-cone
is called the past. The system may have reached O by a path such as AO lying
inside the lower half-cone. The shaded region outside the light cone is called
elsewhere. A system at O can never reach or come from a point in space-time in
elsewhere.

The division of space-time into the past-future region (inside the light cone)
and elsewhere (outside the light cone) can be emphasized by considering the

invariant separation or interval s,, between two events P,(t,, x,) and P,(t,, x.) in

space-time (we are reverting to ¢ and x temporarily to avoid proliferation of
subscripts). The square of the invariantintervalis

Sto = c(t, — to) — bel — x, |° (11.25)

For any two events P, and P, there are three possibilities: (1) sj2 > 0, (2) sip < 0,
(3) sip = 0. If sj, > 0, the events are said to have a timelike separation.It is always

ct

Future

Figure 11.3. World line of a system andthelight
cone. The unshadedinterior of the cone represents
the past and the future, while the shaded region
outside the coneis called ‘“‘elsewhere.”” A point
inside (outside) the light cone is said to have a
timelike (spacelike) separation from the origin.  
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possible to find a Lorentz transformation* to a new coordinate frame K’ Such
that x; = x5. Then

Sip = C(t, — BY > 0

In the frame K’ the two events occur at the same space point, but are Separated
in time. Referring to Fig. 11.3, one point can be located at the origin and the
other lies in the past or future. If s7, < 0, the events are said to have a spacelike
separation. Now it is possible to find an inertial frame K” where t{ = t3. Then

52, = — |xt — xt? <0
In K” the two events occurat different space points at the same instantoftime.
In terms of Fig. 11.3, one event is at the origin, while the otherlies in the else-
where region. Thefinal possibility, sj, = 0, implies a lightlike separation. The

events lie on the light cone with respect to each other and can be connected only
by light signals.

The division of the separation of two events in space-time into two

classes—spacelike separations or timelike separations with the light cone as the
boundary surface between—is a Lorentz invariant one. Two events with a space-
like separation in one coordinate system have a spacelike separationin all co-
ordinate systems. This means that two such events cannot be causally connected,
Since physical interactions propagate from one point to another with velocities
no greater thanthatof light, only events with timelike separations can be causally
related. An eventat the origin in Fig. 11.3 can be influenced causally only by the
events that occur in the past region ofthe light cone.

Another useful concept is proper time. Consider a system, which for defi-

niteness we will think of as a particle, moving with an instantaneousvelocity u(t)
relative to some inertial system K. In a time interval dt its position changes by
dx = u dt. From (11.25) the square of the corresponding infinitesimal invariant
intervalds is

ds? = c? dt” — \dxP = 2 dr(1 — B?)
where here 6 = u/c. In the coordinate system K’ wherethe system is instanta-

neously at rest the space-time incrementsare dt’ = dt, dx’ = 0. Thustheinvariant

interval is ds = c dt. The incrementof time dz in the instantaneous rest frame

of the system is thus a Lorentz invariant quantity that takes the form,

dt
dr = dtV1 — p(t) = —~

v(t)
The time is called the propertimeofthe particle or system.It is the time as seen

in the rest frame of the system. From (11.26) it follows that a certain proper time
interval 7, — 7, will be seen in the frame K as a timeinterval,

(11.26)

” dt ”
b-h = I Bn) = I, y(7)dt (11.27)

Equation (11.27) or (11.26) expresses the phenomenon knownastimedila-
tation. A moving clock runs moreslowly than a stationary clock. For equal time

*By considering equations (11.16), the reader can verify that there exists a Lorentz transformation

with B < 1 provided sj, > 0. Explicitly, |B| = |x, — x.|/c|t — 4|.
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intervals in the clock’s rest frame, the time intervals observed in the frame K are

ereater by a factor of y > 1. This paradoxical result is verified daily in high-

energy physics laboratories where beamsof unstable particles of knownlifetimes
T) are transported before decay over distances many manytimesthe upper limit
on the Galilean decay distance of ct). For example, at the Fermi National Ac-

celerator Laboratory charged pions with energies of 200 GeV are produced and

transported 300 meters with less than 3% loss because of decay. With a lifetime

of tT = 2.56 X 107* s, the Galilean decay distance is ct) = 7.7 meters. Without

time dilatation, only e*°"’’ = 107"of the pions would survive. But at 200 GeV,
y = 1400 and the meanfree path for pion decay is actually yct) =~ 11 km!

A careful test of time dilatation under controlled laboratory conditions is

afforded by the study of the decay of mu-mesonsorbiting at nearly constant speed

in a magnetic field. Such a test, incidental to another experiment, confirms fully
the formula (11.27). [See the paper by Bailey et al. cited at the end of Section

11.11.]
A totally different and entertaining experiment on time dilatation has been

performed with macroscopic clocks of the type used asofficial time standards.*
The motion of the clocks was relative to the earth in commercial aircraft, the

very high precision of the cesium beam atomic clocks compensating for the rel-

atively small speeds of the jet aircraft. The four clocks were flown around the
world twice, once in an eastward and once in a westward sense. During the

journeys logs were Kept of the aircrafts’ location and ground speed so that

the integral in (11.27) could be calculated. Before and after each journey the
clocks were comparedwith identical clocks at the U.S. Naval Observatory. With

allowance for the earth’s rotation and the gravitational “‘red shift” of general

relativity, the average observed and calculated time differences in nanoseconds

are —59 + 10 and —40 + 23for the eastward trip and 273 + 7 and 275 + 21 for
the westward. The kinematic effect of special relativity is comparable to the gen-
eral relativistic effect. The agreement between observation and calculation es-
tablishes that people who continually fly eastward on jet aircraft age less rapidly

than those of us who stay home, but not by much!

D. Relativistic Doppler Shift

As remarkedin Section 11.2.A, the phase of a wave is an invariant quantity

because the phase can be identified with the mere counting of wavecrests in a

wave train, an operation that must be the sameinall inertial frames. In Section
11.2 the Galilean transformation of coordinates (11.1) was used to obtain the
Galilean (nonrelativistic) Doppler shift formulas (11.8). Here we use the Lorentz
transformation of coordinates (11.16) to obtain the relativistic Doppler shift. Con-

sider a plane wave of frequency w and wave vector k in the inertial frame K. In
the moving frame K’ this wave will have, in general, a different frequency w’ and

wave vector k’, but the phase of the wave is an invariant:

6 = ot —k-x = o't' —k’-x’ (11.28)

[Parenthetically we remark that because the equations of (11.16) are linear the
plane wave in K with phase ¢@ indeed remainsa plane wave in frame K’.] Using

*J. C. Hafele and R. E. Keating, Science 177, 166, 168 (1972).
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(11.16) and the same arguments as we did in going from (11.7) to (11.8), we.fing

that the frequency w’ = ckg and wave vector k’ are given in terms of w = ck,
and k by

ky = y(Ko — B+ k)

i) = (Ky — Bo) (11.29)
ki =k,

The Lorentz transformation of (Ko, k) has exactly the same form as for(x, x),
The frequency and wave number of any plane wave thus form a 4-vector. The

invariance (11.28) of the phase is the invariance of the “‘scalar product” of two

4-vectors (11.24). This correspondenceis, in fact, an alternate path from (11.28)
to the transformation law (11.29).

For light waves, |k| = ko, |k’| = kj. Then the results (11.29) can be expressed
in the more familiar form of the Doppler shift formulas

 

w' = yo(1 — B cos 6) (11.30)
tan 0’ = sine

y(cos 6 — B)

where @ and 6’ are the angles of k and k’ relative to the direction of v. The
inverse equations are obtained by interchanging primed and unprimedquantities

and reversing the sign of B.

The first equation in (11.30) is the customary Doppler shift, modified by the
factor of y. Its presence showsthatthere is a transverse Doppler shift, even when

6 = w/2. This relativistic transverse Doppler shift has been observed spectro-

scopically with atomsin motion (Ives—Stilwell experiment, 1938). It also has been
observed using a precise resonance-absorption Mossbauer experiment, with a

nuclear gamma-ray source on the axis of a rapidly rotating cylinder and the ab-
sorber attached to the circumference of the cylinder.*

11.4 Addition of Velocities, 4- Velocity

The Lorentz transformation (11.16) or (11.18) for coordinates can be used to
obtain the law for addition of velocities. Suppose that there is a moving point P
whosevelocity vector u’ has spherical coordinates(u’, 0’, @’) in the inertial frame
K’, as shown in Fig. 11.4. The frame K’ is moving with velocity v = cB in the
positive x, direction with respect to the inertial frame K. We wish to know the

components of the velocity u of the point P as seen from K. From (11.18)
the differential expressions for dxo, dx, dx», dx3 are

dXq = y(dxo + B dx;)
dx, = y,(dx; + B dxo)
dx, = dx4

dx; = dx4

*H. J. Hay, J. P. Schiffer, T. E. Cranshaw, and P. A. Egelstaff, Phys. Rev. Lett. 4, 165 (1960). See

also T. E. Cranshaw in Proceedings of the International School ofPhysics, Varenna, Course XX,1961,
Academic Press, New York (1962), p. 208.
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where we have put a subscript on y to distinguish it below from y, =

(1 — w/c”)? and y,, = (1 — u’*/c*)~'". The velocity components in each frame
are u} = c dx: /dx¢ and u; = c dx;/dxo. This means that the componentsof velocity
transform according to

 

 

uy) + UV

veu
1+-;3

C (11.31)

uy
u.=

 veu’(1 + 2

The notation u, and u, refers to components of velocity parallel and perpendic-

ular, respectively, to v. The magnitudeof u andits polar angles 6, ¢ in the frame
K are easily found. Since u,/u, = u3/u3, the azimuthal angles in the two frames

are equal. Furthermore,

 

 

 

 

u’ sin 0’
tan 06 =

y,(u' cos 8’ + v)

and (11.32)

u'v sin 6’ \*lense eae cose= (Re)
C

u = ;
u'V

1 + —; cos 6’
C

The inverse results for u’ in terms of u can be found, as usual, from (11.31) and

(11.32), by interchanging primed and unprimed quantities and changingthe sign
of v.
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For speeds u’ and v both small comparedto c, the velocity addition Jay

(11.31) reduces to the Galilean result, u = u’ + v, but if either speed is compa-
rable to c modifications appear. It is impossible to obtain a speed greater than

that of light by adding two velocities, even if each is very close to c. For the
simple case of parallel velocities the addition law is

 

 

u’ + v '
Uu = ow ( 1.33)

1+ 5
C

If u’ = c, then u = c also. This is an explicit example of Einstein’s second pos-
tulate. The reader can check from the second equation in (11.32) that u' = ¢

implies u = c for nonparallel velocities as well.

The formula for the addition of velocities is in accord with such observational]

tests as the Fizeau experiments on the speed of light in moving liquids and the

aberration of star positions from the motion of the earth in orbit.

The structure of (11.31) makesit obvious that the law of transformation of
velocities is not that of 4-vectors, as given by (11.22) and of which (11.16) and
(11.29) are examples. There is however, a 4-vector closely related to ordinary
velocity. To exhibit this 4-vector we rewrite (11.31). From the second equation
in (11.32) it can be showndirectly that the factor (1 + v- u’/c’) can be expressed
alternatively through

vou
Yu — wor(1 + 2 (11.34)

 

where y,, Y., Yu: are the gammasdefined by (11.17) for v, u, and u’, respectively.

When(11.34) is substituted into (11.31) those equations become

Yul = Yo( Yul) + Vu")

Yu, — Y,0)

Comparison of (11.34) and (11.35) with the inverse of (11.22) implies that the
four quantities (y,c, y,w) transform in the same way as (Xo, x) and so form a
4-vector under Lorentz transformations. These four quantities are called the

time and space components of the 4-velocity (Uo, U).

An alternative approach to the 4-velocity is through the concept of proper

time 7. Ordinary velocity u is defined as the time derivative of the coordinate

x(t). The addition law (11.31) for velocities is not a 4-vector transformation law
because time is not invariant under Lorentz transformations. But we have seen

that the proper time 7 is a Lorentz invariant. We can thus construct a 4-vector

“velocity” by differentiation of the 4-vector (xp, x) with respect to 7 instead oft.
Using (11.26) we have

(11.35)

y, = dx, dt c

0-7 > TW Yudr dtd
’ ’ (11.36)

pa _a _
dt dtdr

Weshowin the next section that the components of 4-velocity of a particle are
proportional to its total energy and momentum.
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11.5 Relativistic Momentum and Energy of a Particle

Wenext consider the relativistic generalizations of the momentum and kinetic
energyof a particle. These can be obtained for chargedparticles from the Lorentz
force equation and the transformation properties of electromagnetic fields al-

ready established by Lorentz before 1900, but it is useful to give a more general

derivation based only on the laws of conservation of energy and momentum and

on the kinematics of Lorentz transformations. This approach showsclearly the

universality of the relationships, independentof the existence of electromagnetic
interactions for the particle in question.

For a particle with speed small compared to the speed of light its momentum
and energy are knownto be

p = mu UL.E = E(0) + dw C137)
where m is the mass of the particle, u is its velocity, and E(O) is a constant

identified as the rest energy of the particle. In nonrelativistic considerations the
rest energies can be ignored; they contribute the same additive constant to both

sides of an energy balance equation. In special relativity, however, the rest energy
cannot be ignored. We will see below thatit is the total energy (the sum ofrest

energy plus kinetic energy) of a particle that is significant.
Wewish to find expressions for the momentum and energy of a particle

consistent with the Lorentz transformation law (11.31) of velocities and reducing
to (11.37) for nonrelativistic motion. The only possible generalizations consistent

with the first postulate are

p = Mu)uE = &(w) (11.38)

where J(u) and @(u) are functions of the magnitude of the velocity u. Compar-
ison with (11.37) yields the limiting values,

M(O) = m
xe on (11.39)
au) = 9

Wemakethe reasonable assumptionthat (uw) and 6(u) are well-behaved mono-
tonic functions of their arguments.

To determine the forms of ((u) and G(u) we consider the elastic collision
of two identical particles and require that conservation of momentum andenergy
hold in all equivalent inertial frames, as implied bythe first postulate. In partic-
ular, we consider the collision in two frames K and K’ connected by a Lorentz

transformation parallel to the z axis. A certain amountof algebra is unavoidable.
To keep it to a minimum,two approachesare open. Oneisto set up the velocities

and directions of the particles in such a clever way that the algebra shakes down
quickly into an elegant and transparent result. The other is to pick a straight-

forward kinematic situation and proceed judiciously. The first approach lacks
motivation. We adopt the second.

Let the inertial frame K’ be the “‘center of mass”’ frame with the two identical
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u, =v

+

Ug =v
Eee —

un =r-v

“a =v Figure 11.5 Initial and final velocity vectorsin the
frame K’ for the collision of two identical particles.

particles having initial velocities u, = v, u; = —v along the z axis. The particles
collide and scatter, emerging with final velocities, ul = w’, uj = v’. The various

velocities are indicated in Fig. 11.5. In K’ the conservation equations for
momentum and energy read

Pa + Pp = Pe + Pa

E+E, =El+ Ej

or, with the forms (11.38),

Miv)v — M(v)v = M(v')v' + A(v")v"

E(v) + E(v) = E(u’) 4 €(v") (11.40)

Because the particles are identical it is necessary that €(v’) = €(v") and, with
the hypothesis of monotonic behavior of €(v), that v’ = v”. The second equation
in (11.40) then demands v’ = v” = v. Thefirst equation requires v” = —v’. All
four velocities have the same magnitude with the final velocities equal and op-
posite, just as are the initial velocities. This rather obviousstate of affairs is shown
in the right-hand diagram ofFig. 11.6 where the scattering angle in K’ is denoted
by 6’.

We now consider the collision in another inertial frame K moving with a

velocity —v in the z direction with respect to K’. From the transformation equa-

K K’

Figure 11.6 Initial and final velocity vectors in frames K and K’for the collision of two
identical particles. The lengths and angles of the solid lines representing the velocities
correspond to 6’ = 30° and B” = 3. The dashedlines in K are the results of a Galilean
transformation from K’to K.
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tions (11.31) for velocity it can be seen thatparticle b is at rest in K while particle a
is incident along the z axis with a velocity

2v _—  2cBh

v 1+ B
C2

 u, = (11.41)

1+

where B = vic. The velocity components ofthe final velocities u, and u, in K are
similarly

cB sin 6’ cB(1 + cos 6’)  

  

(u.), — y(1 + B* cos Q')’ (u.), = 1 a B* cos @’ (11 40

u,), = - cB sin 6' (u,). = cB(1 — cos 6’) 42)

au y(1 — B? cos 6’)’ = 1 — B? cos @’

with y = (1 — B’)'”.
The equations of conservation of momentum and energyin the inertial frame

K read

M(u,)Ug + MUu,)u, = Mu), + Mug)ua

€E(ua) + E(uz) = E(u.) + E(Ua)

It is apparent from (11.41) and (11.42) or the left-hand diagram ofFig. 11.6 that
while particle b is at rest the other three velocities are all different in general.
Thus the determination of (((u) and €(u) from (11.43) seems obscure. Wecan,
however, considerthe limiting situation of a glancing collision in which 6’ is very
small. Then in the frame K, ug will be nonrelativistic and u, will differ only slightly
from u,. We can therefore make appropriate Taylor series expansions around
6’ = 0 and obtain equations involving J(u), G(u), and perhapstheir first deriva-
tives. Explicitly, the x component of the momentum conservation equation in
(11.43) is

(11.43)

cB sin @’ _

y(1 + B* cos 6’)

cB sin 6’

y(1 — B’ cos 6’)

Canceling commonfactors and rearranging terms, we have

  0 = M(u,) M(ug)

1 + B’ cos 0’

1 — B’ cos mu)sia =(
This relation is valid for all 6’ and in particular for 6’ = 0°. Inspection of (11.42)
showsthat in that limit u. = u,, ug = 0. Thus we obtain

 
1+ p’

Mug) = ( Fao (11.44)
1-8

From (11.41) it is easy to demonstrate that

1+ Bp 1
1 B 2 Ya (11.45)
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With the value (0) = m from (11.39) we thus have

€M(Ug) = Yam

or equivalently that the momentum ofa particle of mass m andvelocity is

mu

p = ymu = (11.46)2

1-—
C2

=

Determining the functional form of €(u) requires more thanthe straightfor-
ward evaluation of the conservation of energy equation at 6’ = 0*. We must

examine the equation for small 6’. From (11.43) we have

E(u.) + €(0) = E(u.) + E(ua) (11.47)
where u, and ug are functions of 6’. From (11.42) or (11.32) wefind, correct to
order 6’* inclusive,

ue = Wa — 5 + OCP)

ua = 1 + O(n’)
where y, is given by (11.45) and 9 = c’*B’0'*/(1 — B7) is a convenient expansion
parameter. We now expand both sides of (11.47) in Taylor series and equate
coefficients of different powersof 7:

Tete)

NH=O0
B(u.) + 60) = BQ.) + 0 ( hie on

d€(ug) a
+--+. €(0) + y- (—S"-—*) +

( ) 1) ( dus, an n=0

The zeroth-order termsgive an identity, but the first-order terms yield

- 1 tl), (#8)
PB due du

 

With the knownnonrelativistic value of the second term from (11.39), we find

dé(u,) m , _ m

2 1-3

Integration yields the expression,

2

ss:a + [€(0) — mc’] (11.48)

(3)C
for the energy of a particle of mass m andvelocity u, up to an arbitrary constant
of integration. Parenthetically we remarkthat in an elastic scattering process the
conservation of energy condition can be expressed in terms of kinetic energies

é(u) =
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alone. Thus the undetermined constant in (11.48) is necessary andis not, as the

reader might have conjectured, the result of our Taylor series expansions. Note
that the kinetic energy T(u) is given unambiguously by

1
/ Ww 1/2

C2

Equations (11.46) and (11.48) are the necessary relativistic generalizations
for the momentum andenergyof a particle, consistent with the conservation laws
and the postulates of special relativity. The only remaining question is the value
of the rest energy @(0). We can appealdirectly to experiment or we can examine
the theoretical framework. First, experiment. Although €(0) cannot be deter-
mined from elastic scattering, it can be found from inelastic processes in which
one type of particle is transformed into another or others of different masses.

Decay processes are particularly transparent. Consider, for example, the decay
of a neutral K-meson into two photons, K® — yy. In the rest frame of the

K-meson, conservation of energy requires that the sum of the energies of the two
photons be equal to €x(0). For another decay mode of a neutral K-meson,into
two pions, the kinetic energy of each pion in the K-meson’s rest frame must be

T,, = 7€x(0) — €,(0)

T(u) = E(u) — €(0) = me? — 1] (11.49)

Measurementof the pion kinetic energy (11.49) and knowledge of @,(0) allows
determination of @,,(0). In these examples and every othercase it is found that

the rest energy of a particle (or more complicated system) of mass m is given by
the famous Einstein mass-energyrelation,

€(0) = mc? (11.50)

Thus the second, square-bracketed, term in (11.48) is absent. The total energy

of a particle of mass m and velocity u is

E = ymc? = —=—= (11.51)

A second pathto the results (11.50) and (11.51) is theoretical. Although the
expressions (11.46) and (11.48) for the momentum andenergyof a particle were

found by applying the principles of special relativity to the conservation of energy
and momentum,the properties of p and & under Lorentz transformations are
not yet explicit. The conservation equations are a set of four equations assumed

to be valid in all equivalent inertial frames. Momentum conservation consists of
three equationsrelating the spatial componentsof vectors. Within the framework

of special relativity it is natural to attemptto identify the four equationsof con-

servation as relations among 4-vectors. We observe that the momentum (11.46)

is proportional to the spatial components of the 4-velocity (Up, U) defined in
(11.36), that is p = mU. The time componentof this 4-vector is pp = MU) =
my,c. Comparison with (11.48) shows that the energy of a particle differs from
CD by an additive constant [€(0) — mc*]. This means that the four equations of
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energy and momentum conservation for an arbitrary collision process can be
written as ‘

» (Do)a _ > (Po)o = Ao

initial final

> Pe- pp =A C152)
initial fal

where (Ap, A) is a 4-vector with A = 0 and

cAy = > [S,(0) — myc?] — > [€,(0) — m,c?]

final initial

From the first postulate, (11.52) must be valid in all equivalentinertial frames.
Butif A = in all inertial frames it can be seen from (11.22) that it is necessary
that Ap = 0; the 4-vector (Ap, A) is a null vector. If different types or numbersof
particles can occur in theinitial and final states of some process, the condition

A, = 0 can only be metby requiring that (11.50) hold for each particle separately,
Wearethus led to (11.51) as the correct form of the total energy.

The velocity of the particle can evidently be expressed in terms of its
momentum and energy from (11.46) and (11.51) as

cP
E (11.53)

The invariant“length” of the energy-momentum 4-vector (py) = E/c, p) is

Po — P+ p = (mc) (11.54)
Wesee that the invariant property that characterizes a particle’s momentum and
energyis its mass, m, sometimescalled its rest mass.* Equation (11.54), combined
with the conservation equations, forms a powerful and elegant meansoftreating
relativistic kinematics in collision and decay processes (see the problemsat the
end of the chapter). Note that (11.54) permits the energy E to be expressed in
terms of the momentum as

E = Vc’p? + mc (11.55)

The relations (11.46), (11.51), and (11.53) for momentum,energy, and ve-
locity of a particle are so universally accepted that it seems superfluous to speak
of experimental tests. It is perhaps worthwhile, nevertheless, to cite some labo-

ratory demonstrations. Oneis the connection betweenthe kinetic energy (11.49)
of a particle and its speed.’ The speeds of electrons of known kinetic energies

from 0.5 to 15 MeV (accelerated through a known voltage in a Van de Graaff

generator, verified at the beam catcherby calorimetry) are measured by having
bursts of electrons (At = 3 X 10~” s) travel a flight path of 8.4 meters. As the
energy increases the transit time falls toward a limiting value of 2.8 X 107°, in

good agreement with (11.49). Verification of c as a limiting speed for material

*Someauthors define the mass of a particle to be E/c’, designating it as m or m(u) and reserving the
symbolmy for the rest mass. We always use the word “‘mass’”’ for the Lorentz invariant quantity whose

square appearsin (11.54).

"W. Bertozzi, Am. J. Phys. 32, 551 (1964).



Sect. 11.6 Mathematical Properties of the Space-Time of Special Relativity 539

particles has been carried out for 11 GeV electrons (y ~ 2 X 10’) in the Stanford
experimentcited at the end of Section 11.2, where it was foundthatthe electrons’
speed differed fractionally from c by less than 5 X 107°. An undergraduate ex-
periment to verify the relation (11.55) between momentum and energy employs
a simple magnet with roughly 10 cm radius of curvature for the momentum mea-
surement and a Nal crystal for the energy measurement on beta rays.”

Thespecification of the kinematic properties of a particle (velocity, momen-

tum, energy) in any inertial frame can be accomplished by giving its mass and

either its velocity u or its momentum p in that frame. A Lorentz transformation
(11.22) of (po, p) gives the results in any other frame. It is sometimes convenient
to use the two components of p perpendicular to the z axis and a rapidity ¢
(11.20) as kinematic variables. Suppose that a particle has momentum in frame

K, with transverse momentum p, and a z componentp). There is a unique Lorentz
transformation in the z direction to a frame K’ wherethe particle has no z com-
ponent of momentum.In K’the particle has momentum and energy,

tE
p’ = p,, = QO. = Vpt + m’c? (11.56)

Let the rapidity parameter associated with the Lorentz transformation from K

to K’ be ¢. Then from the inverse of (11.21) the momentum components and
energy of the particle in the original frame K can be written

E
P., p, = Q sinh ¢, C = ( cosh ¢é (11.57)

with O = Vp? + m’c’. The quantity O/c is sometimescalled the transverse mass
(because it depends on p,) or the longitudinal mass (becauseit is involved in a

longitudinal boost). If the particle is at rest in K’, that is, p, = 0, then the ex-
pressions (11.57) become

p=mesinhgé, E=mce’coshé (11.58)

alternatives to (11.46) and (11.51).
One convenience of p” and ¢“as kinematic variables is that a Lorentz

transformation in the z direction shifts all rapidities by a constant amount, £—

£ — Z, where Z is the rapidity parameter of the transformation. With these
variables, the configuration of particles in a collision process viewed in the lab-

oratory framediffers only by a trivial shift of the origin of rapidity from the same
process viewedin the center of mass frame.

11.6 Mathematical Properties of the Space-Time
ofSpecial Relativity

The kinematics of special relativity presented in the preceding sections can be
discussed in a more profound and elegant mannerthat simultaneously simplifies
and illuminates the theory. Three-dimensionalrotationsin classical and quantum
mechanics can be discussed in terms of the group of transformationsof the co-

*S. Parker, Am. J. Phys. 40, 241 (1972).
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ordinates that leave the norm of the vector x invariant. In the special theory of
relativity, Lorentz transformations of the four-dimensional coordinates (¥o, x)
follow from the invarianceof

= x3-x3-x3- x3 (11.59)
Wecan therefore rephrase the kinematics of special relativity as the considerg-
tion of the group ofall transformations that leave s* invariant. Technically, this
group is called the homogeneous Lorentz group. It contains ordinary rotations
as well as the Lorentz transformations of Section 11.3. The group of transfor.
mations that leave invariant

s*(x, y) = (X9 — Yo)? — (x; — yi)? - (X2 — yo)" — (%3 - y3)°

is called the inhomogeneous Lorentz group or the Poincaré group. It contains
translations andreflections in both space and time,as well as the transformations
of the homogeneous Lorentz group. We shall restrict our discussion to the ho-
mogeneoustransformations and subsequently omit ‘““chomogeneous”’ whenrefer-
ring to the Lorentz group.

From thefirst postulate it follows that the mathematical equations expressing
the laws of nature must be covariant, that is, invariant in form, underthetrans-
formations of the Lorentz group. They must therefore be relations among
Lorentz scalars, 4-vectors, 4-tensors, etc., defined by their transformation prop-
erties under the Lorentz group in ways analogousto the familiar specification of
tensors of a given rank under three-dimensional rotations. Weare thusled to
considerbriefly the mathematical structure of a space-time whosenormis defined
by (11.59).

Webegin by summarizing the elements of tensor analysis in a non-Euclidean
vector space. The space-time continuum is defined in terms of a four-dimensional
space with coordinates x°, x', x*, x3. We suppose that there is a well-defined
transformation that yields new coordinates x'°, x’, x’”, x’°, according to some
rule,

x = x(x, x1, x7, x3) (a = 0, 1, 2, 3) (11.60)

For the moment the transformation law is not specified.

Tensors of rank k associated with the space-time point x are defined by their
transformation properties under the transformation x — x’. A scalar (tensor of

rank zero) is a single quantity whose value is not changed by the transformation.
The interval s* (11.59) is obviously a Lorentz scalar. For tensors of rank one,
called vectors, two kinds must be distinguished. Thefirst is called a contravariant

vector A® with four components A°, A', A’, A® that are transformed according
to the rule

ox'’*

A's =—— AP (11.61) 

In this equation the derivative is computed from (11.60) and the repeated index
@ implies a summation over B = 0, 1, 2, 3. Thus explicitly we have

ox'’* ox'® ox’% ox'®

A®+— Al +A? 4+ 75 4A’@® _

ax? Ox ax? ax?
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Wewill henceforth employ this summation convention for repeated indices. A

covariant vector or tensor of rank one B, is defined by the rule

ax?
BL. =— 11.62

ox'’® B ( )

or, explicitly, by

ax ax! ax? ax?
Bu = = Bo a Bi t+ ag Bo + WG Bs

ox’* ox’ ox’* ox'*

The partial derivative in (11.62) is to be calculated from the inverse of (11.60)
with x® expressed as a function of x’°, x"', x’?, x”.

Note that contravariant vectors have superscripts and covariant vectors have

subscripts, corresponding to the presence of dx'“/dx" andits inverse in the rule
of transformation.It can be verified from (11.61) that if the law of transformation
(11.60) is linear then the coordinates x°, x', x”, x° form the components of a
contravariant vector.

A contravariant tensor of rank two F? consists of 16 quantities that trans-
form according to

ax'* ax'P
F'ap

ax” ax?
  FY (11.63)

A covariant tensor of rank two, Gy,, transforms as

ax” ax°
ap — ax'@ ax'F Gys (11.64)

  

and the mixed second-rank tensor H“, transforms as

fa  
ax’* ax?

= —, H” 11.65
Pax’ ax’B ( )

The generalization to contravariant, covariant, or mixed tensorsof arbitrary rank

should be obvious from these examples.
The inner or scalar product of two vectors is defined as the product of the

components of a covariant and a contravariantvector,

B-A=B,A* (11.66)

With this definition the scalar product is an invariant or scalar under the trans-
formation (11.60). This is established by considering the scalar product B’ - A’
and employing (11.61) and (11.62):

ax ax’ axF

B'- A’ = B,A’ = — B,A’ = 8°,B,A’=B-A
ax'* ax” ox”
  

The inner product or contraction with respect to any pair of indices, either on

the same tensor or one on one tensor and the other on another, is defined in

analogy with (11.66). One index is contravariant and the other covariant always.

The results or definitions above are general. The specific geometry of the
space-time of special relativity is defined by the invariant interval s*, (11.59). In
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differential form, the infinitesimal interval ds that defines the norm of our Space
iS “

(ds? = (dx? = (dx"P = (dx?= (dx? (11.67)
Here we have used superscripts on the coordinates because of our present cop.
ventions. This norm or metric is a special case of the general differential length
element,

(ds)” = gag dx* dx® (11.68)

where Zag = ga 18 called the metric tensor. For the flat space-time of special]
relativity (in distinction to the curved space-time of general relativity) the metric
tensor 1s diagonal, with elements

Soo = I, 81 = 8&2 = &3 = —1 (11.69)

The contravariant metric tensor g* is defined as the normalized cofactor of Sap
Forflat space-timeit is the same:

gh = gig (11.70)

Note that the contraction of the contravariant and covariant metric tensorsgives
the Kronecker delta in four dimensions:

Lay= bP (11.71)

where 6," = 0 for a Band 6,% = 1 for a = 0, 1, 2, 3.
Comparisonof the invariant length element(ds)in (11.68) with the similarly

invariant scalar product (11.66) suggests that the covariant coordinate 4-vector
x, can be obtained from the contravariant x° by contraction with Lop, thatis,

Xa = Sapx? (11.72)

and its inverse,

x* = gy, (11.73)

In fact, contraction with g,, or g°? is the procedure for changing an index on any

tensor from being contravariant to covariant, and vice versa. Thus

Ft _ ghF- B

and (11.74)

Gira = SapG..?

With the metric tensor (11.69) it follows that if a contravariant 4-vector
has components, A’, A', A’, A®, its covariant partner has components, Ap =
A®, A, = —A', A, = —A’, A; = —A®. We write this concisely as

A® = (A°, A), A, = (A°, A) (11.75)

where the 3-vector A has components A’, A’, A®. The scalar product (11.66) of
two 4-vectorsis

B-A=B,A* = BA°-B-A

in agreement with (11.24).
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Consider now the partial derivative operators with respect to x* and x,. The

transformation properties of these operators can be established directly by using
the rules of implicit differentiation. For example, we have

d ax’ @

ax’ ax! axe
 

Comparison with (11.62) shows that differentiation with respect to a contravariant
component of the coordinate vector transforms as the componentof a covariant

vector operator. From (11.72) it follows that differentiation with respect to a
covariant componentgives a contravariant vector operator. We therefore employ

the notation,

ot
OOL (2,,- 9)

OXq  \Ox (11.76)

8 (2.9)
Ox Ox

The 4-divergence of a 4-vector A is the invariant,

Oa

aA°
0°A, = 0,A% = 5,0 +V-A (11.77)

X
0

an equation familiar in form from continuity of charge and current density, the

Lorentz condition on the scalar and vector potentials, etc. These examples give

a first inkling of how the covariance of a physical law emerges providedsuitable

Lorentz transformation properties are attributed to the quantities entering the
equation.

The four-dimensional Laplacian operator is defined to be the invariant
contraction,

2A
C= 0,8 = a - 0 (11.78) 

This is, of course, just the operator of the wave equation in vacuum.

11.7 Matrix Representation ofLorentz Transformations,
Infinitesimal Generators

Wenowturn to the consideration of the Lorentz group of transformations. To

make the manipulations explicit and less abstract, it is convenient to use a matrix
representation with the components of a contravariant 4-vector forming the el-

ements of a column vector. The coordinates x°, x', x”, x° thus define a coordinate

vector whose representativeis

(11.79)be |

be
O
O

W
O

N
O

-
&

©
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Matrix scalarproducts of 4-vectors (a, b) are defined in the usual way by summing
over the products of the elements of a and b, or equivalently by matrix multipli-
cation of the transpose of a on b:

(a, b) = ab (11.80)
The metric tensor g,, has as its representative the square 4 4 matrix

1 O OO O
_{[9 -1 O O 1

§-lo 09 -1 0 (11.81)

O OO O -1I

with g* = J, the 4 X 4 unit matrix. The covariant coordinate vectoris

x?

—y!
§X =| _2 (11.82)

—x3

obtained by matrix multiplication of g (11.81) on x (11.79). Note thatin the present
notation the scalar product (11.66) of two 4-vectors reads

a:b = (a, gb) = (ga, b) = agb (11.83)

Onthebasis of arguments already presented in Section 11.3 we seek a group
of linear transformations on the coordinates,

x’ = Ax (11.84)

where A is a Square 4 X 4 matrix, such that the norm (x,gx)is left invariant:

X'gx' = Xgx (11.85)

Substitution of (11.84) into the left-hand side yields the equality,

LAgAx = XKex

Since this must hold for all coordinate vectors x, A must satisfy the matrix
equation,

AgA =g (11.86)

Certain properties of the transformation matrix A can be deduced immedi-
ately from (11.86). The first concerns the determinant of A. Taking the deter-

minantof both sides of (11.86) gives us

det (AgA) = det g (det A)* = det g

Since det g = —1 # 0, we obtain

det A = +1

There are twoclasses of transformations: proper Lorentz transformations, con-

tinuous with the identity transformation and so necessarily having det A = + 1,
and improper Lorentz transformations. For improper transformationsit is suffi-
cient, but not necessary, to have det A = —1. Thefact that det A = +1 doesnot
unambiguously sort out the two classes is a consequenceof the indefinite metric
of space-time. Two examples of improper transformations, A = g (space inver-
sion) with det A = —1 and A = —I (space and timeinversion) with det A = +1,
illustrate this point.
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The second property of A is the number of parameters needed to specify

completely a transformation of the group. Since A and g are 4 X 4 matrices,

(11.86) represents 16 equations for the 4° = 16 elements of A. But they are not
all independent because of symmetry under transposition. There are thus

16 — (1 +2 + 3) = 10 linearly independent equationsfor the 16 elements of A.
This meansthat there are six free parameters—the Lorentz groupis a six-param-

eter group. The six parameters can be conveniently thoughtof as (a) three pa-
rameters (e.g., Euler angles) to specify the relative orientation of the coordinate
axes and (b) three parameters (e.g., components of B) to specify the relative
velocity of the two inertial frames. Parenthetically we remark that for every
six-parameter A giving a proper Lorentz transformation, there is an improper
one represented by —A. From now on we consider only proper Lorentz
transformations.

The explicit construction of A can proceed as follows. We makethe ansatz

A=er (11.87)

where L is a 4 X 4 matrix. The determinant of A is*

det A = det (e”) = e'"*

If L is a real matrix, det A = —1 is excluded. Furthermore,if L is traceless, then

det A = +1. Thus, for proper Lorentz transformations, L is a real, traceless
4 X 4 matrix. Equation (11.86) can be written

gAg=A! (11.88)

From the definition (11.87) and the fact that g* = J we have

A=e’, gAg=e8® Al=et

Therefore (11.88) is equivalent to

gelg = -L

or (11.89)

gl = —gL

The matrix gL is thus antisymmetric. From the properties of g (11.81) it is evident
that the general form of L is

(11.90)

—Li —Lg3 0

The dashed lines are inserted to set off the 3 X 3 antisymmetric spatial matrix
corresponding to the familiar rotations in a fixed inertial frame from the sym-
metric space-time part of the matrix corresponding to Lorentz transformations

or boosts from oneinertial frame to another.

*To prove this, note first that the value of the determinantor the trace of a matrix is unchanged by

a similarity transformation. Then make such a transformation to put L in diagonal form. The matrix
A will then be diagonal with elements that are the exponentials of the corresponding elements of L.

The result follows immediately.
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The matrix (11.90), with its six parametersis an explicit construction [through
(11.87)] of the transformation matrix A. It is customary, however, to systematize
L and its six parametersby introducing a set of six fundamental matrices defineg

by

0.3.0....0....0 01000
5 [9 $9 0 0 5 {0:9 9 1

*~ 10:0 O -1]’ ~~ lo: 0 oO Of’
0:0 1 0 O'-1 0 0

04.000

s={2) 2 “t 8 (11.91)0; 1 0 O
0' 0 0 0

0:1 0 0 0:0 1.0 0:0 0 1
qoOFCOUN(nn

S=loi go f “Ati o | “Flo: oO
0 0 1

The matrices S$; evidently generate rotations in three dimensions, while the ma-
trices K; produce boosts. For reference, we note that the squares of these six
matrices are all diagonal and of the form,

0 0 0 0
0 —1

Si = —] ’ Ss — O >

0 —1 0 —1

0 0
—1

2 =53 4

0 0 (11.92)
1 0 1 0

1 0Ki = 5 KGS / i
0 0 0 0

1 0
0

2 —K3 0

0 1
Furthermore,it can be shownthat (€-S)*> = —e-S and (e’- K)° = e’- K, where
e and e’ are any real unit 3-vectors. Thus any powerof one of the matrices can
be expressed as a multiple of the matrix or its square.

The general result (11.90) for L can now bewritten alternatively as

L=-o-S—-C¢-K

and (11.93)
A _ ees-oK



547Sect. 11.7 Matrix Representation of Lorentz Transformations, Infinitesimal Generators

where w and C€ are constant 3-vectors. The three components each of w and €

correspond to the six parametersof the transformation. To establish contact with

earlier results such as (11.16) or (11.21), we considerfirst a simple situation in
which w = 0 and € = ée,. Then L = —€K, and with the help of (11.92) and
K? = K, wefind

A =e” = (I -— Kj) — K, sinh{ + Kj cosh¢ (11.94)

Explicitly,

cosh€ -—sinhf 0 O

A= “Sian conn 5 (11.95)

0 0 0 1

This matrix corresponds exactly to the transformation (11.21).* If ¢ = 0 and
® = we;, the transformation is similarly found to be

1 0 0 0

{0 cosw sinw O

A= 0 -—sinw cosw 0 (11.96)
0 0 0 1

corresponding to a rotation of the coordinate axes in a clockwise sense around

the 3-axis.
For a boost (without rotation) in an arbitrary direction,

A=e

The boost vector ¢ can be written in terms of the relative velocity B as

¢ = B tanh'B

where is a unit vectorin the direction of the relative velocity of the twoinertial
frames. The pure boost is then

Apoos(B) = e786 tanh" (11.97)

It is left as an exercise to verify that this transformation gives the explicit matrix:

 

Y — YP — YB2 — YB3

—~yB, 1+ (y — YB (y — )BiB2 (y — BiB:

B B 6

Avoo(B) =] (y= DB |, Or ~ DB3 (y= BoB:
2 B° B? B°

(y-1)B:B; (y—- 1)fB; (y — 1)B3— aYB3 B B? +r B?

(11.98)

*The readeris reminded thatin Sections 11.3, 11.4, and 11.5 no distinction is made between subscripts

and superscripts. All components of vectors there are to be interpreted as contravariant components,
in accordance with (11.75).
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The equation x’ = Apoost(B)x is a matrix statement of the four equations of
(11.19). -

The six matrices (11.91) are a representation of the infinitesimal generators
of the Lorentz group. Straightforward calculation shows that they Satisfy the
following commutationrelations,

[Si, 5] — Eijn9k

[S;, Kj] = €jxeKx (11.99)

[K;, K| = — €jxeSK

where the commutator notation is [A, B] = AB — BA.Thefirst relation corre-
sponds to the commutationrelations for angular momentum,the secondrelation
merely showsthat K transformsas a vector underrotations, andthefinal relation
showsthat boosts do not in general commute. The commutationrelations (11.99),
with the characteristic minus sign in the last commutator, specify the algebraic
structure of the Lorentz group to be SL(2, C) or O(3, 1).

11.8 Thomas Precession

The description of Lorentz transformations in terms of noncommuting matrices
demonstrates that in general the result of successive Lorentz transformations
depends on the order in which they are performed. The commutation relations
(11.99) imply that two successive Lorentz transformations are equivalent to a
single Lorentz transformation plus a three-dimensional rotation. An example of
the kinematic consequencesof the noncommutativity of Lorentz transformations
is the phenomenon known as Thomas precession.* To motivate the discussion
wefirst describe the physical context.

In 1926 Uhlenbeck and Goudsmit introduced the idea of electron spin and
showedthat, if the electron had a g factor of 2, the anomalous Zeeman effect

could be explained, as well as the existence of multiplet splittings. There was a
difficulty, however, in that the observedfine structure intervals were only half
the theoretically expected values. If a g factor of unity were chosen, the fine
structure intervals were given correctly, but the Zeeman effect was then the

normal one. The complete explanation of spin, including correctly the g factor
and the properfine structure interaction, came only with the relativistic electron
theory of Dirac. But within the framework of an empirical spin angular momen-
tum and a g factor of 2, Thomas showedin 1927 that the origin of the discrepancy
was a relativistic kinematic effect which, when included properly, gave both the
anomalous Zeemaneffect and the correct fine structure splittings. The Thomas
precession, as it is called, also gives a qualitative explanation for a spin-orbit
interaction in atomic nuclei and shows why the doublets are ‘“‘inverted”’ in nuclei.

The Uhlenbeck—Goudsmit hypothesis was that an electron possesses a spin
angular momentum s (which can take on quantized values of +f/2 along any
axis) and a magnetic moment related to s by

ge
= ——. 11.100

M 2Mc . ( )

*L. H. Thomas, Phil. Mag. 3, 1 (1927).
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where the g factor has the value g = 2. Suppose that an electron moves with a
velocity v in external fields E and B. Then the equation of motionfor its angular
momentum in its rest frame is

ds
— = X B’ 11.101

( dt). frame " ( )

where B’is the magnetic induction in that frame. We will show in Section 11.10
that in a coordinate system moving with the electron the magnetic inductionis

B’ = (p — - x E) (11.102)

where we have neglected termsof the order of (v*/c*). Then (11.101) becomes

ds Vv
— =pxXxXIiB--xXE 11.103
(¢). frame " ( C ( )

Equation (11.103) is equivalent to an energy of interaction of the electron spin:

U' = —p- (p - . x E) (11.104)

In an atom the electric force eE can be approximated as the negative gradient

of a spherically symmetric average potential energy V(r). For one-electron atoms
this is, of course, exact. Thus

rdV
E = --— 11.10

© r dr ( >)

Then the spin-interaction energy can be written

ge g 1dV
“5 8° B+ Saas Lh) (11.106)U' =
2mc

where L = m(r X v)is the electron’s orbital angular momentum. This interaction
energy gives the anomalous Zeemaneffect correctly, but has a spin-orbit inter-
action that is twice too large.

The error in (11.106) can be traced to the incorrectness of (11.101) as an
equation of motion for the electron spin. The left-handside of (11.101) gives the
rate of change ofspin in the rest frame ofthe electron.If, as Thomasfirst pointed
out, that coordinate system rotates, then the total time rate of changeofthe spin,
or more generally, any vector G is given by the well-knownresult,*

dG dG

dt —

\

aE + @,xXG 11.107
( dt) ( dt ). same ( )

where wis the angular velocity of rotation found by Thomas. Whenapplied to
the electron spin, (11.107) gives an equation of motion:

ds geB’
— =s xX — 11.108

( dt) . (2c ”| ( )

*See, for example, Goldstein (pp. 174-177).
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The corresponding energyof interactionis

U=U'+s-ar (11.109)

where U’is the electromagnetic spin interaction (11.104) or (11.106).

The origin of the Thomas precessional frequency w, is the acceleration ex.
perienced by the electron as it moves under the action of external forces. Con-
sider an electron moving with velocity v(t) with respect to a laboratoryinertia]
frame. The electron’s rest frame of coordinates is defined as a co-moving ge-

quence ofinertial frames whose successive origins moveat each instant with the
velocity of the electron. Let the velocity of the rest frame with respect to the
laboratory at laboratory time t be v(t) = cB, and at laboratory time t + 6&t be
v(t + dt) = c(B + 6B). The connection between the coordinatesin the electron’s
rest frame at time ¢ and the coordinates in the laboratory frameis

xX" = Aroost(B)x (11.110)

At time t + ot the connection is

x” = Apoost(B + dB)x (11.111)

It is important to note that these transformations of coordinate from the labo-
ratory to the rest frame are defined here in terms of pure Lorentz boosts without
rotations. We are interested in the behavior of the coordinate axes of the elec-

tron’s rest frame as a function of time. Thus we want the connection between
the two sets of rest-frame coordinates, x’ at time t and x” at time t + 6ét. This
relation is

x" = Arx’

where

Ar — Apoost(B + 5B)Aboost(B) — Apoost(B + dB)Apoost(— B) (11.112)

For purposes of calculating A; a suitable choice of axes in the laboratory frame

is Shown in Fig. 11.7. The velocity vector B at time is parallel to the 1 axis and
the increment of velocity 6B lies in the 1-2 plane. From (11.98) it follows that

y yB O 0
0 0

Apoosi(—B) = ”P 5 1 0 (11.113)

0 0 01

B + op
op  

3 Figure 11.7
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Similarly we obtain from (11.98), keeping only first-order terms in 68,

y+ YB5B, —(B+ ¥6B) -y 6B 0
y- 1

—(yB + y 6B:) y+ vB 6B; 2) 5B. 0
Aboost(B + dB) = y _ 1

—Y Oo (24) 0)9) 1 0
B

0 0 0 1

(11.114)

Straightforward matrix multiplication according to (11.112) yields

1 —y° dB; —y 6B. 0
—]

-¥ 6B; 1 2) 5B 0
Ar= \ (11.115)

—y dB -(74) 5B, 1 0
B

0 0 0 1

This represents an infinitesimal Lorentz transformation that can be written in

terms of the matrices S and K as

 
— 1]

Ar=l- (5 Je x 5B)-S — (7° 5B, + y 6B,)-K (11.116)

where 6B, and 6B, are the components of 6B parallel and perpendicularto B,

respectively. To first order in 6B, (11.116) is equivalent to

Ar = Apoos(AB)R(AQ) = R(AQ)Ayoosi(8B) (11.117)
where

Apoos(AB) = 1 — AB- K

R(AQ) =I —- AQD-S

are commutinginfinitesimal boosts and rotations, with velocity,

AB = y° 5B, + y 5B,

and angle of rotation,

2
Y

yt+1
  so = (24)p x op - B x dp

Thus the pure Lorentz boost (11.111) to the frame with velocity c(B + 6B) is
equivalent to a boost (11.110) to a frame moving with velocity cB, followed by
an infinitesimal Lorentz transformation consisting of a boost with velocity c AB

and a rotation AQ.
In termsof the interpretation of the moving framesas successiverest frames

of the electron we do not wantrotations as well as boosts. Nonrelativistic equa-
tions of motion like (11.101) can be expected to hold provided the evolution of
the rest frame is described by infinitesimal boosts without rotations. Weare thus
led to consider the rest-frame coordinatesat time ¢ + 6f that are given from those
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at time ¢ by the boost Ajoos(AB) instead of A;. Denoting these coordinates by
x", we have

a

x" = Apoost(AB)x’

Using (11.117), (11.112), and (11.110) we can express x” in terms of the labora-
tory coordinates as

x” = R(-—AQ)Apoos(B + 5B)x (11.118)
The rest system of coordinates defined by x” is rotated by —AQ relative to the
boosted laboratory axes (x”). If a physical vector G has a (proper) timerate of
change (dG/dr) in the rest frame, the precession of the rest-frame axes with
respect to the laboratory makesthe vector havea total time rate of change with
respect to the laboratory axes of (11.107), with

AQ vy axy
 (11.119)

where a is the acceleration in the laboratory frame and, to be precise,
(dG/dt)rest frame — Y"(dG/d7)rest frame:

The Thomasprecession is purely kinematical in origin. If a componentof
acceleration exists perpendicular to v, for whatever reason, then there is a
Thomasprecession, independentof other effects such as precession of the mag-
netic moment in a magneticfield.

For electrons in atomsthe acceleration is caused by the screened Coulomb
field (11.105). Thus the Thomasangular velocity is

_cirxvidv_ -1 lav
eT 202m or dr meer dr

It is evident from (11.109) and (11.106) that the extra contribution to the energy
from the Thomasprecession reduces the spin-orbit coupling, yielding

ge (g — 1) ldV= ———Ss§- SO

2mc Inecz > dr

(11.120)

(11.121)

With g = 2 the spin-orbit interaction of (11.106)is reduced by 3 (sometimescalled
the Thomas factor), as required for the correct spin-orbit interaction energy of
an atomicelectron.

In atomic nuclei the nucleons experience strong accelerations because of the
specifically nuclear forces. The electromagnetic forces are comparatively weak.

In an approximate way one cantreat the nucleons as moving separately in a
short-range, spherically symmetric, attractive, potential well, V(r). Then each

nucleon will experience in addition a spin-orbit interaction given by (11.109) with
the negligible electromagnetic contribution U’ omitted:

Uy ~8+@, (11.122)
wherethe acceleration in wis determined by V,(r). The form of wis the same
as (11.120) with V replaced by Vy. Thus the nuclear spin-orbit interaction is

approximately

1 1 dVy
= -——>75s8s-L-— 11.123

“ 2M2c2 "> dr ( )
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In comparing (11.123) with atomic formula (11.121) we note that both V and Vx
are attractive (although Vy is much larger), so that the signs of the spin-orbit
energies are opposite. This means that in nuclei the single particle levels form

“inverted” doublets. With a reasonable form for Vy, (11.123) is in qualitative
agreement with the observed spin-orbit splittings in nuclei.*

The phenomenon of Thomasprecession is presented from a more sophisti-

cated point of view in Section 11.11 where the BMT equationis discussed.

11.9 Invariance of Electric Charge;
Covariance of Electrodynamics

The invariance in form of the equations of electrodynamics under Lorentz trans-
formations was shown by Lorentz and Poincaré before the formulation of the
special theory of relativity. This invariance of form or covariance of the Maxwell
and Lorentz force equations implies that the various quantities p, J, E, B that

enter these equations transform in well-defined ways under Lorentz transfor-

mations. Then the terms of the equations can have consistent behavior under
Lorentz transformations.

Considerfirst the Lorentz force equation for a particle of charge q,

dp Vv
7 o(E tox 8) (11.124)

We know that p transforms as the space part of the 4-vector of energy and

momentum,

Pp* = (Do, P) = m(Uo, U)

where po = E/c and U* is the 4-velocity (11.36). If we use the proper time 7
(11.26) instead of t for differentiation, (11.124) can be written

dp= = - (U.E + U x B) (11.125)-

Theleft-hand side is the space part of a 4-vector. The corresponding time com-
ponent equation is the rate of change of energy of the particle (6.110):

apo _Ip U-E (11.126)

If the force and energy change equations are to be Lorentz covariant, the
right-hand sides must form the components of a 4-vector. They involve products
of three factors, the charge q, the 4-velocity, and the electromagnetic fields. If
the transformation properties of two of the three factors are known and Lorentz
covariance is demanded, then the transformation properties of the third factor
can be established.

Electric charge is absolutely conserved, as far as we know. Furthermore, the
magnitudes of the charges of elementary particles (and therefore of any system

*See, for example, Section. 2.4c of A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1, W. A.

Benjamin, New York (1969).
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of charges) are integral multiples of the charge of the proton. In the publisheg

literature,* it is experimentally established that the fractional difference between
the magnitudeof the electron’s charge and the proton’s chargeis less than 10~19

and unpublished results of King push this limit almost two orders of magnitude
further.’ The results of these experiments can be used to support the invariance

of electric charge under Lorentz transformations or, more concretely, the inde-
pendence of the observed charge of a particle on its speed. In his experiments

King searched for a residual charge remaining in a container as hydrogen or
helium gas 1s allowed to escape. No effect was observed and a limit of less than
107 "’e was established for the net charge per molecule for both H, and He.Since

the electrons in He move at speeds twice as fast as in Hp), the charge of the

electron cannot dependsignificantly on its speed,at least for speeds of the order

of (0.01-0.02)c. In the experiment of Fraser, Carlson, and Hughes an atomic

beam apparatus was used in an attempt to observe electrostatic deflection of
beamsof “neutral” cesium and potassium atoms. Again, no effect was observed,
and a limit of less than 3.5 X 107’? wasset on the fractional difference between
the charges of the proton and electron. Cesium and potassium have Z = 55 and
19, respectively. Thus the K-shell electrons in cesium at least move with speeds
of order 0.4c. The observed neutrality of the cesium atom at the level of

107'®-10~"” is strong evidence for the invariance of electric charge.*
The experimental invariance of electric charge and the requirement of

Lorentz covariance of the Lorentz force equation (11.125) and (11.126) deter-
mines the Lorentz transformation properties of the electromagnetic field. For
example, the requirement from (11.126) that U- E be the time componentof a
4-vector establishes that the componentsof E are the time-space parts of asecond

rank tensor F°?, that is, E- U = F°°U,. Although the explicit form ofthe field
strength tensor F“? can be found along these lines, we now proceed to examine
the Maxwell equations themselves.

For simplicity, we consider the microscopic Maxwell equations, without D
and H. We begin with the charge density p(x, t) and current density J(x, t) and
the continuity equation

0
= +V-J=0 (11.127)

From the discussion at the end of Section 11.6 and especially (11.77)it is natural
to postulate that p and J together form a 4-vector J*:

J“ = (cp, 3) (11.128)

*J. G. King, Phys. Rev. Lett. 5, 562 (1960); V. W. Hughes, L. J. Fraser, and E. R. Carlson, Z. Phys.

D-Atoms, Molecules and Clusters 10, 145 (1988). The latter tabulates many of the different methods
and results.

‘The limits on the measured charge per molecule in units of the electronic charge for H,, He, and
SF, were determined as 1.8 + 5.4, —0.7 + 4.7, 0 + 4.3, respectively, all times 10~*!. Private com-

munication from J. G. King (1975).

*Mentioning only the electrons is somewhat misleading. The protons and neutronsinside nuclei move
with speeds of the order (0.2—0.3)c. Thus the helium results of King already test the invariance of

charge at appreciable speeds. Of course, if one is content with invariance at the level of 10°'° for

vic ~ 10° the observedelectrical neutrality of bulk matter when heated or cooled will suffice.
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Then the continuity equation (11.127) takes the obviously covariant form,

d,.J* = 0 (11.129)

where the covariant differential operator 0, is given by (11.76). That J* is a le-
gitimate 4-vector follows from the invariance of electric charge: Considera large

numberof elementary chargestotaling 6g at rest* in a small-volume element d°x

in frame K. They are idealized by a charge density p. The total charge 6q =

p d°x within the small-volume element is an experimental invariant; it is thus

true that p’ d*x’ = pd°x. But the four-dimensional volume element d*x = dx° d°x
is a Lorentz invariant:

10 rs 12 13

diy! =OX) oy = det A dx = dx
O(x", x", X°, xX”)
 

The equality p’ d°x' = p d°x then implies that cp transformslike x°, namely, the
time componentof the 4-vector (11.128).

In the Lorenz family of gauges the wave equations for the vector potential
A andthe scalar potential ® are

1 0°A 4
5 Or — V-A = "y

5 (11.130)
1 a@® 5
5 ar —_ V @ = Aap

with the Lorenz condition,

1 oD
-—+V-A=0 (11.131)
c ot

The differential operator form in (11.130) is the invariant four-dimensional
Laplacian (11.78), while the right-hand sides are the components of a 4-vector.
Obviously, Lorentz covariance requires that the potentials ® and A form a
4-vector potential,

A* = (®, A) (11.132)

Then the wave equations and the Lorenz condition take on the manifestly co-
variant forms,

4
KA* = J

and (11.133)

JgA* = 0

The fields E and B are expressed in termsof the potentials as

1 0A
= —-— -—- V®

c ot (11.134)

B=VxA

*If there is a conduction current J as well as the charge density p in K, the total charge within d>x is
not an invariant. See M@ller, Section 7.5. (His argument assumes the 4-vector character of cp and J,

however.)
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The x components of E and B are explicitly

7

Laas a _ 

 

E, = = —(a°A' — a'A°)
c ot Ox (11.135)

dA, 9A
By = = — — = -(#A® - A”)

Oy OZ

where the second formsfollow from (11.132) and 0* = (d/dxo, —V). These equa-
tions imply that the electric and magnetic fields, six components in all, are the

elements of a second-rank, antisymmetric field-strength tensor,

FeP = a*A® — aPA® (11.136)

Explicitly, the field-strength tensor is, in matrix form,

0 -E, -E, —-E,
y

E, 0 —-B, B,
E, B, 0 -B,
E, -B, B, 0

Fe = (11.137)

For reference, we record the field-strength tensor with two covariant indices,

0 E,. &£E, E,
y

-E, 0 -B, B_— yo —_ x Zz y

fap Sarl 88 _po BB,
-E, -B, B, 0

(11.138)

The elements of Fg are obtained from F*’ by putting E — —E. Anotheruseful

quantity is the dualfield-strength tensor #°°. Wefirst define the totally antisym-
metric fourth-rank tensor €°°”:

+1 fora = 0, B = 1, y = 2, 6 = 3, and

any even permutation
—1 for any odd permutation
0 if any two indices are equal

erBye — (11.139)

Note that the nonvanishing elements all have one time and three (different) space
indices and that €,,,5 = —e*°”. The tensor e*°”is a pseudotensor underspatial
inversions. This can be seen by contracting it with four different 4-vectors and
examining the space inversion properties of the resultant rotationally invariant

quantity. The dual field-strength tensor is defined by

0 -B, —-B, —-B,
B, 0 EE, -E,
B, -E, 0 E,
B. Ey, -E, 0

y

Ges — 1 5 _—aed (11.140)

The elements of the dual tensor ¥°? are obtained from F°? by putting E — B
and B — —E in (11.137). This is a special case of the duality transformation
(6.151).

To complete the demonstration of the covariance of electrodynamics we
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must write the Maxwell equations themselves in an explicitly covariant form. The
inhomogeneous equationsare

V-E = 479

1 OEvxp-iz#_*%
c ot Cc

In terms of F°" and the 4-current J* these take on the covariant form

Aq
06°? = — JP (11.141)

C

Similarly, the homogeneous Maxwell equations

1 OB
V-B= 0), Vx E+-—=0

c ot

can be written in termsof the dual field-strength tensor as

OF = 0 (11.142)

In terms of F°", rather than #°°, these homogeneous equations are the four

equations

OFay + IpFyq + IyFap = 0 (11.143)

where a, B, y are any three of the integers0,1, 2,3.

With the definitions of J* (11.128), A® (11.132), and F°” (11.136), together
with the wave equations (11.133) or the Maxwell equations (11.141) and (11.142),
the covariance of the equations of electromagnetism is established. To complete

the discussion, we put the Lorentz force and rate of change of energy equations

(11.125) and (11.126) in manifestly covariant form,

dp" _ AU" _ 4 papoo aFU, (11.144)

The covariant description of the conservation laws of a combined system ofelec-

tromagnetic fields and charged particles and a covariant solution for the fields of

a moving charge are deferred to Chapter 12, where a Lagrangian formulationis

presented.

For the macroscopic Maxwell equations it is necessary to distinguish two
field-strength tensors, F*® = (E, B) and G®’ = (D, H), where F*’ is given by
(11.137) and G* is obtained from (11.137) by substituting E — D and B > H.
The covariant form of the Maxwell equationsis then

0gG°? = Aa JP, OF? = 0 (11.145)
Cc

It is clear that with the fields (E, B) and (D, H) transforming as antisymmetric
second-rank tensors the polarization P and the negative magnetization —M form

a similar second-rank tensor. With these quantities given meaning as macroscopic
averages of atomic propertiesin the rest frame of the medium,the electrodynam-
ics of macroscopic matter in motion is specified. This is the basis of the electro-
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11.10

dynamics of Minkowskiand others. For further information onthis rather large
and important subject, the reader can consult the literature cited at the end of

the chapter.

Transformation of Electromagnetic Fields

Since the fields E and B are the elements of a second-rank tensor F“*,their values

in one inertial frame K’' can be expressedin termsof the valuesin anotherinertia]
frame K according to

ax’ ax'PFree= (11.146)

In the matrix notation of Section 11.7 this can be written

= AFA (11.147)

where F' and F” are 4 X 4 matrices (11.137) and A is the Lorentz transformation
matrix of (11.93). For the specific Lorentz transformation (11.95), corresponding
to a boost along the x, axis with speed cB from the unprimed frameto the primed
frame, the explicit equations of transformation are

Ei = E, By = B,

Ey = y(E, — BBs) Bs = (Bz + BEs) (11.148)
£3 = y(E3 + BB2) Bs = y(B3 — BE2)

Here and below,the subscripts 1, 2, 3 indicate ordinary Cartesian spatial com-

ponents andare not covariant indices. The inverse of (11.148) is found, as usual,
by interchanging primed and unprimed quantities and putting B — —£. For a
general Lorentz transformation from K to a system K’ moving with velocity v

relative to K, the transformation of the fields can be written

E’=y E)            
(11.149)

 ' YB’ y(B B x E)- — BB-B)
These are the analogsforthe fields of (11.19) for the coordinates. Transformation
(11.149) showsthat E and B have no independent existence. A purely electric or
magnetic field in one coordinate system will appear as a mixture of electric and
magnetic fields in another coordinate frame. Of course certain restrictions apply

(see Problem 11.14) so that, for example, a purely electrostatic field in one co-
ordinate system cannot be transformed into a purely magnetostatic field in an-
other. But the fields are completely interrelated, and one should properly speak

of the electromagnetic field F°", rather than E or B separately.

If no magnetic field exists in a certain frame K’, as for example with oneor
more point chargesat rest in K’, the inverse of (11.149) showsthat in the frame
K the magnetic field B and electric field E are linked by the simple relation

B=BxE (11.150)
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Note that E is not the electrostatic field in kK’, but that field transformed from

K' to K.

As an important and illuminating example of the transformation offields,
we consider the fields seen by an observer in the system K when a point charge

gq movesby in a straight-line path with a velocity v. The chargeis at rest in the
system K’, and the transformation of the fields is given by the inverse of (11.148)
or (11.149). We suppose that the charge movesin the positive x, direction and
that its closest distance of approach to the observeris b. Figure 11.8 shows a
suitably chosen set of axes. The observeris at the point P. Att = ¢ = 0 the
origins of the two coordinate systems coincide and the charge is at its closest
distance to the observer. In the frame K’ the observer’s point P, wherethefields

are to be evaluated, has coordinates x; = —vt',x4 = b,x4 = 0, and 1s a distance

r' = Vb? + (vt')’ away from q. We will need to express r’ in terms of the co-
ordinates in K. The only coordinate needing transformation is the time t! =
y[t — (vic’)x,] = yt, since x, = 0 for the point P in the frame K.In the rest frame
K' of the charge the electric and magnetic fields at the observation point are

qut’ 

  

Ei=-"y, EL= "3, Eh =0
B, = 0, Bs = 0, B; = 0

In terms of the coordinates of K the nonvanishing field components are

qyut , qb
fy =  (b 4 yv't?)?’ f= (b° 4 yt?) (11.151)

Then, using the inverse of (11.148), we find the transformed fields in the sys-
tem K:

 

 

, qyut

BE, = Ey = (bP 1 yur)?

bE> = yE! Yd (11.152)
— (b 1 yur)?

B, = yBEy = BE

with the other components vanishing.

  

x2 x2"

Pe

r

b n y
ay Vv

>. x1"
 

 

ut /q *1

x3

Figure 11.8 Particle of charge g moving at constant velocity v passes an observation

point P at impact parameterb.
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Fields (11.152) exhibit interesting behavior when the velocity of the charge
approachesthatoflight. First of all there is observed a magnetic induction in the
x3 direction already displayed in (11.150). This magnetic field becomes almost
equal to the transverseelectric field E, as 8 > 1. Even at nonrelativistic velocities
where y = 1, this magnetic induction is equivalent to

qvxr
cor
 

whichis just the approximate Ampére—Biot-Savart expression for the magnetic
field of a moving charge. At high speeds when y >> 1 wesee that the peak
transverse electric field E, (¢t = 0) becomes equal to y timesits nonrelativistic
value. In the same limit, however, the duration of appreciable field Strengths at
the point P is decreased. A measure of the time interval over which thefields
are appreciable is evidently

At = — (11.153)

As y increases, the peak fields increase in proportion, but their duration goesin
inverse proportion. The time integral of the fields times v is independentof ve-
locity. Figure 11.9a showsthis behavior of the transverse electric and magnetic
fields and the longitudinal electric field. For 8 — 1 the observerat P sees nearly
equal transverse and mutually perpendicular electric and magneticfields. These
are indistinguishable from thefields of a pulse of plane polarized radiation prop-
agating in the x; direction. The extra longitudinal electric field varies rapidly from
positive to negative and has zero time integral. If the observer’s detecting ap-
paratus has anysignificant inertia, it will not respond to this longitudinalfield.
Consequently for practical purposes he will see only the transverse fields. This
equivalence ofthe fields of a relativistic charged particle and those of a pulse of
electromagnetic radiation will be exploited in Chapter 15. In Problem 11.18 the
fields for B = 1 are given an explicit realization.

The fields (11.152) and the curves of Fig. 11.9a emphasize the time depen-
dence of the fields at a fixed observation point. An alternative description can
be given in termsof the spatial variation of thefields relative to the instantaneous
present position of the charge in the laboratory. From (11.152) we see that
E.,/E, = —vt/b. Referenceto Fig. 11.8 showsthat the electricfield is thus directed
along n, a unit radial vector from the charge’s present position to the observation
point, just as for a static Coulomb field. By expressing the denominator in

(11.152) in terms of r, the radial distance from the present position to the ob-
server, and the angle & = cos”‘(m- ¥) shownin Fig. 11.8, we obtain theelectric
field in terms of the charge’s present position:

qr
E= ry(1 _ B° sin? 3/2 (11.154)

The magnetic induction is given by (11.150). The electricfield is radial, but the
lines of force are isotropically distributed only for B = 0. Along the direction of
motion (# = 0, 7), the field strength is down by a factor of y~? relative to isotropy,
while in the transverse directions ( = 7/2) it is larger by a factor of y. This
whiskbroom pattern of lines of force, shown in Fig. 11.9, is the spatial “‘snap-
shot’’ equivalent of the temporal behavior sketched in Fig. 11.9a. The compres-

 



11.11

Sect. 11.11 Relativistic Equation of Motion for Spin in External Fields 561
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(b)
Figure 11.9 Fields of a uniformly moving charged particle. (a) Fields at the
observation point P in Fig. 11.8 as a function of time. (b) Lines of electric force for a
particle at rest and in motion (y = 3). The field lines emanate from the present position
of the charge.

sion of the lines of force in the transverse direction can be viewed as a conse-

quence of the FitzGerald—Lorentz contraction.

Relativistic Equation of Motion for Spin in Uniform
or Slowly Varying External Fields

The effects of a particle’s motion on the precession of its spin have already been

discussed in Section 11.8 on Thomas precession. Here we exploit the ideas of

Lorentz covariance to give an alternative, more elegant discussion leading to
what is known as the BMT equation of motion for the spin.* With the magnetic

*Named, not after one of the New York City subway lines, but for V. Bargmann, L. Michel, and

V.L. Telegdi, Phys. Rev. Lett. 2, 435 (1959). The equation actually has much earlier origins; Thomas
published an equivalent in 1927 (op. cit.); Frenkel discussed similar equations contemporaneously;
Kramers considered the g = 2 equation in the 1930s.



562 Chapter 11 Special Theory of Relativity—G

moment given by (11.100), the rest frame equation of motion for the spin,
(11.101), is

ds ge

dt’ 2mc sx B (11.155)

where primes denote quantities defined in the rest frame ands is the spin in that
frame. This equation applies to a particle of mass m, charge e, spin s and q
magnetic dipole moment with Landé g factorof g. It is a classical equation, but
is the same as the quantum-mechanical Heisenberg equation of motion for the
spin operator or, equivalently, the equation of motion for the polarization vector
of the system.

A. Covariant Equation ofMotion

To obtain a relativistic generalization of (11.155)it is first necessary to gen-

eralize the spin s from a 3-vector in the particle’s rest frame. There are two

avenues open. Oneis to recall from the end of Section 11.9 that P and —M form
an antisymmetric second-rank tensor. This suggests that , hence s, may be gen-
eralized to a second-rank tensor S°°. A simpler alternative is to define an axial
4-vector S“ in such a mannerthatit has only three independent components and

reduces to the spin s in the particle’s rest frame.* If S* denotes the components
of the spin 4-vector in the inertial frame K, the time-componentin the rest frame
K’'is, according to (11.22),

1
S"° = (8° — B+ 8) = —U,S*

where U* is the particle’s 4-velocity. We see that the vanishing of the time-

componentin the rest frame is imposed by the covariant constraint,

U,.S* = 0 (11.156)

In an inertial frame where the particle’s velocity is cB the time component of
spin is therefore not independent, butis

S)=B-S (11.157)

It is useful to display the explicit connection between S* and the rest-frame spin
s. Use of (11.19) or (11.22) and (11.157) yields

 

 

s=s-—~—(p-8)p (11.158)
yt+1

and the inverse expressions

2

S=s+— (B -s)p
yt 1 (11.159)

So = yB-s

Specification of the rest-frame 3-vector spin s determines the components of the
4-vector spin S“ in any inertial frame.

*The spin 4-vector S* is the dual of the tensor S** in the sense that S* = (1/2c)e*®”?U,S,5, where U*
is the particle’s 4-velocity.
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The obvious generalization of the left-hand side of (11.155) is dS“/dr, where
7 is the particle’s proper time. The right-hand side must therefore be expressible
as a 4-vector. We assumethat the equationis linear in the spin S“ and the external
fields F**. It can also involve U* and dU“/dr, the latter being linear in F°*itself.
Higher time derivatives are assumed absent. And of course the equation must
reduce to (11.155) in the rest frame. With the building blocks $*, F*?, U*, dU‘/dr
and the requirementoflinearity in S* and F°?, we can construct the 4-vectors,

dU®
FS, (S\FMU,)U® (s, a)~T

Other possibilities, such as F°°U,(S,U*), (U,F"“U,)S*, and (S\F"“U,,) dU“/dr,
either vanish, are higher order in F*’, or reduce to multiples of the three above.

The equation of motion must therefore be of the form

as* a A _ As dU®\
 

where A,, A>, A3 are constants. The constraint equation (11.156) must hold at
all times. This requires

 d dU. dS“
— (U,S*) = S*—= + U = 0
ar | “S") dt “ dt

hence

dU®
(A, — A2)U,F"S, + (1 + Az)Spa 0 (11.161)

T

If nonelectromagnetic or field gradient forces are allowed, at least in principle,
it is necessary that A, = A, and A; = —1. Reduction to the rest frame and

comparison with (11.155) gives A; = ge/2mc. Thus (11.160) becomes

dS“ _ ge dU”
 

1 1
= 2— F°®S, + = U%(S,F™U,) — = U*{ S, — 11.162dt Imc B C2 ( x »| C2 ( r | ( )

If the electromagnetic fields are uniform in space,or if gradient force termslike
V(p- B), (5.69), can be neglected, and there are no other appreciable forces on
the particle, its translational motion is described by (11.144):

dU"= — F*U, (11.163) 

Then (11.162) becomes the BMT equation:

dS" 1_ § FS, +S (: ~ i)u“sareru, (11.164) 
dT me 2 2

B. Connection to the Thomas Precession

The covariant equation (11.162), or its special case (11.164), contain the
Thomasprecession of the spin. It occurs in the final term in (11.162), the term
that was specified by the requirement (11.156) that the spin 4-vector be orthog-
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onal to the 4-velocity. To exhibit the Thomas precession explicitly, we consider
the equation of motion for the rest-frame spin s. Using the result

dU* _ _ dv

dt dt

4

 S, (11.165)

and (11.158) for s in terms of S, we find that the equations,

d§ dB
— =F+ ypiS-—
aT 8 4

and

aS» dB
— =Fy+ y|S-—
dT ony (s 6)

can be combined to give, after some simplification,

ds yB y¥ dp
— =F- fy + x x —— 11.
dt y+1° yt! . B dt (11.166)

In these equations (Fo, F) stand for the time and space componentsof the terms
with coefficient (ge/2mc) in (11.162). Since (Fo, F) form a 4-vector, with F =
B - F, the first two terms in (11.166) can be recognized as the torque F’ evaluated
in the rest frame. Dividing both sides by y and using the definition (11.119) for
the Thomasprecession frequency, wefind that (11.166) becomes

ds_ 1

  

—=-F + x 11.

Since F’ is given by the right-handside of (11.155), this is just (11.107) of Section
11.8.

For motion in electromagnetic fields where (11.163) holds,

dB e
— =—|E+BxB- -E 11.168tr ng E+ BX BB-E) (11.168)

Wealso have, from the transformation properties (11.149) of B,

1
-po=x B -
Y 2mc

 6-BB-BxE| (11.169)

Whenthese expressionsare inserted into (11.167), it becomes

ds e g 1 g Y
— =—sxX|{--1+-]B-{2-1 -B
dt mc (8 t ‘ (: yt+1 (B B)B

_({&__Y

( pee

This form of the equation of motion of the spin vector is Thomas’s equation
(4.121) of 1927 (op.cit.).

 

(11.170)
 

C. Rate of Change ofLongitudinal Polarization

As an example of the use of (11.170) we consider the rate of change of the
componentof spin s parallel to the velocity. This is the longitudinal polarization
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or net helicity of the particle. If 8 is a unit vector in the direction of 6B, the
longitudinal polarization is B - s. It changes in time because s changes and also B

changes. Explicitly, we have

do» ~ ds 1 ~ a. dB—_ . = §B.—4+ —T[s5 — . . —q (8°) BT ais 6-96].
Using (11.168) and (11.170), this can be written, after some algebra, as

< 6 -S) = -— S.° (: — 1)B x B+ (2 — +e| (11.171)

where s, is the component of s perpendicular to the velocity.
Equation (11.171) demonstrates a remarkable property of a particle with

g = 2. Ina purely magnetic field, the spin precesses in such a mannerthat the
longitudinal polarization remains constant, whatever the motion of the particle.
If the particle is relativistic (8 — 1), even the presence of an electric field causes
the longitudinal polarization to change only very slowly, at a rate proportional

to y* times the electric field component perpendicularto v.
The electron and the muon have g factors differing from the Dirac value of

2 by radiative corrections of order a/a = 0.00232. Because (g — 2) is so small,
the longitudinal polarization of a beam of electrons or muonsorbiting in a mag-

netic field changesrelatively slowly. This phenomenon permits very precise mea-

surements of the quantity a = (g — 2)/2, called the anomaly or the anomalous
magnetic moment. Thevalues of a provide accurate tests of the validity of quan-
tum electrodynamics. For muons, 100%longitudinally polarized at birth, the

change in polarization is detected by meansof the characteristically asymmetric
angular distribution of the decay electron from the muonrelative to the direction
of muon polarization. For electrons from beta decay the initial longitudinal po-

larization is =f. Its change with time is detected by changes in the asymmetry
of Mott scattering (e) or the angular distribution of the annihilation photons
from positronium formed in an intense magnetic field (e"). The precision attain-
able by these techniquesis indicated by the recent data:*

a(e~) = 1 159 652 188.4 (4.3) X 107

a(e*) = 1 159 652 187.9 (4.3) x 107”

a(u~) = 1 165 924 (9) x 10°°

These results are in good agreement with the predictions of quantum electro-

dynamics, as discussed in detail in the review by Kinoshita.

Further elaboration of spin precession is left to the problemsat the end of
Chapter12.

11.12 Note on Notation and Units in Relativistic Kinematics

In dealing with Lorentz transformations and relativistic kinematics, it is conve-

nient to adopt a consistent, simple notation and set of units. We have seen that

*e~, e*: Van Dyck, Schwinberg, and Dehmelt, Phys. Rev. Lett. 59, 26 (1987); u~: J. Bailey et al.,
Nucl. Phys. B 150, 1 (1979). See also the review, T. Kinoshita, ed., Quantum Electrodynamics, World

Scientific, Singapore (1990).
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various powers of the velocity of light c appear in the formulas of specialrelatiy-
ity. These tend to make the formulas cumbersome, although their presence fa-

cilitates extracting nonrelativistic limits (by letting c > ©). In doing relativistic
kinematics, it is customary to suppressall factors of c by suitable choice of units.
Weadopt the convention that all momenta, energies, and masses are measured
in energy units, while velocities are measured in units of the velocity oflight. In
particle kinematics the symbols,

.

D ‘cp
E | E

m | stand for mc

U

| Lc  
Thus the connection between momentum and total energy is written as E* =

p’ + m’,a particle’s velocity is v = p/E, and so on. Asenergy units, the electron
volt (eV), the megaelectron volt (1 MeV = 10° eV), and the gigaelectron volt
(1 GeV = 10” eV) are convenient. One electron volt is the energy gained by a
particle with electronic charge whenit falls through a potential difference of one

volt (1 eV = 1.602 < 107” erg = 1.602 * 107"joule).
In addition to eliminating powersofc, it is customary to denote scalar prod-

ucts of 4-vectors by a centered dot betweenitalicized symbols, with scalar prod-
ucts of 3-vectors denoted by a dot between boldface symbols, as usual. Thus we

have

a: b= a,b = Abo — a+b

Four-vectors may be written with or without an index. Thus conservation of

energy and momentum mayappearas

P=pt+q

or

Pp* = p* + q®
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Problems

11.1

11.2

11.3

11.4

Two equivalent inertial frames K and K’ are such that K’ movesin the positive x
direction with speed v as seen from K. The spatial coordinate axes in K’ are
parallel to those in K and the two origins are coincidentat times t = t’ = 0,

(a) Show that the isotropy and homogeneity of space-time and equivalence of
different inertial frames (first postulate of relativity) require that the most
general transformation between the space-time coordinates(x, y, z, ft) and
(x’, y’, z’, t’) is the linear transformation,

x’ = f(v*)x — vf(v7)t; t' = g(v’)t — vh(v’)x; y=y; Zo=2

and the inverse,

x = f(v’)x’ + uf(v’)’; tt = g(v)t’ + vh(v)x'), p= oz

wheref, g, and / are functionsof v’, the structures of the x’ and x equations

are determined by the definition of the inertial frames in relative motion,
and the signs in the inverse equation are a reflection of the reversalof roles
of the two frames.

(b) Show that consistency of the initial transformation and its inverse require

f=g and f*—v*fh=1

(c) Ifa physical entity has speed wu’ parallel to the x’ axis in K’, showthatits
speed u parallel to the x axis in K is

= u'’ +u

1 + vu'(h/f)

Using the second postulate 2’ (universal limiting speed C), show that h =
f/C? is required and that the Lorentz transformation of the coordinatesre-
sults. The universal limiting speed C is to be determined from experiment.

Consider three inertial frames and coordinates K(x, t), K’(x’, t'), and K"(x",t”).
Frame K’ movesin the x direction with speed v, relative to K; frame K” moves

with speedv> relative to K’, and speed v3 relative to K. By considering the group
property of the transformations of Problem 11.1 (including the results of parts a
and b), (x”, t”) — (x', ’) = (x, 2d and (x", t") — (x, 4) directly, show that
|h(v’)/f(v7)| is a universal constant with the dimensions of an inverse speed
squared.

This approach obtains the Lorentz transformation without reference to elec-
tromagnetism or the second postulate, but requires experiment to show that
hif > 0.

Reference: Y. P. Terletskii, Paradoxes in the Theory of Relativity, Plenum Press,

New York (1968), pp. 17-25.

Show explicitly that two successive Lorentz transformations in the samedirection

are equivalent to a single Lorentz transformation with a velocity

Vy + U2

~~ T+ (vyu,/c?)

This is an alternative way to derive the parallel-velocity addition law.

A possible clock is shownin the figure. It consists of a flashtube F and a photocell

P shielded so that each views only the mirror M, located a distance d away, and
mounted rigidly with respect to the flashtube-photocell assembly. The electronic
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11.6
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innards of the box are such that when the photocell respondsto a light flash from
the mirror, the flashtubeis triggered with a negligible delay and emits a short flash
toward the mirror. The clock thus “ticks”? once every (2d/c) seconds whenatrest.

 
 Problem 11.4

(a) Suppose that the clock moves with a uniform velocity v, perpendicular to the
line from PF to M,relative to an observer. Using the second postulate of

relativity, show by explicit geometrical or algebraic construction that the ob-
server sees the relativistic time dilatation as the clock movesby.

(b) Suppose that the clock moves with a velocity v parallel to the line from PF
to M. Verify that here, too, the clock is observed to tick more slowly, by the
same time dilatation factor.

A coordinate system K’ moveswith a velocity v relative to another system K. In
K’ a particle has a velocity u’ and an acceleration a’. Find the Lorentz transfor-
mation law for accelerations, and show that in the system K the components of
acceleration parallel and perpendicular to v are

we)

C2

ae
Ve

1+(eS)
2

(1-5)c V
(+3(a’ «w))

v-eu c(+)
C

Assumethat a rocket ship leaves the earth in the year 2100. One ofa set of twins
born in 2080 remains on earth; the other rides in the rocket. The rocketship is so
constructed that it has an acceleration g in its own rest frame (this makes the
occupants feel at home). It accelerates in a straight-line path for 5 years (by its
own clocks), decelerates at the same rate for 5 more years, turns around,accel-

erates for 5 years, decelerates for 5 years, and lands on earth. The twin in the
rocket is 40 years old.

ay =
 

a, =

(a) Whatyear is it on earth?

(b) How far away from the earth did the rocket ship travel?

In the reference frame K two very evenly matchedsprinters are lined up a distance
d apart on the y axis for a race parallel to the x axis. Two starters, one beside each
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man, will fire their starting pistols at slightly different times, giving a handicap to
the better of the two runners. The time difference in K is T.

(a) For what range of time differences will there be a reference frame K’ in

which there is no handicap, and for what range of time differencesis there
a frame K’ in whichthere is a true (not apparent) handicap?

(b) Determine explicitly the Lorentz transformation to the frame K’'appropriate
for each of the two possibilities in part a, finding the velocity of K’relative
to K and the space-time positions of each sprinter in K’.

(a) Use the relativistic velocity addition law and the invariance of phaseto dis-
cuss the Fizeau experiments on the velocity of propagation oflight in moving
liquids. Show that for liquid flow at a speed v parallel or antiparallel to the
path of the light the speed of the light, as observed in the laboratory,is given
to first order in v by

c ( 1 @ ot)
u=—~+v(1-3534+-——

n(@) n n dw

where w is the frequency of the light in the laboratory (in the liquid and

outside it) and n(w) is the index of refraction of the liquid. Because of the
extinction theorem, it is assumed that the light travels with speed wu’ =
c/n(w’) relative to the moving liquid.

(b) Consult the paper of W. M. Macek, J. R. Schneider, and R. M. Salamon

[J. Appl. Phys. 35, 2556 (1964)] and discuss the status of the Fizeau
experiments.

Aninfinitesimal Lorentz transformation and its inverse can be written as

x'* = (ge? + €)xe
x* = (g® + MF)xp

where e°* and e’* are infinitesimal.

(a) Show from the definition of the inverse that e’*? = —e°*,

(b) Show from the preservation of the norm that e®® = —&®*.

(c) By writing the transformation in terms of contravariant components on both

sides of the equation, show that e°* is equivalent to the matrix L (11.93).

(a) For the Lorentz boost and rotation matrices K and § show that

(e-S)=—e-S

(e’-K) =e’-K

where € and e’ are anyreal unit 3-vectors.

(b) Use the results of part a to show that

exp(—2B -K) =/—- B -K sinh g + (B - K)*[cosh ¢ — 1]

Two Lorentz transformationsdiffer by an infinitesimal amount. In the notation of
Section 11.7 they are represented by A, = e”, A, = e**°”. Without using explicit
matrix representations showthatto first order in 6L the Lorentz transformation
A = A,A;' can be written as

1 1 1
A=1+ dL +5 [L, 6b] + 3 IL, [L, dbl] + 7 TL, LE, [E, de]]} + +

Hint: The early terms can be found by brute force, but alternatively consider the
Taylor series expansion in A of the operator A(A) = e*“**e"© and then put
A=1.
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11.12 Apply the result of Problem 11.11 to a purely algebraic deviation of (11.116) on

11.13

11.14

11.15

Thomasprecession.

(a) With

6B » K(tanh~‘B)
L = —-7——_>

B

L+6L= _ (B + 5B) + 6B,) + K(tanh“‘p’) 
B’

where p’ = V(B + 5B,)? + (6B8,)’, show that

5B, - K(tanh‘B)

B

(b) Using the commutation relations for K and S, show that

 

 6L = —y° 6p) -K —

C, = [L, 6L] = -(a) (B x 6B,)-S

C, = [L, C,] = (tanh'p)* 6L,

C3 = [L, C] = (tanh*B)*C,

C, = [L, C3] = (tanh~'p)* 6L,

where 6L,is the term in 6L involving 6B.

(c) Sum the series of terms for Ay = A,Aj;' to obtain

vy

yt 1

correct to first order in 6B. [See D. Shelupsky, Am. J. Phys. 35, 650 (1967).|

Aninfinitely long straight wire of negligible cross-sectional area is at rest and has
a uniform linear charge density qo in the inertial frame K’. The frame K’ (and the
wire) move with a velocity v parallel to the direction of the wire with respect to
the laboratory frame K.

 
A,=I-— (y 6p) + y 6B,) > K — (B x 6B,)-S

(a) Write down the electric and magnetic fields in cylindrical coordinatesin the

rest frame of the wire. Using the Lorentz transformation properties of

the fields, find the components of the electric and magnetic fields in the

laboratory.

(b) What are the charge and current densities associated with the wire initsrest

frame? In the laboratory?

(c) From the laboratory charge and current densities, calculate directly the elec-
tric and magnetic fields in the laboratory. Compare with the results of part a.

(a) Express the Lorentz scalars F°?F4,, ¥°?Fo,, and #°°F,, in terms of E and
B. Are there any other invariants quadratic in the field strengths E and B?

(b) Isit possible to have an electromagneticfield that appears as a purely electric
field in one inertial frame and as a purely magneticfield in someotherinertial
frame? Whatare the criteria imposed on E and B suchthatthereis an inertial

frame in which there is no electric field?

(c) For macroscopic media, E, B form the field tensor F*° and D, H the tensor

G**, Whatfurther invariants can be formed? Whatare their explicit expres-
sions in terms of the 3-vector fields?

In a certain reference framea static, uniform, electric field Fy is parallel to the x

axis, and a static, uniform, magnetic induction By = 2Ep,lies in the x-y plane,
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making an angle 6 with the axis. Determine the relative velocity of a reference
frame in which the electric and magnetic fields are parallel. What are the feldsin
that frame for 6<1 and 6 = (a/2)?

In the rest frame of a conducting medium the current density satisfies Ohm’s law,

J’ = oF’, where o is the conductivity and primes denote quantities in the rest
frame.

(a) ‘Taking into account the possibility of convection current as well as conduc-
tion current, show that the covariant generalization of Ohm’s law is

1J* — 5 (UpI®)U* = - FU,

where U* is the 4-velocity of the medium.

(b) Showthat if the medium has a velocity v = cB with respect to someinertia]

frame that the 3-vector current in that frameis

J = yo[E+ B x B— B(P- E)] + pv

wherep is the charge density observed in that frame.

(c) If the medium is uncharged in its rest frame (p’ = 0), what is the charge

density and the expression for J in the frame of part b? Thisis the relativistic
generalization of the equation J = o(E + v X B (seep. 320).

The electric and magnetic fields (11.152) of a charge in uniform motion can be
obtained from Coulomb’s law in the charge’s rest frame and thefact that thefield
strength F°* is an antisymmetric tensor of rank 2 without considering explicitly the
Lorentz transformation. The ideais the following. For a charge in uniform motion
the only relevant variables are the charge’s 4-velocity U* and the relative coordi-
nate X* = x5 — x7, where x5 and x7 are the 4-vector coordinates of the observation

point and the charge, respectively. The only antisymmetric tensor that can be
formed is (X°U® — X®U*). Thus the electromagnetic field F** must be this tensor
multiplied by some scalar function of the possible scalar products, X,X°*, X,,U%,

UU.

(a) For the geometry of Fig. 11.8 the coordinates of P and g at a commontime
in K can be written x> = (ct, b), x7 = (ct, vt), with b- v = 0. By considering
the general form of F** in the rest frame of the charge, show that

pee = 4 (X°U® — XPU*)

Cc

 

1 3/2

2 (U,X*)* — Xx]

Verify that this yields the expressions (11.152) in the inertial frame K.

(b) Repeat the calculation, using as the starting point the common-time coor-
dinates in the rest frame, x/,* = (ct’, b — vt’) and xj* = (ct’, 0). Show that

q (Y°U® — Y®U*)Fee = 4
C (-Y,Y*)*”
 

where Y’“ = x,,° — x3*. Verify that the fields are the sameasin part a. Note
that to obtain the results of (11.152) it is necessary to use the time ¢ of the

observation point P in K as the time parameter.

(c) Finally, consider the coordinate x} = (ct, b) and the “retarded-time”’ coor-
dinate xf = [ct — R, B(ct — R)] where R is the distance between P and q at
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the retarded time. Define the difference as Z* = [R, b — B(ct — R)]. Show
that in terms of Z* and U* thefield is

_ q(Z2U® — ZPU%)
1 3

(ceCc

The electric and magnetic fields of a particle of charge g movingin straightline
with speed v = Bc, given by (11.152), become more and more concentrated as
8 — 1, as is indicated in Fig. 11.9. Choose axesso that the charge movesalong the

z axis in the positive direction, passing the origin at t = 0. Let the spatial coordi-
nates of the observation point be (x, y, z) and define the transverse vector r,, with
components x and y. Considerthe fields and the source in the limit of B = 1.

(a) Show that the fields can be written as

Free  

v x
E = 2q 5 8(ct ~ 2); B = 2q~ nt

2
4

 6(ct — z)
ry

where is a unit vector in the direction of the particle’s velocity.

(b) Show bysubstitution into the Maxwell equationsthat thesefields are consis-

tent with a 4-vector source density,

J* = qcev*6™(r,)5(ct — z)

where the 4-vector v% = (1, ¥).

(c) Show that the fields of part a are derivable from either of the following
4-vector potentials,

A® = A® = —2q6(ct — z) In(Ar,); A, = 0

or

A°=0=A*; A, = —2q@(ct — z) V, In(r,)

where A is an irrelevant parametersetting the scale of the logarithm.
Show that the two potentials differ by a gauge transformation and find

the gauge function,y.

Reference: R. Jackiw, D. Kabat, and M. Ortiz, Phys. Lett. B 277, 148 (1992).

A particle of mass M and 4-momentum P decaysinto two particles of masses m,
and Mp.

(a) Use the conservation of energy and momentum in the form, p, = P — py,

and the invariance of scalar products of 4-vectors to showthat the total en-
ergy of the first particle in the rest frame of the decayingparticle is

— M+ mm - ms
E

; 2M
 

and that FE, is obtained by interchanging m, and mp.

(b) Show that the kinetic energy T; of the ith particle in the same frameis

m, AM
T; = AM(: "WW 34

where AM = M — m, — myis the mass excess or Q value of the process.

(c) The charged pi-meson (M = 139.6 MeV) decays into a mu-meson (m, =
105.7 MeV) and a neutrino (m, = 0). Calculate the kinetic energies of the
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mu-meson and the neutrino in the pi-meson’s rest frame. The uniquekinetic
energy of the muonis the signature of a two-body decay. It entered impor-
tantly in the discovery of the pi-meson in photographic emulsions by Powé]]
and coworkersin 1947.

The lambda particle (A) is a neutral baryon of mass M = 1115 MeVthat decays
with a lifetime of 7 = 2.9 X 10°" s into a nucleon of mass m, ~ 939 MeV and a
pi-meson of mass m, ~ 140 MeV.It wasfirst observed in flight by its charge
decay mode A — p + win cloud chambers. The charged tracks originate from a
single point and have the appearance of an inverted vee or lambda.Theparticles’
identities and momenta can be inferred from their ranges and curvaturein the

magnetic field of the chamber.

(a) Using conservation of momentum and energy and the invariance of scalar

products of 4-vectors show that,if the opening angle 6 between the twotracks
is measured, the massof the decaying particle can be found from the formula

M* = mi + m5 + 2E,E, — 2pip2 cos 0

where here p; and p> are the magnitudesof the 3-momenta.

(b) A lambdaparticle is created with a total energy of 10 GeV in collision in

the top plate of a cloud chamber. Howfar on the averagewill it travel in the
chamber before decaying? What range of opening angles will occur for a
10 GeV lambdaif the decay is moreorless isotropic in the lambda’s rest
frame?

If a system of mass M decays or transformsat rest into a numberof particles, the

sum of whose massesis less than M by an amount AM,

(a) show that the maximum kinetic energy of the ith particle (mass m,) is

m, AM
T, = AM|1 - — - ——

( 1max ( M |

(b) determine the maximum kinetic energies in MeV and also the ratios to AM
for each of the particles in the following decays or transformationsofparticles
at rest:

uretvtD
K's mWwt+ata

K=>e+mtyp

K* > p+ mtypv

ptpo2n* +207+ 7°

pt+p—2kK*t4+K~ +37

The presence in the universe of an apparently uniform ‘“‘sea’”’ of blackbody radi-
ation at a temperature of roughly 3K gives one mechanism for an upper limit on
the energies of photons that have traveled an appreciable distance since their
creation. Photon-photoncollisions can result in the creation of a charged particle
and its antiparticle (“pair creation’’) if there is sufficient energy in the center of
‘“‘mass”’ of the two photons. The lowest threshold and also the largest cross section
occurs for an electron-positron pair.

(a) Taking the energy of a typical 3K photon to be E = 2.5 X 10“ eV,calculate
the energy for an incident photon such that there is energy just sufficient to
make an electron-positron pair. For photons with energies larger than this
threshold value, the cross section increases to a maximum of the order of

(e*/mc’)’ and then decreases slowly at higher energies. This interaction is one
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mechanism for the disappearanceof such photonsas they travel cosmological

distances.

(b) There is some evidence for a diffuse x-ray background with photons having
energies of several hundred electron volts or more. Beyond 1 keV the spec-
trum falls as E~” with n ~ 1.5. Repeat the calculation of the threshold inci-
dent energy, assuming that the energy of the photon in the “sea” is 500 eV.

In a collision process a particle of mass mp, at rest in the laboratory, is struck by
a particle of mass m,, momentum p;az andtotal energy FE)ax.In the collision the

two initial particles are transformed into two others of mass m3 and m4. The con-

figurations of the momentum vectors in the center of momentum (cm) frame(tra-
ditionally called the center-of-mass frame) and the laboratory frame are shown in
the figure.

P3 q’
m2 e ao

Pras ee
; p -ea 5

mye phen _ ts__ mie ——* m2
mg 04 om p

P4 4

Laboratory frame cm frame

Problem 11.23

 

(a) Use invariant scalar products to show that the total energy Win the cm frame

has its square given by

Ww, = m; + ms + 2MEAR

and that the cms 3-momentum p’is

» _ M2PLas

WwW

(b) Show that the Lorentz transformation parameters B,,, and ym describing the

velocity of the cm frame in the laboratory are

PLaB _ Mm+ Eras
Bom ~~ M> 4 Evap ’ Yom — W

(c) Show that the results of parts a and b reduce in the nonrelativistic limit to

the familiar expressions,

 
2

My DPLAB
W=m, + Mm +

, . (7 2m,

p’ = My p Bon ~ PLAB

m, +m, )***” omy, + Mo

The threshold kinetic energy 7; in the laboratory for a given reactionis the kinetic
energy of the incident particle on a stationary target just sufficient to make the
center of mass energy W equalto the sum of the rest energies of the particles in
the final state. Calculate the threshold kinetic energies for the following processes.
Express your answers in MeV or GeV andalso in units of the rest energy of the
incidentparticle (unless it is a massless particle).

(a) Pi-meson photoproduction, yp — m°p

(m, = 938.5 MeV, —m,o = 135.0 MeV)
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(b) Nucleon-antinucleon pair production in nucleon-nucleon collisions, for ex-

ample, pp — pppp.
(c) Nucleon-antinucleon pair production in electron-electron collisions, e~e-—s

eepp ande’e— pp (m, = 0.511 MeV).

In colliding beam machines such as the Tevatron at Fermilab or the numeroys

e’estorage rings, counterrotating relativistic beams of particles are stored and
made to collide more or less head-on in one or more interaction regions. Let the

particles in the two beams have masses m; and m, and momenta p, and py,re-

spectively, and let them intersect with an angle 0 between the two beams.

(a) Show that, to order (m/p)* inclusive, the square of the total energy in the em
frameis

) mm ms
W? =4 e+ + —+—PiP2 COS 7 (Pi pa(2 Po

(b) Show that the cm inertial frame has a velocity in the laboratory given by

_ (pi + p2) sin 6/2

(Ey + E,) sin a

+ 6
tana = (B*22) tan =

1 P2 2

The angle a is defined in the figure.

(c) Check that the results of part b agree with those of Problem 11.23b.

(d) If the crossing angle is 6 = 20° and the colliding protons have p; = p» = 100
GeV/c, is the laboratory frame a reasonable approximationto the cm frame?
Consider, for example, a proton-proton inelastic collision involving pion pro-
duction and examinethe collinearity of two pions produced with equal and
opposite momenta of 10 GeV/c in the cm frame.

 Bom

where

Bom

 

6/2 6/2

Pi P2 Problem 11.25

In an elastic scattering process the incident particle imparts energy to the station-
ary target. The energy AF lost by the incident particle appears as recoil kinetic
energy of the target. In the notation of Problem 11.23, m3 = m, and m4 = mM,

while AE = T, = E, — IN.

(a) Show that AF can be expressed in the following different ways,

AE = yi Pias(| — cos 6’)

AE = 22).AB cos’ 0,

— W? + pap sin?Pras Sin’ 6,
Q?

7 2M>

 

AE
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where Q* = —(p; — p3)* = (p, — ps)” — (£; — E;)’ is the Lorentz invariant
momentum transfer (squared).

(b) Show that for charged particles other than electrons incident on stationary
electrons (m, >> m2) the maximum energyloss is approximately

AEmax = 2y?B°’m-

where y and £ are characteristic of the incident particle and y < (m,/m,).

Give this result a simple interpretation by considering the relevant collision
in the rest frame of the incident particle and then transforming back to the
laboratory.

(c) For electron-electron collisions, show that the maximum energytransferis

AES. = (y — 1m,

(a) Accharge density p’ of zero total charge, but with a dipole momentp,exists
in reference frame K’. There is no current density in K’. The frame K’ moves
with a velocity v = Bc in the frame K.Find the charge and current densities
p and J in the frame K and showthat there is a magnetic dipole moment,
m = (p X B)/2, correct to first order in 8. Whatis the electric dipole moment
in K to the same orderin B?

(b) Instead of the charge density, but no current density, in K’, consider no

charge density, but a current density J’ that has a magnetic dipole moment
m. Find the charge and current densities in K and show thatto first order in
B there is an electric dipole moment p = B X m in addition to the magnetic
dipole moment.

Revisit Problems 6.21 and 6.22 from the viewpoint of Lorentz transformations. An
electric dipole instantaneously at rest at the origin in the frame K’ haspotentials,
@’ = p-r’/r’’, and A’ = 0 (andthusonly anelectric field). The frame K’ moves
with uniform velocity v = Bcin the frame K.

(a) Show that in frame K tofirst order in B the potentials are

p-R _ (P:R)
R? ; A=f6 R?
 @m =

where R = x — x,(t), with v = dx/dt at timet.

(b) Show explicitly that the potentials in K satisfy the Lorentz condition.

(c) Show thatto first order in B the electric field E in K is just the electric dipole
field (centered at x9), or a dipole field plus time-dependent higher multipoles,
if viewed from fixed origin, and the magnetic field is B = B < E. Whereis
the effective magnetic dipole moment of Problem 6.21 or 11.27a?

Instead of the electric dipole potential of Problem 11.28, consider a point magnetic
moment m in the moving frame K’, with its potentials, ®’ = 0, A’ = m x r’/r’?

(and so only a magnetic field).

(a) Showthatto first order in B the potentials in K are

(B xX m)-R (m x R)

Dae AR
Note that the scalar potential is the sameasthestatic potential of the electric
dipole moment of Problem 11.27b. [But this gives only the irrotational part
of the electric field.]
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(b) Calculate the electric and magneticfields in K from the potentials and show
that the electric field can be expressed alternatively as

[3n(n - B) — BI
R?

[m(n- B) + B(n- m)]3
E = EyPa = : x m| + 5 x R

£

 E = Egipote(Derr = Bp X m) —- m x

 

E=Bx 8B

where B is the magnetic dipole field. In light of Problem 6.22, comment on
the interpretation of the different forms.

An isotropic linear material medium, characterized by the constitutive relations
(in its rest frame K’), D’ = cE’ and wH’ = B’, is in uniform translation with
velocity v in the inertial frame K. By exploiting the fact that F,, = (E, B) and

G,,, = (D, H) transform as second rank 4-tensors under Lorentz transformations,

show that the macroscopic fields D and H are given in terms of E and B by

D= E+ v*(« - *(ee, +p xB]

H = 1, + aC — (68, + B x E]
be be

where E, and B, are components perpendicularto v.

Consider a hollow right-circular cylinder of magnetic insulator (relative perme-

abilities « and yw and inner and outer radii a and b) set in rotation aboutits axis
at angular speed w in a uniform axial magnetic field Bp. In 1913 the Wilsons mea-
sured the voltage difference betweenits inner and outer surfaces caused by a radial
internalelectric field. Assuming that locally the relations of Problem 11.30 hold,
that the velocity vy = wpd, and that there are only the field components E,
and B,, which are independent of z and @, solve the equations V-D = 0 and
V xX H = 0 within the cylinder and show that the internalfields are

LwpBo 1 1 — w*p*/c*pe
p=aaa (hs Be = BBo) Tac(1 — w*p*/c’) bee 1 — ow*p’lc

and that for nonrelativistic motion (wb/c << 1) the voltage difference is

by

Ho 2 2 1V = —B,(b* - 1-—
2c of ° ( =|

This experiment wasanearly validation of special relativity and Minkowski’selec-
trodynamics of material media in motion.If you are curious about how the Wilsons
made a magnetic insulator, look up the paper.

Reference: M. Wilson and H. A. Wilson, Proc. Roy. Soc. London A89, 99-106

(1913).



CHAPTER 12

Dynamics of Relativistic Particles
and Electromagnetic Fields

The kinematics of the special theory of relativity was developed in Chapter11.

We nowturn to the question of dynamics. In the first part of the chapter we

discuss the dynamics of charged particle motion in external electromagnetic
fields. The Lagrangian approach to the equations of motion is presented mainly

to introduce the concept of a Lorentz invariant action from which covariant dy-
namical equations can be derived. The transition to a Hamiltonian, with the

definition of the canonical momentum, is then discussed. Several sections are

devoted to the motion of a chargedparticle in electric and magnetic fields. Our
treatment of motion in a uniform static magnetic field is followed by considera-

tion of motion in a combination of electric and magnetic fields. Then the secular

changes (drifts) of a particle’s orbit caused by nonuniform magnetic fields and
the adiabatic invariance of the linked flux are discussed. The problem ofa rela-

tivistic Lagrangian for a system of interacting chargedparticles is addressed, and
it is shown that to order v*/c’ it is possible to eliminate retardation effects and
write a Lagrangian (the Darwin Lagrangian) in terms of the instantaneous po-

sitions and velocities of the particles.
In the last five sections of the chapter the emphasis is on fields. First, the

Maxwell equations are derived from a suitable Lagrangian. Then, a modified

Lagrangian describing a “‘photon”’ with massis presented and its consequences

in resonantcircuits, transmission lines, and cavities described, as well as its man-

ifestation in superconductors. A covariant generalization of the Hamiltonian for

fields is next discussed, along with the conservation laws of energy, momentum,

and angular momentum for fields, both source free and in interaction with

charged particles. The chapter ends with a derivation of the invariant Green

functions that form the basis of the solution of the wave equation with a given
4-vector current density as source.

12.1 Lagrangian and Hamiltonianfor a Relativistic Charged
Particle in External Electromagnetic Fields

The equations of motion

dp u
—=elE+—-xB 12.1
dt | C (12.1)

dE
dt =eu-E (12.2)

579
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for a particle of charge e in externalfields E and B can be written in the covariant
form (11.144):

#

dU® e
Tn = 7FMUs (12.3) 

where m is the mass, 7 is the proper time, and U* = (yc, yu) = p*/m is the
4-velocity of the particle.

Although the equations of motion (12.1) and (12.2) are sufficient to describe
the general motion of a charged particle in external electromagnetic fields
(neglecting the emission of radiation),it is useful to consider the formulation of
the dynamics from the viewpoint of Lagrangian and Hamiltonian mechanics. The

Lagrangian treatment of mechanics is based on the principle at least action or
Hamilton’s principle. In nonrelativistic mechanics the system is described by gen-

eralized coordinates q;(t) and velocities g;(t). The Lagrangian L is a functional
of g; and qg; and perhaps the time explicitly and the action A is defined as the
time integral of L along a possible path of the system. The principle ofleast action
states that the motion of a mechanical system is such that in going from a con-

figuration a at time ¢, to a configuration b at time f, the action

A= | Liq,(t), gi(t), t| dt (12.4)

is an extremum.By considering small variations of the coordinates and velocities
away from the actual path and requiring 6A = 0, one obtains (see Goldstein,
Chapter 2) the Euler-Lagrange equations of motion,

d [oL OL
— (2) —-—=-0 (12.5)
dt \0q; Odi

Wewish to extend the formalism to relativistic particle motion in a manner

consistent with the special theory of relativity and leading for charged particles

in external fields to (12.1) and (12.2) or (12.3). There are several levels of so-
phistication possible. The least sophisticated and most familiar treatment contin-

ues with ordinary coordinates, velocities, and time and generalizes from the non-

relativistic domain in a straightforward way. Moresophisticated is a manifestly

covariant discussion. Wefirst present the elementary approach andthen indicate

the manifestly covariant treatment.

A. Elementary Approach to a Relativistic Lagrangian

To obtain a relativistic Lagrangian for a particle in external fields wefirst
consider the question of the Lorentz transformation properties of the Lagrangian.
From thefirst postulate of special relativity the action integral must be a Lorentz

scalar because the equations of motion are determined by the extremum condi-
tion, 5A = 0. If we introduce the particle’s proper time 7 into (12.4) through

dt = y dr, the action integral becomes

A=| yar (12.6)

Since propertimeis invariant the condition that A also be invariant requires that

yL be Lorentz invariant.

The Lagrangian for a free particle can be a function of the velocity of the
particle and its mass, but cannot dependonits position. The only Lorentz invar-
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iant function of the velocity available is U,U* = c*. Thus we conclude that the

Lagrangianfora free particle is proportional to y-' = V1 — 7. Itis easily seen
that

Lrree = —mc*_/1 — 2 (12.7)

is the proper multiple of y~* to yield, through (12.5), the free-particle equation

of motion,

“ (ymu) = 0 (12.8)

The action (12.6) is proportional to the integral of the proper time overthe

path from the initial proper time 7, to the final proper time 7. This integral1s
Lorentz invariant, but it depends on the path taken. For purposesof calculation,

consider a reference framein which theparticle is initially at rest. From definition
(11.26) of propertimeit is clear that, if the particle stays at rest in that frame,the
integral over proper time will be larger than if it moves with a nonzero velocity

along its path. Consequently we see that a straight world line joining the initial
andfinal points of the path gives the maximum integral over propertimeor, with

the negative sign in (12.7), a minimum forthe action integral. This motion at
constantvelocity is, of course, the solution of the free-particle equation of motion.

The general requirement that yL be Lorentz invariant allowsus to determine
the Lagrangian for a relativistic charged particle in external electromagnetic

fields, provided we know something about the Lagrangian (or equations of mo-

tion) for nonrelativistic motion in static fields. A slowly moving charged particle

is influenced predominantly by the electric field that is derivable from the scalar

potential ®. The potential energy of interaction is V = e®. Since the nonrelativ-
istic Lagrangian is (T — V), the interaction part Lin, of the relativistic Lagrangian
must reduce in the nonrelativistic limit to

Lin > Lins = —e® (12.9)

Our problem thus becomesthatof finding a Lorentz invariant expression for yLint

that reducesto (12.9) for nonrelativistic velocities. Since ® is the time component
of the 4-vector potential A%, we anticipate that yL;,; will involve the scalar prod-

uct of A® with some 4-vector. The only other 4-vectors available are the momen-

tum andposition vectors of the particle. Since gammatimes the Lagrangian must

be translationally invariant as well as Lorentz invariant, it cannot involve the co-
ordinates explicitly. Hence the interaction Lagrangian must be*

Lin = ——— U,A* (12.10)
ye

OT

Lim = —e® + -u A (12.11)

*Without appealing to the nonrelativistic limit, this form of L;,, can be written down by demanding
that yLin, be a Lorentz invariant that is (1) linear in the charge of the particle, (2) linear in

the electromagnetic potentials, (3) translationally invariant, and (4) a function of no higher than the
first time derivative of the particle coordinates. The reader may consider the possibility of an inter-

action Lagrangian satisfying these conditions, butlinear in the field strengths F°?, rather than the

potentials A*.
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The combination of (12.7) and (12.11) yields the complete relativistic Lagrangian
for a charged particle:

L = -mc* peeae 12ote (12.12)

Verification that (12.12) does indeed lead to the Lorentz force equation will be

left as an exercise for the reader. Use must be madeof the convective derivative
[d/dt = (d/dt) + u+ V] and the standard definitions of the fields in termsofthe
potentials.

The canonical momentum P conjugate to the position coordinate x is ob-

tained by the definition,

éL e
= on ymu; A; (12.13)

Thus the conjugate momentum is

e
P=pt _A (12.14)

where p = ymuis the ordinary kinetic momentum. The Hamiltonian H is a

function of the coordinate x and its conjugate momentum P andis a constantof
the motion if the Lagrangianis not an explicit function of time. The Hamiltonian

is defined in terms of the Lagrangian as

The velocity u must be eliminated from (12.15) in favor of P and x. From (12.13)
or (12.14) we find that

P — cAu = a (12.16)
2

(p — cA) + mc?
c

Whenthis is substituted into (12.15) and into L (12.12), the Hamiltonian takes

on the form:

  

 
H = V(cP — eA) + m’c* + e® (12.17)

Again the reader may verify that Hamilton’s equations of motion can be com-
bined to yield the Lorentz force equation. Equation (12.17) is an expression for
the total energy W of the particle. It differs from the free-particle energy by the

addition of the potential energy e® and by the replacement p — [P — (e/c)A].
These two modifications are actually only one 4-vector change. This can be seen
by transposing e® in (12.17) and squaring both sides. Then

(W — e®) — (cP — eA) = (mc’y’ (12.18)

This is just the 4-vector scalar product,

Pap* = (mce)° (12.19)

where

p? = (=. P| = ( (W — e®), P — <A) (12.20)
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Weseethat the total energy W/c acts as the time component of a canonically

conjugate 4-momentum P* of which P given by (12.14) is the space part. A man-

ifestly covariant approach, discussed in the following paragraphs andalso in

Problem 12.1 leads naturally to this 4-momentum.
In passing we remark on the question of gauge transformations. Obviously

the equations of motion (12.1) and (12.2) are invariant under a gauge transfor-
mation of the potentials. Since the Lagrangian (12.10) involves the potentials
explicitly, it is not invariant. In spite of this lack of invariance of L under gauge
transformationsit can be shown (Problem 12.2) that the change in the Lagrangian
is of such a form (a total time derivative) that it does not alter the action integral
or the equations of motion.

B. Manifestly Covariant Treatmentof the Relativistic Lagrangian

To make a manifestly covariant description, the customary variables x and

u are replaced by the 4-vectors x* and U*. The free-particle Lagrangian (12.7)
can be written in terms of U® as

mc
Live = ~— VUU* (12.21)

y

Then the action integral (12.6) would be

A= -me | VU.,U*% dt (12.22)

This manifestly invariant form might be thought to provide the starting point for

a variational calculation leading to the equation of motion, dU°/dt = 0. There
is, however, the equation of constraint,

 

U,U* = c (12.23)

or the equivalent constraint,

dU°
U, = 0 (12.24)

dt

on the equations of motion. This can be incorporated by the Lagrange multiplier

technique, but we pursue a different, equivalent procedure. The integrand in
(12.22) is

dx, dx*VU,U* dr = [22 = dr = Vgdx, dx,
dt dt

that is, the infinitesimal length elementin 4-space. This suggests that the action

integral (12.22) be replaced by

2 dx, dA= -me | [ p26 =" 2 ds (12.25)

where the 4-vector coordinate of the particle is x*(s), with s a parameterthatis

a monotonically increasing function of 7, but otherwise arbitrary. The action
integral is an integral along the world line of the particle, and the principle of
least action is the statementthat the actual path is the longest path, namely the
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goedesic.* The Lagrangian variables are now x“ and “‘the velocity”’ dx*/ds, but s

is considered as arbitrary. Only after the calculus of variations has been com-

pleted do we identify

| dx, axap Za "Bb —
g ds ds ds cdt (12.26)

and so impose the constraint (12.23). A straightforward variational calculation

with (12.25) yields the Euler-Lagrange equations,

 

me dad dx“/ds 9 109

ds (dip dx’) wee
ds ds

or

d*x°m— = 0 (12.28)

as expected for free-particle motion.
For a chargedparticle in an external field the form of the Lagrangian (12.11)

suggests that the manifestly covariant form of the action integralis

7 dx, dXp € UXa yo
a=-| meeree és teas4a 1229)

Hamilton’s principle yields the Euler-Lagrange equations,

d aL

ds aXg
0 —_—

ds

where the Lagrangianis

- dx, dXg ,@ dXqLE = -| me_/g2® —* —* + A* 12.31
me fds dsc ds AN} (

Explicitly, (12.30), upon division by the square root and use of (12.26), becomes

d°x*  edA%(x)  e dxg 5

 

~ f= 0 (12.30)

 

< EEE £8 gnah(x) = 0
m dt c dt c at )

Since dA°/dt = (dx,/dt) 0°A®%, this equation can be written as

d°x* e dx
= -— (9*A® — a®A%) —® 12.32

m dt’ c (9 va”) dt (

which is the covariant equation of motion (12.3) in different notation.

The transition to the conjugate momenta and a Hamiltonian is simple

enough, but has problemsof interpretation. The conjugate momentum 4-vector

is defined by

L
pe = —-— = mye + © 2 (12.33)

Cc5 AXg

ds

*The geodesic is the longest path or longest proper time for timelike separation of events. See

Rohrlich, pp. 277-278.
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The minussign is introduced so that (12.33) conforms with (12.14); its origin can
be traced to the properties of the Lorentz space-time. A Hamiltonian can be

defined by

H=P,U°+E (12.34)

Elimination of U* by meansof (12.33) leads to the expression,

a= [?. - As) [» _ eA -<J(». _* A.] [> _< a") (12.35)
AA) C C C C

Hamilton’s equations are

* 0Hdx“ _ 9 - (pe -£ 4°)

C

 

  

 

dt dP, m
and ; (12.36)

dp*_ 0H oe [?, _ eA) 4048
at Ox, me C

e e
where we have made use of the constraint [?. —- A.) [> —- A") = mc?

C C

after differentiation. These two equations can be immediately shown to be equiv-
alent to the Euler-Langrange equation (12.32).

While the Hamiltonian aboveis formally satisfactory, it has several problems.

Thefirst is that it is by definition a Lorentz scalar, not an energylike quantity.
Second,use of (12.23) and (12.33) shows that H = 0. Clearly, such a Hamiltonian
formulation differs considerably from the familiar nonrelativistic version. The

reader can refer to Barut (pp. 68 ff.) for a discussion of this and other alternative
Hamiltonians.

12.2. Motion in a Uniform, Static Magnetic Field

Asa first important example of the dynamics of charged particles in electromag-
netic fields we consider the motion in a uniform, static, magnetic induction B.

The equations of motion (12.1) and (12.2) are

d e dE
“P= * v X B, —_ =
dt Cc dt

where here the particle’s velocity is denoted by v. Since the energy is constant

in time, the magnitude of the velocity is constant and so is y. Thenthefirst
equation can be written

0 (12.37)

dv
i =VvVX Ws, (12.38)

where

eB ecB
= —_— = — 12.39OB ymc E ( )

is the gyration or precession frequency. The motion described by (12.38) is a

circular motion perpendicular to B and a uniform translation parallel to B. The

solution for the velocity is easily shown to be

v(t) = vje; + wga(e, — i€,)e*°*" (12.40)
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where e€; is a unit vector parallel to the field, €, and €, are the other orthogonal

unit vectors, v, is the velocity componentalong thefield, and a is the gyration

radius. The conventionis that the real part of the equation is to be taken. Then
one can see that (12.40) represents a counterclockwise rotation (for positive
charge e) when viewedin the direction of B. Anotherintegration yields the dis.
placementof the particle,

x(t) = Xo + U)LE3 + ia(€, — ie,)e1°" (12.41)

Thepathis a helix of radius a and pitch angle a = tan* (v,/wga). The magnitude
of the gyration radius a depends on the magnetic induction B andthetransverse
momentum p, of the particle. From (12.39) and (12.40) it is evident that

cp, = eBa

This form is convenient for the determination of particle momenta. Theradius

of curvature of the path of a charged particle in a known B allows the determi-
nation of its momentum.Forparticles with charge the same in magnitudeas the
electronic charge, the momentum can be written numerically as

P.(MeVic) = 3.00 x 10°-“Ba (gauss-cm) = 300 Ba (tesla-m) (12.42)

12.3, Motion in Combined, Uniform, Static Electric
and Magnetic Fields

We nowconsider a charged particle moving in a combination of electric and
magnetic fields E and B, both uniform andstatic, but in general not parallel. As

an important special case, perpendicular fields will be treated first. The energy
equation (12.2) showsthat the particle’s energy is not constant in time. Conse-

quently we cannot obtain a simple equation for the velocity, as was done for a
static magnetic field. But an appropriate Lorentz transformation simplifies the

equations of motion. Consider a Lorentz transformation to a coordinate frame
K’ moving with a velocity u with respect to the original frame. Then the Lorentz

force equation for the particle in K’'is

dp’ _- (Ee 4 v’ Xx |

dt’ c

where the primed variables are referred to the system K'. The fields E’ and B’
are given by relations (11.149) with wv replaced by u. Let us first suppose that
|E| < |B]. If u is now chosen perpendicular to the orthogonal vectors E and B,

  

 

E xB
u=c R (12.43)

wefind the fields in K’' to be

, , u

(12.44)

;=9, B=
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where|| and _L refer to the direction of u. In the frame K’the only field acting is
a static magnetic field B’ which points in the same direction as B, but is weaker
than B by a factor y~'. Thus the motion in K’is the sameas that considered in

Section 12.2, namely a spiraling around the lines of force. As viewed from the
original coordinate system, this gyration is accompanied by a uniform “drift” u

perpendicular to E and B given by (12.43). This drift is sometimes called the
EX B drift. The drift can be understood qualitatively by noting that a particle

that starts gyrating around is accelerated bythe electric field, gains energy, and
SO movesin a path with a larger radius for roughly half of its cycle. On the other
half, the electric field decelerates it, causing it to lose energy and so move in a

tighter arc. The combination of arcs produces a translation perpendicular to E

and B as shownin Fig. 12.1. The direction of drift is independentof the sign of

the charge of the particle.

The drift velocity u (12.43) has physical meaning only if it is less than the

velocity of light, i-e., only if |E| < |B|. If |E| > |B|, the electric field is so strong
that the particle is continually accelerated in the direction of E and its average

energy continues to increase with time. To see this we consider a Lorentz trans-

formation from the original frame to a system K" moving with a velocity

 

E x B
 u’ =c Ee (12.45)

relative to the first. In this frame the electric and magnetic fields are

FE? _ RB 1/2

1 = 0, ei-te-(2—* E
y' E

(12.46)
a ”"

| 0, Bi
 {|

=
<

o
o wo |

=

a
|x ce

N
S ||

Thus in the system K”the particle is acted on by a purely electrostatic field which

causes hyperbolic motion with ever-increasing velocity (see Problem 12.3).

The fact that a particle can move through crossed E and B fields with the

uniform velocity u = cE/B providesthe possibility of selecting charged particles

according to velocity. If a beam of particles having a spread in velocities is nor-

mally incident on a region containing uniform crossed electric and magnetic

fields, only those particles with velocities equal to cE/B will travel without de-
flection. Suitable entrance and exitslits will then allow only a very narrow band

of velocities around cE/B to be transmitted, the resolution depending on the

geometry, the velocities desired, and the field strengths. When combined with

momentum selectors, such as a deflecting magnet, these E x B velocity selectors

, +e

I

L990,
a
-_

u
 

Figure 12.1 E x B drift of charged
B particles in crossedfields.
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can extract a very pure and monoenergetic beam ofparticles of a definite magg

from a mixed beam of particles with different masses and momenta. Large-seale

devices of this sort are commonly usedto provide experimental beamsofparticles

produced in high-energy accelerators.
If E has a componentparallel to B, the behavior of the particle cannot be

understood in such simple terms as above. The scalar produce E - B is a Lorentz
invariant quantity (see Problem 11.14), as is (B? — E*). Whenthefields were
perpendicular (E+ B = 0), it was possible to find a Lorentz frame where E = 9
if |B| > |E|, or B = 0 if |E| > |B]. In those coordinate frames the motion was
relatively simple. If E-B # 0, electric and magnetic fields will exist simulta-

neously in all Lorentz frames, the angle between the fields remaining acute or

obtuse depending on its value in the original coordinate frame. Consequently
motion in combined fields must be considered. When thefields are static and

uniform, it is a straightforward matter to obtain a solution for the motion in
Cartesian components. This will be left for Problem 12.6.

12.4 Particle Drifts in Nonuniform, Static Magnetic Fields

In astrophysical and thermonuclear applicationsit is of considerable interest to
know howparticles behave in magnetic fields that vary in space. Often the vari-

ations are gentle enough that a perturbation solution to the motion,first given
by Alfvén, is an adequate approximation. “‘Gentle enough” generally meansthat
the distance over which B changes appreciably in magnitudeordirection is large
compared to the gyration radius a of the particle. Then the lowest order approx-
imation to the motionis a spiraling aroundthelinesof force at a frequency given
by the local value of the magnetic induction. In the next approximation,the orbit

undergoes slow changesthat can be describedas a drifting of the guiding center.

Thefirst type of spatial variation of the field to be considered is a gradient

perpendicular to the direction of B. Let the gradient at the point of interest be

in the direction of the unit vector n, with n-B = 0. Then,to first order, the

gyration frequency can be written

W_(X) = md B(x) = onf + z (2) . ‘ (12.47)

In (12.47) éis the coordinate in the direction n, and the expansion is about the

origin of coordinates where w, = wo. Since the direction of B is unchanged,the

motion parallel to B remains a uniform translation. Consequently we consider

only modifications in the transverse motion. Writing v, = Vo + V1, where Vo is the

uniform-field transverse velocity and v, is a small correction term, we can sub-

stitute (12.47) into the force equation

avat X 0,(X) (12.48)

and, keeping only first-order terms, obtain the approximate result

dv 1 {0B
7 = C + Vo(n . Xo) Bo (2) x Wo (12.49)
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From (12.40) and (12.41) it is easy to see that for a uniform field the trans-

verse velocity Vp and coordinate x, are related by

Vo = —Wo X (Xo — X)

1 (12.50)

(Xo — X) = — (@p X Vo)
Wo

where X is the center of gyration of the unperturbed circular motion (X = 0

here). If (69 X vo) is eliminated in (12.49) in favor of xo, we obtain

dv 1 (0B
7 = p _ Bo (2)on x X)(n ° “| x Wo (12.51)

This showsthat apart from oscillatory terms, v, has a nonzero average value.

1 (0B
Vo =v) => (22 @o X ((Xo),(Ml + Xo)) (12.52)

Bo 0g O

To determine the average value of (Xo),(m+ Xo), it is necessary only to observe
that the rectangular componentsof (x9), oscillate sinusoidally with peak ampli-
tude a and a phasedifference of 90°. Hence only the componentof (Xo), parallel

to n contributes to the average, and

2a
((Xo).(m + Xo)) = FM (12.53)

Thus the gradient drift velocity is given by

a’ 1 (0B
=—-—|— x 12.54VG 2 Ba (22)(on n) ( )

Analternative form, independentof coordinates,is

Vc a
ond 2B? (B x V,B) (12.55)

From (12.55) it is evident that, if the gradient of the field is such that a |VB/B|
<< 1, the drift velocity is small comparedto the orbital velocity (wga). The par-

ticle spirals rapidly while its center of rotation moves slowly perpendicular to

both B and VB. The sense of the drift for positive particles is given by (12.55).

For negatively chargedparticles the sign of the drift velocity is opposite; the sign
change comesfrom the definition of wz. The gradient drift can be understood

qualitatively from consideration of the variation of gyration radiusasthe particle

movesin and out of regionsof larger than average and smaller than averagefield

strength. Figure 12.2 showsthis qualitative behavior for both signs of charge.

Anothertype of field variation that causesa drifting of the particle’s guiding

center is curvature of the lines of force. Consider the two-dimensionalfield shown
in Fig. 12.3. It is locally independentof z. Figure 12.3a showsa constant, uniform

magnetic induction Bo, parallel to the x axis. A particle spirals around thefield

lines with a gyration radius a and a velocity wgza, while moving with a uniform

velocity uv, along thelines of force. We wish to treat that motion as a zeroth-order

approximation to the motion of the particle in the field shownin Fig. 12.3), where

the lines of force are curved with a local radius of curvature FR that is large

comparedto a.
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Figure 12.2. Drift of charged particles

B due to transverse gradient of magnetic
field.

The first-order motion can be understood as follows. The particle tends to

spiral arounda field line, but the field line curves off to the side. Asfar as the

motion of the guiding center is concerned, this is equivalent to a centrifugal

acceleration of magnitude u;/R. This acceleration can be viewed asarising from

an effective electric field

ym Rs,
Ker = SD Rl (12.56)

in addition to the magnetic induction Bo. From (12.43) we see that the combined
effective electric field and the magnetic induction cause a curvature drift velocity,

ym ,RX Bo

 

Voc oO) Ui) R°B2 (12.57)

With the definition of wz = eBo/ymc, the curvature drift can be written

2

= 12.5
vc on ( RBo (12.58)

The direction of drift is specified by the vector product, in which R is the radius

vector from the effective center of curvature fo the position of the charge. The

sign in (12.58) is appropriate for positive charges and is independentofthe sign

of v). For negative particles the opposite sign arises from Wp.

A morestraightforward, although pedestrian, derivation of (12.58) can be

given by solving the Lorentz force equation directly. If we use cylindrical coor-

J J

Bo a

 

 

(a) (b)

Figure 12.3 (a) Particle moving in helical path alonglines of uniform, constant

magnetic induction. (b) Curvature of lines of magnetic induction will cause drift

perpendicular to the x-y plane.
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dinates (p, ¢, z) appropriate to Fig. 12.35 with origin at the center of curvature,

the magnetic induction has only a ¢ component, B, = Bo(R/p). Then the force
equation can beeasily shown to give the three equations:

ee R
p— po" = —Op—%

p

pd + 26h = 0 (12.59)

, RK
iL — WR Pp

The second equation hasa first integral, p’¢ = Rv), a constant. The third equation

has a first integral, Z = w, In(p/R) + vo, where Ug is a constant of integration.

With the zeroth-order trajectory a helix with radius small compared to R,it is
natural to write p = R + x and expand (p/R)” and In(p/R) in powers of x/R. Then
Z © wWpX + Uo, and the radial equation of motion can be approximated by

2 2

¥ + 243-1 ~ olx We R2) ~ p WpU0

which describes simple harmonicoscillations in x around a displaced equilibrium

2
U || Vo(x) ~ GE
wR Wz

where we have assumed uv, << w,R. The mean valueof z is then

2

(2) © up + wplx) ~ — (12.60)
wpR

 

This is just the curvature drift given by (12.58).
For regions of space in which there are no currents the gradient drift vg

(12.55) and the curvature drift v- (12.58) can be combinedinto one simple form.
This follows from the fact that for a two-dimensional field such as shown in
Fig. 12.3b V x B = 0 implies

VB R

BR
 

Evidently then, for a two-dimensionalfield, the sum of v, and vc is a total drift

velocity,

 Rx ® (12.61)1 1=OR (uj + | RB

where vu, = waa is the transverse velocity of gyration. For singly charged non-

relativistic particles in thermal equilibrium, the magnitudeof the drift velocity is

172 T(K)

R(m) B(gauss)
 Up(cm/s) = (12.62)

The particle drifts implied by (12.61) are troublesome in certain types of

thermonuclear machine designed to contain hot plasma. A possible configuration

is a toroidal tube with a strong field supplied by solenoidal windings around the
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torus. With typical parameters of R = 1 meter, B = 10° gauss, particles in a1 eV

plasma (J = 10* K) will have drift velocities up ~ 1.8 X 10° cm/s. This means
that they will drift out to the walls in a small fraction of a second. For hotter
plasmasthe drift rate is correspondingly greater. One way to preventthis first-

order drift in toroidal geometries is to twist the torus into a figure eight. Since

the particles generally make manycircuits around the closed path before drifting
across the tube, they feel no net curvature or gradientof the field. Consequently

they experience no netdrift, at least to first order in 1/R. This methodof elimi-
nating drifts due to spatial variations of the magnetic field is used in the
Stellarator type of thermonuclear machine, in which containment is attempted

with a strong, externally produced, axial magneticfield.

12.5 Adiabatic Invariance ofFlux Through Orbit ofParticle

The various motionsdiscussed in the preceding sections have been perpendicular

to the lines of magnetic force. These motions, caused by electric fields or by the
gradient or curvature of the magnetic field, arise because of the peculiarities of
the magnetic-force term in the Lorentz force equation. To complete our general

survey of particle motion in magnetic fields, we must consider motion parallel to

the lines of force. It turns out that for slowly varying fields a powerful tool is the

concept of adiabatic invariants. In celestial mechanics and in the old quantum
theory, adiabatic invariants were useful in discussing perturbations on the one

hand, and in deciding what quantities were to be quantized on the other. Our

discussion will resemble most closely the celestial-mechanical problem, since we

are interested in the behavior of a charged particle in slowly varying fields, which

can be viewed as small departures from the simple, uniform,static field consid-

ered in Section 12.2.
The concept of adiabatic invariance is introduced by considering the action

integrals of a mechanical system. If g; and p; are the generalized canonicalco-

ordinates and momenta,then, for each coordinate which is periodic, the action

integral J; is defined by

Ji = » p, dq; (12.63)

The integration is over a complete cycle of the coordinate q;. For a given me-

chanical system with specified initial conditions the action integrals J; are con-

stants. If now the properties of the system are changed in some way(e.g., a change

in spring constant or mass of someparticle), the question arises as to how the

action integrals change. It can be proved*that, if the change in property is slow

compared to the relevant periods of motion andis not related to the periods

(such a changeis called an adiabatic change), the action integrals are invariant.

This meansthat, if we have a certain mechanical system in some state of motion

and we make an adiabatic change in someproperty so that after a long time we

end up with a different mechanical system, the final motion of that different

system will be such that the action integrals have the same valuesasin theinitial

*See, for example, M. Born, The Mechanics of the Atom, Bell, London (1927), or I. Percival and

D. Richards, Introduction to Dynamics, Cambridge University Press, Cambridge (1982), Section 9.4.



Sect. 12.5 Adiabatic Invariance of Flux Through Orbit of Particle 593

system. Clearly this provides a powerful tool in examining the effects of slow
changesin properties.

For a charged particle in a uniform, static, magnetic induction B, the trans-

verse motion is periodic. The action integral for this transverse motionis

J= ¢ P,-dl (12.64)

where P, is the transverse component of the canonical momentum (12.14) and
dl is a directed line elementalong the circular path of a particle. From (12.14)
wefind that

1 = mv, +dt + © > Asal (12.65)

Since v, is parallel to dl, we find

J = ¢ ymw,a’ do + - ¢ A-dl (12.66)

Applying Stokes’s theorem to the second integral and integrating over 6 in the

first integral, we obtain

J = 27ymwza’ + “| B-nda (12.67)
s

Since the line element dl in (12.64) is in a counterclockwise senserelative to B,
the unit vector n is antiparallel to B. Hence the integral over the circular orbit

subtracts from the first term. This gives

J = ymogra = - (Bra?) (12.68)

making use of wz = eB/ymc. The quantity Ba’is the flux through the particle’s
orbit.

If the particle moves through regions where the magnetic field strength varies

slowly in space or time, the adiabatic invariance of J means that the flux linked

by the particle’s orbit remains constant. If B increases, the radius a will decrease

so that Bza* remains unchanged. This constancy offlux linked can be phrased

in several ways involving the particle’s orbit radius, its transverse momentum,its

magnetic moment. These different statements take the forms:

Ba?

p°/B are adiabatic invariants (12.69)

Yo

where wt = (ewza‘/2c) is the magnetic momentofthe currentloopof the particle
in orbit. If there are only static magnetic fields present, the speed of the particle
is constant and its total energy does not change. Then the magnetic moment pu
is itself an adiabatic invariant. In time-varying fields or with static electric fields,

is an adiabatic invariant only in the nonrelativistic limit.

Let us now consider a simple situation in which a static magnetic field B acts
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mainly in the z direction, but has a small positive gradientin that direction. Figure
12.4 shows the general behavior of the lines of force. In addition to the z com-

ponentoffield there is a small radial componentdueto the curvature ofthelines
of force. For simplicity we assumecylindrical symmetry. Supposethat a particle
is spiraling aroundthe z axis in an orbit of small radius with a transverse velocity
V,9 and a componentof velocity v,o parallel to B at z = 0, where the axial field
strength is By. The speed of the particle is constant so that any position along the
Z axis

uy + UL = U6 (12.70)

where UG = Uio + Ujo is the square of the speed at z = 0. If we assumethat the
flux linked is a constant of motion, then (12.69) allows us to write

Vi Vio= 12.BB (12.71)

where B is the axial magnetic induction. Then wefind the parallel velocity at any
position along the z axis given by

B
Ui = V6 — Vio Biz) (12.72)

Bo

Equation (12.72) for the velocity of the particle in the z direction is equivalent

to the first integral of Newton’s equation of motion for a particle in a one-
dimensional potential*

2

V(z) = 5 © Bz)
Bo

If B(z) increases enough, eventually the right-hand side of (12.72) will vanish at
some point z = Zp. This means that the particle spirals in an ever-tighter orbit
along the lines of force, converting more and more translational energy into
energy of rotation, until its axial velocity vanishes. Then it turns around,still

spiraling in the same sense, and moves back in the negative z direction. The
particle is reflected by the magnetic field, as is shown schematically in Fig. 12.5.

Equation (12.72) is a consequence of the assumption that p*/B is invariant.

To show that at least to first order this invariance follows directly from the
Lorentz force equation, we consider an explicit solution of the equations of mo-

*Note, however, that our discussion is fully relativistic. The analogy with one-dimensional nonrela-

tivistic mechanics is only a formal one.
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Figure 12.5 Reflection of charged
particle out of region of high field
strength. 

tion. If the magnetic induction along the axis is B(z), there will be a radial com-

ponent of the field near the axis given by the divergence equation as

dB(zB,(p, 2) ~ ip2 (12.73)
OZ

where p is the radius out from the axis. The z component of the force equation
1S

. OB€ ord 2 (z)
— 12.74
2ymc OZ ( )

e .
oes —_ —__ __ B ~

z me | poB,)

where ¢is the angular velocity around the z axis. This can be written, correct to

first order in the small variation of B(z), as

2
. Vio OB(z)
= -—— —— 12.75

“ 2By OZ ( )

where we have used p*h ~ —(a°wg)y = —(V%9/Wgo). Equation (12.75) hasasits
first integral (12.72), showing that to first order in small quantities the constancy
of flux linking the orbit follows directly from the equations of motion.

The adiabatic invariance of the flux linking an orbit is useful in discussing
particle motionsin all types of spatially varying magnetic fields. The simple ex-

ample described above illustrates the principle of the ‘‘magnetic mirror”:

Charged particles are reflected by regions of strong magnetic field. This mirror
property formed the basis of a theory of Fermi for the acceleration of cosmic-

ray particles to very high energiesin interstellar space by collisions with moving

magnetic clouds. The mirror principle can be applied to the containmentof a hot

plasma for thermonuclear energy production. A magnetic bottle can be con-

structed with an axial field produced by solenoidal windings over someregion of

space, and additional coils at each end to provide a much higherfield toward the
ends. The lines of force might appear as shownin Fig. 12.6. Particles created or

injected into the field in the central region will spiral along the axis, but will be

reflected by the magnetic mirrors at each end. If the ratio of maximum field B,,

in the mirrorto the field B in the central region is very large, only particles with

a very large componentof velocity parallel to the axis can penetrate through the

ends. From (12.72) it is evident that the criterion for trapping is
B 1/2

<|—"- :( 3 7 (12.76)Vito

  

Vio
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Figure 12.6 Schematic diagram of
‘mirror’ machine for the
containmentof a hot plasma.

 

If the particles are injected into the apparatus, it is easy to satisfy requirement

(12.76). Then the escape of particles is governed by the rate at which they are
scattered by residual gas atoms,etc., in such a waythat their velocity components

violate (12.76).
Another area of application of these principles is to terrestrial and stellar

magnetic fields. The motion of charged particles in the magnetic dipole fields of
the sun or earth can be understood in termsof the adiabatic invariant discussed
here and thedrift velocities of Section 12.4. Some aspects of this topicare left to
Problems 12.9 and 12.10 on the trappedparticles aroundthe earth (the Van Allen
belts).

12.6 Lowest Order Relativistic Corrections to the Lagrangian

for Interacting Charge Particles: The Darwin Lagrangian

In Section 12.1 we discussed the general Lagrangian formalism fora relativistic

particle in external electromagnetic fields described by the vector andscalar po-
tentials, A and ®. The appropriate interaction Lagrangian was given by (12.11).

If we now consider the problem of a conventional Lagrangian description of the

interaction of two or more charged particles with each other, we see thatit is

possible only at nonrelativistic velocities. The Lagrangian is supposed to be a

function of the instantaneousvelocities and coordinatesofall the particles. When

the finite velocity of propagation of electromagneticfields is taken into account,

this is no longer possible, since the values of the potentials at one particle due to

the other particles depend on their state of motion at “‘retarded” times. Only

whenthe retardation effects can be neglected is a Lagrangian description in terms

of instantaneouspositions and velocities possible. In view of this one might think

that a Lagrangian could be formulatedonlyin thestatic limit, i.e., to zeroth order

in (u/c). We will now show, however, that lowest orderrelativistic corrections can

be included, giving an approximate Lagrangian for interacting particles, correct

to the order of (v/c)’ inclusive.
It is sufficient to consider two interacting particles with charges q, and q2,

masses m, and m,, and coordinates x, and x». The relative separation is r = xX; — X2.

The interaction Lagrangianin thestatic limit is just the negative of the electro-

static potential energy,

LSB = -22 (12.77)int
r
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If attention is directed to thefirst particle, this can be viewed as the negative of
the product of g, and the scalar potential ®,, due to the second particle at the

position of the first. This is of the same form as (12.9). If we wish to generalize

beyond the static limit, we must, according to (12.11), determine both ®,, and
Ay, at least to some degree of approximation. In general there will be relativistic

corrections to both ®,, and A,>. But in the Coulomb gauge, the scalar potential

is given correctly to all orders in v/c by the instantaneous Coulomb potential.

Thus,if we calculate in that gauge, the scalar-potential contribution ®,,is already

known. All that needs to be considered is the vector potential Aj».

If only the lowest orderrelativistic corrections are desired, retardation effects

can be neglected in computing A,. The reasonis that the vector potential enters

the Lagrangian (12.11) in the combination q,(vj/c) - Ay2. Since Aj, itself is of the

order of v,/c, greater accuracy in calculating A,, is unnecessary. Consequently,
we have the magnetostatic expression

1 3(x’) dx’
Ad _- 7 (12.78)

Ix, — x’|

where J, is the transverse part of the current due to the second particle, as dis-
cussed in Section 6.3. From equations (6.24)—(6.28) it can be shown that the
transverse currentis

I(x’) = gov 6(x’ — x») - 2yee) (12.79)
At |x’ — x,|°

Whenthis is inserted in (12.78), the first term can be integrated immediately.

Thus

Ay ~ 22 — &{1 +(x’(x%) d3x'

cr 4acJ |x’ —-x]” “x — x,|

By changing variables to y = x’ — x, and integrating by parts, the integral can

be put in the form,

A, ~ 22-2 d
@ cr 4c y jly-rl ,

The integral can now be donein a straightforward mannerto yield

Ap ~ q2 ee _ ww,(2*)

C r r

The differentiation of the second term leadsto the final result

Ad = 42 | + oo) (12.80)

Q2V2 q2 | v2 °y 1 3

2cr

With expression (12.80) for the vector potential due to the secondparticle
at the position of the first, the interaction Lagrangian for two chargedparticles,

including lowest orderrelativistic effects, is

1 . .
L,, =< L® {- L +55 y vy, + SeWa")ns || (12.81)

r

This interaction form wasfirst obtained by Darwin in 1920. It is of importance
in a quantum-mechanical discussion of relativistic corrections in two-electron
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atoms. In the quantum-mechanical problem the velocity vectors are replaced by
their corresponding quantum-mechanical operators (Dirac a’s). Then the inter-

action is knownasthe Breit interaction (1930).* ,
For a system of interacting charged particles the complete Darwin

Lagrangian, correct to order 1/c* inclusive, can be written down by expanding
the free-particle Lagrangian (12.7) for each particle and summing upall the in-
teraction terms of the form (12.81). The resultis

t 1 1 i9i
Lparwin — 7 S Mv? + a) » m,vi — — >» Didi

| eo ton TG (12.82)
Lt ,4i

+ 2
4c i,j r

 
a vie vy + (vi + Fy)(yj° Fy]
EH

where rj = |x; — x, |, i; is a unit vector in the direction x; — x,, and the prime on
the double summation indicates the omission of the (self-energy) terms, i = j,

Although the Darwin Lagrangian has had its most celebrated application in the
quantum-mechanical context of the Breit interaction, it has uses in the purely
classical domain. Two examplesare cited in the suggested reading at the end of
the chapter. See also the problems.

12.7 Lagrangianfor the Electromagnetic Field

In Section 12.1 we considered the Lagrangian formulation of the equations of
motion of a charged particle in an external electromagnetic field. We now ex-

amine a Lagrangian description of the electromagnetic field in interaction with

specified external sources of charge and current. The Lagrangian approach to

continuousfields closely parallels the techniques used for discrete pointparticles.’

The finite number of coordinates q,(t) and q;(t),i = 1, 2,...,n, are replaced by
an infinite number of degrees of freedom. Each point in space-time x® corre-
spondsto a finite number of values of the discrete index i. The generalized co-

ordinate q; is replaced by a continuousfield ¢,(x), with a discrete index (k = 1,
2,...,) and a continuous index (x*). The generalized velocity g; is replaced by

the 4-vector gradient, 0°¢,. The Euler-Lagrange equations follow from thesta-
tionary property of the action integral with respect to variations 6¢, and 6(d°¢,)
around the physical values. We thus have the following correspondences:

1 —>x",k

qi > (Xx)

qi > O°d,(X) (12.83)

L= > Li(dis qi) - | L(x; Ody) d°x

d folk OL B 0 of
— —__ = — > 0 Oh

dt \dq;] aq; a(d”°d,) dy

*See H. A. Bethe and E. E. Salpeter, Quantum Mechanics ofOne- and Two-Electron Atoms, Springer-

Verlag, Berlin; Academic Press, New York (1957), pp. 170 ff.

"For more detail and or backgroundthan given in our abbreviated account, see Goldstein (Chapter

12) or other references cited at the end of the chapter.



Sect. 12.7 Lagrangian for the Electromagnetic Field 599

where £& is a Lagrangian density, corresponding to a definite point in space-time
and equivalent to the individual terms in a discrete particle Lagrangian like

(12.82). For the electromagnetic field the ‘‘coordinates” and ‘‘velocities” are A“

and d°A*.
The action integral takes the form,

A= {| Lf d°x dt = \g d*x (12.84)

The Lorentz-invariant nature of the action is preserved provided the Lagrangian

density £ is a Lorentz scalar (because the four-dimensional volume elementis
invariant). In analogy with the situation with discrete particles, we expect the

free-field Lagrangian at least to be quadratic in the velocities, that is, d°A® or

F°*®, The only Lorentz-invariant quadratic forms are F,gF°° and F,,#*" (see
Problem 11.14). The latter is a scalar under proper Lorentz transformations, but

a pseudoscalar under inversion. If we demand a scalar & underinversionsas well

as proper Lorentz transformations, we must have £;,.. as some multiple of

Fupl°B The interaction term in ¥ involves the source densities. These are de-

scribed by the current density 4-vector, J*(x). From the form of the electrostatic
and magnetostatic energies, or from the charged-particle interaction Lagrangian

(12.10), we anticipate that ¥;,; is a multiple of /,A°%. With this motivation we
postulate the electromagnetic Lagrangian density:

g=-tF pe 17 ye (12.85)
l6a °° Cc” )

The coefficient and sign of the interaction terms is chosen to agree with (12.10);

the sign andscale of the free Lagrangian is set by the definitions of the field

strengths and the Maxwell equations.
In order to use the Euler-Lagrange equation in the form given in (12.83),

we substitute the definition of the fields and write

1 1
£ = ~—— By8v(O"A® ~ A°AM)(GA” — a"A*) ~~ JAX (12.86)

TT

In calculating d£/0(0°A“) care must be taken to pick up all the terms. There are

four different terms, as can be seen from the following explicit calculation:

OL _ 1 5p" 64°F” — 847 6,4F*”
a(aPA*) 167 ErAuSvo + 5," 6°Feo __ 5,” 6,FY"

Because of the symmetry of g,, and the antisymmetry of F°°, all four termsare

equal and the derivative becomes

oF 1 1= -— =—F 12.87
a(d°A*) 4g °° 4g OP ( )

The other part of the Euler-Lagrange equationis

OL 1

 

 =--J 12.88
aA° c ( )

Thus the equations of motion of the electromagnetic field are

1 1
— 90°F, =—J 12.89
Ang P* co" ( )
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These are recognized as a covariant form of the inhomogeneous Maxwell equa-
tions (11.141).

The Lagrangian (12.85) yields the inhomogeneous Maxwell equations, but
not the homogeneous ones. This is because the definition of the field strength
tensor F°? in terms of the 4-vector potential A* was chosen so that the homo-

geneous equations weresatisfied automatically (see Section 6.2). To see this in
our present 4-tensor notation, consider the left-hand side of the homogeneous
equations (11.142):

OgFP = 50,60“Fy,

= 0,€°"0,A,,
_— aBr= 60A,

But the differential operator 0,0, is symmetric in @ and A (assuming A,, is well

behaved), while e***” is antisymmetric in a and A. Thusthe contraction on a and

A vanishes. The homogeneous Maxwell equationsare satisfied trivially.
The conservation of the source current density can be obtained from (12.89)

by taking the 4-divergence of both sides:

1 1
— 0°O°F a, = — OS,
Aq P C

The left-hand side has a differential operator that is symmetric in a and £, while
Feo is antisymmetric. Again the contraction vanishes and we have

IJ, = 0 (12.90)

12.8 Proca Lagrangian; Photon Mass Effects

The conventional Maxwell equations and the Lagrangian (12.85) are based on
the hypothesis that the photon has zero mass. As discussed in the Introduction,

it can always be asked what evidencethere is for the masslessness of the photon
or equivalently for the inverse square law of the Coulomb force and what con-

sequences would result from a nonvanishing mass. A systematic technique for

such considerations is the Lagrangian formulation. We modify the Lagrangian

density (12.85) by adding a ‘‘mass”’ term. The resulting Lagrangian is known as

the Proca Lagrangian, Proca having beenthefirst to considerit (1930, 1936). The
Proca Lagrangian 1s

2

Leroca = -—— Fgh? + ao AaA® — = JA" (12.91)

The parameter py has dimensionsof inverse length andis the reciprocal Compton

wavelength of the photon (u = m,c/h). Instead of (12.89), the Proca equations
of motion are

AtOFpa + WAg = — Se (12.92)

with the same homogeneous equations, 0,#°* = 0, as in the Maxwell theory. We

observe that in the Proca equations the potentials as well as the fields enter. In
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contrast to the Maxwell equations, the potentials acquire real physical (observ-

able) significance through the mass term. In the Lorenz gauge, now required by

current conservation, (12.92) can be written

4
OA, + A, = — Jo (12.93)

and in the static limit takes the form

4
VA ~ WAy = ~~~ Jo

If the source is a point charge gq at rest at the origin, only the time component

Ao = ® is nonvanishing. It takes the spherically symmetric Yukawa form

er 
r

This showsthe characteristic feature of the photon mass. There is an exponential

falloff of the static potentials and fields, with the 1/e distance equal to np’. As
discussed in the Introduction and also in Problem 12.15, the exponential factor

alters the character of the earth’s magnetic field sufficiently to permit us to set

quite stringent limits on the photon mass from geomagnetic data. It was at one

time suggested* that relatively simple laboratory experiments using lumped LC

circuits could improve on even these limits, but the idea was conceptually flawed.

There is enough subtlety involved that the subject is worth a brief discussion.’

Thestarting point of the argumentis (12.93) in the absence of sources. If we

assume harmonic time and spacevariation, the constraint equation on the fre-
quency and wave numberis

w? = 7k? + pc? (12.95)

This is the standard expression for the square of the energy (divided by 7) for a

particle of momentum fk and mass ph/c. Now consider some resonant system

(cavity or lumpedcircuit). Suppose that when yz = 0 its resonant frequencyIs wo,

while for ~ # 0 the resonant frequency is w. From the structure of (12.95)it is
tempting to write the relation,

w? = wo t+ pc? (12.96)

Evidently, the smaller the frequency,the larger the fractional difference between

w and wo for a given photon mass. This suggests an experiment with lumped LC

circuits. The scheme would be to measure the resonant frequencies of a sequence

of circuits whose w% values are in knownratios. If the observed resonant fre-

quencies are not in the same proportion, evidence for w # 0 in (12.96) would be
found. Franken and Ampulski compared twocircuits, one with a certain induc-
tance L and a capacitance C, hence with w, = (LC)~', and anotherwith the same
inductor, but two capacitances C in parallel. The squares of the observed fre-

*P, A. Franken and G. W. Ampulski, Phys. Rev. Lett. 26, 115 (1971).

‘Shortly after the idea was proposed, several analyses based on the Proca equations appeared. Some
of these are A. S. Goldhaber and M. M.Nieto, Phys. Rev. Lett. 26, 1390 (1971); D. Park and E. R.

Williams, Phys. Rev. Lett. 26, 1393 (1971); N. M. Kroll, Phys. Rev. Lett. 26, 1395 (1971); D. G.

Boulware, Phys. Rev. Lett. 27, 55 (1971): N. M. Kroll, Phys. Rev. Lett. 27, 340 (1971).
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quencies, correctedfor resistive effects, were in the ratio 2:1 within errors. They
thus inferred an upper limit on the photon mass, pointing out that in Principle

improvementof the accuracy by several orders of magnitude waspossibleif the

idea was sound.

What is wrong with the idea? Thefirst observation is that /umped circuits
are by definition incapable of setting any limit on the photon mass.* The lumped

circuit concept of a capacitance is a two-terminal box with the property that the

current flow / at one terminal and the voltage V between the terminalsare related

by I = C dV/dt. Similarly a lumped inductance is a two-terminal box with the
governing equation V = —L dl/dt. When two such boxes are connected, the

currents and voltages are necessarily equal, and the combinedsystem is described

by the equation, V + LC d*V/dt* = 0. The resonant frequency of a lumped LC
circuit is @ = (LC)~"’, period.

It is true, of course, that a given set of conducting surfaces or a given coil of
wire will have different static properties of capacitance or inductance depending

on whether = O. The potentials and fields are all modified by exponential
factors of the general form of (12.94). The question then arises as to whetherone
can set a meaningful limit on uw by meansof a “‘tabletop’’ experiment,thatis, an

experiment not with lumped-circuit elements but with ones whosesizes are mod-
est. The reader can verify, for example, that for a solid conducting sphere of
radius a at the center of a hollow conducting shell of inner radius 5 held at zero
potential, the capitanceis increased by an amounty2’a7b/3, provided wb < 1.It
then turns out that instead of the fractional difference,

2

 
A 2

=O FS (12.97)
Wo 2we

that follows from (12.96) with w5 = (LC)~’,the actual effect of the finite photon
mass is

Ae _ O(p2a?) (12.98)
Wo

where d is a dimension characteristic of the circuit and w is the resonantfre-

quency for uw = 0. This makesa “tabletop” experimentpossible in principle, but
very insensitive in practice to a possible photon mass.

Although the estimate (12.98) saysit all, it is of interest to considerthe effect
of a finite photon mass for transmission lines, waveguides, or resonantcavities.

For transmission lines, the effect of the photon mass is the sameasforstatic
lumped-circuit parameters. We recall from Chapter 8 that for w = 0 the TEM

modesof a transmission line are degenerate modes, with propagation at a phase
velocity equal to the velocity of light. The situation does notalter if w # 0. The

only difference is that the transverse behavior of the fields is governed by

(V; — uw’) = 0 instead of the Laplace equation. The capacitance and inductance
per unit length of the transmissionline are altered by fractional amounts of order

ud*, but nothing else. (The result of Problem 5.29 still holds.)
For TE and TM modes in a waveguide the situation is more complicated.

*T am indebted to E. M.Purcell for emphasizing that this is the point almost universally missedor at

least glossed over in discussions of the Franken—Ampulski proposal.
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The boundary conditions on fields and potentials must be considered with care.

Analysis shows (see Kroll, op. cit.) that TM modes have propagation governed

by the naive equation (12.96), but that TE modesgenerally propagate differently.
In any event, since the cutoff frequency of a guide is determinedbyits lateral
dimensions, the generally incorrect estimate (12.97) becomes the same as the
proper estimate (12.98).

For resonant cavities a rigorous solution is complicated, but for small mass
some simple results emerge. For example, for a rectangular cavity, (12.96) holds

to a good approximation for modes with /, m, n all different from zero, but fails

if any mode numberis zero. This is because the fields behave in the direction

associated with vanishing /, m, or n as static fields and the arguments already

made apply. The low-frequency modes (Schumann resonances) of the earth-

ionospherecavity, discussed in Section 8.9, are of particular interest. These modes
have a radial electric field and to the zeroth order in h/R, where h is the height

of the ionosphere and R the radius of the earth, are TEM modes in parallel

plate geometry. Thus their propagation, hence resonant frequencies, are unal-

tered from their uw = 0 values. Tofirst order in h/R there is a mass-dependent

changein resonant frequency. The result (see Kroll’s second paper cited above)
is that (12.97) is modified on its right-hand side by a multiplicative factor g =

0.44 h/R for the lowest Schumann mode. With h = 70 km, g = 5 X 10°. This
meansthat the resonant frequency of w) ~ 50s'is a factor of (1/g)'* = 14 less
effective in setting a limit on the photon mass than naive considerations imply.

12.9 Effective “Photon” Mass in Superconductivity;
London Penetration Depth

A counterpart of Proca electrodynamics is found in the Londontheory of the

electromagnetic behavior of superconductors, formulated to explain the Meissner
effect. The Meissner effect (1933) is the expulsion of a magnetic field from the

interior of a superconducting material as it makes a transition from the normal
state (T > T,) to the superconducting state (T < T,). If the field is applied after
the material is superconducting, it does not penetrate into the sample, or rather,

it penetrates a very small distance called the London penetration depth A, (typ-

ically a few tens of nanometers). Rather than being a perfect conductor, a

superconductor is perfectly diamagnetic. It is this phenomenon, which is a con-

sequence of an effective “‘photon’’ mass for fields within a superconductor,that
we explorebriefly.

Webegin a simple phenomenological discussion by assumingthat the current

flow within a superconductoris caused by the nonrelativistic motion of charge
carriers of charge Q, effective mass mg, and density ng. If the average local

velocity of these carriers is v, the current density is

J = Onov

In the presence of electromagnetic fields the current can be expressed in terms
of the canonical momentum P through (12.14), P = mov + QAI:
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The superconductingstate is a coherentstate of the charge carriers with vanishing

canonical momentum. (P = 0 was an assumption by the Londons,but now has
a firm quantum-mechanical foundation—see Kittel, Chapter 12.) The effectivi
current density within a superconductoris therefore

2
Q

J=- Aa No (12.99) 

With this current density inserted in the Lorenz-gauge wave equation for A

[(6.16), but in Gaussian units], the wave equation takes the Proca form (12.93),
but with no source term: |

VA — BA — WA =0

where pu” = 47Q*ng/mgc’. It follows from (12.99) that the boundary condition
on A at an interface between normal and superconducting media across which

no current is flowing is that the normal component of A vanishes. In thestatic
limit and planar geometry, the solution of the London equation akin to (12.94)
is A « e~“*, showing that the London penetration depth is \;, = w*:

2
WtaAc

, = |} 12.1
t 470°Nno (12.100)

The effective “‘photon’’ mass is (1,)o¢¢ = h/Ayc. Since the charge carriers are
surely related to electrons in the material, we express the charge Q in units ofe,

the protonic charge, the mass mg in units of m,, the electronic mass, and write

the density of carriers in units of the inverse Bohr radius cubed. Thentherest
energy of the ‘‘photon’’ can be written

4mngay e?

Mg/m,. ao
Q
e

The dimensionless quantity in square brackets is presumably of order unity. The
rest energy of the “photon”is thus of the order of the Rydberg energy,thatis,

a few electron volts.

Experimentally and theoretically, it is known that the chargecarriers in low-

temperature superconductorsare pairs of electrons loosely bound by a second-

order interaction through lattice phonons. Thus Q = —2e, mg = 2m,, and

No = Nere/2, Where Net iS the effective number of electrons participating in the

current flow. A useful formula is u* = 87rpng, where ro = 2.818 X 107m is
the classical electron radius. With ng = O(10° cm~*) wefind

AL = w| = O(4 x 10°° cm)

  
(M,)ereC? —

The BCS quantum-mechanical theory* shows that at zero temperature, ng =
Neg!2 = 2E;N(0)/3, where Ex is the Fermi energy of the valence band and N(0)
is the density of states (numberof states per unit energy of one electronic spin
state) at the Fermi surface. For a degenerate free Fermi gas, ner, is equal to the

total density of electrons, but in a superconductorthe density of states is modified

by the interactions and resulting energy gap. Using half the total number of

*J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
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valence electrons per unit volume for mg in (12.100) yields only order-of-

magnitude estimates for A,. In passing we note that in high-temperature (cupric
oxide) superconductors penetration depths are found to be an order of magni-

tude smaller than in conventional superconductors.

Measurements of A,, especially its temperature dependence, can be accom-

plished by incorporating the superconducting specimen into a resonantcircuit
and studying the shift in resonant frequency with change in temperature. Incir-

cumstances in which A, is small compared to both the wavelength A associated

with the resonantcircuit and the sample size, a simple calculation (Problem 12.20)
paralleling Section 8.1 leads to a purely reactive surface impedance,

Si A 277A
Z, = 71 —— + (Gaussian units) or LZ, 1 wat

C
 Zo (SI units)

With our convention about time dependence (e~*”), the impedanceis inductive,
corresponding to an inductance per unit area, L = pA, (SI units).

Our sketch of the simple London theory addresses only the Meissnereffect,
and notall of it. The magnetic and thermodynamic properties of superconduc-

tors, the physical size of the coherent state (coherence length €), and many other
features are fully addressed only by the microscopic quantum-mechanicaltheory.

The reader wishing to learn more about superconductivity may consult Ashcroft
and Mermin or Kittel and the numerousreferencescited there. An alternative,

perhaps more physical, approach (also by F. London) to the London equations
is addressed in Problem 12.21.

Canonical and Symmetric Stress Tensors;
Conservation Laws

A. Generalization of the Hamiltonian: Canonical Stress Tensor

In particle mechanicsthe transition to the Hamiltonian formulation and con-
servation of energy is madebyfirst defining the canonical momentum variables

_ al
O86

and then introducing the Hamiltonian

H = >, pig; -— L (12.101)

It can then be shownthat dH/dt = 0 provided dL/dt = 0. Forfields we anticipate
having a Hamiltonian density whose volume integral over three-dimensional

space is the Hamiltonian. The Lorentz transformation properties of # can be
guessed as follows. Since the energy of a particle is the time componentof a

4-vector, the Hamiltonian should transform in the same way. Since H = f # d°x,

and the invariant 4-volume element is d*x = d°*x dxo, it is necessary that the
Hamiltonian density # transform as the time-time componentof a second-rank
tensor. If the Lagrangian density for somefields is a function ofthefield variables
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h(x), 0°%b, (x), K = 1, 2,..., n, the Hamiltonian density is defined in analogy

with (12.101) as
+

_ Ot Ob: _a = > (2) ye (12.102)

ot

Thefirst factor in the sum is the field momentum canonically conjugate to ¢, (x)

and 0¢,/dt is equivalent to the velocity g;. The inferred Lorentz transformation
properties of # suggest that the covariant generalization of the Hamiltonian den-

sity is the canonicalstress tensor:

0
T°?! = >

k d(dax)

For the free electromagnetic field Lagrangian

1
Lem = —_—F yh”

l67 *

 Pd, — BEL (12.103)

the canonical stress tensor is

— OLem

0(0,,A*)

where a summation over A is implied by the repeated index. With the help of
(12.87) (but notice the placing of the indices!) we find

ap ghA* __ eoLom

1
Te = —2— pF,,0°A* — g°Lom (12.104)

To elucidate the meaning of the tensor we exhibit some components. With
f = (E* — B’)/8z7and (11.138) we find

1 1
T° = — (E’ + B’) + —V- (GE

Sa | ) in” ( )

0: 1 1
T’ = — (E X B); + — V- (A,E) (12.105)

Aa Aa

1 1 0
T® = —(E x B), + — x _— — (OE.7 (E xB) + lv ©B), =( B)|

In writing the second terms here we have made useof the free-field equations
V-E = 0 and V X B — dE/dx, = 0. If we supposethat the fields are localized in
some finite region of space (and, because ofthe finite velocity of propagation,
they always are), the integrals overall 3-spaceat fixed time in some inertial frame

of the components T° and T”can beinterpreted, as in Chapter 6,as the total
energy and c times the total momentum of the electromagnetic fields in that

frame:

1
7 dx = | E? + B’) d°x = Exe

J aa J nee (12.106)
| 1| T° d°x = +| (E x B); dx = CPrea
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These are the usual (Gaussian units) expressions for the total energy and mo-

mentum ofthe fields, discussed in Section 6.7. We note that the components T”
and T” themselves differ from the standard definitions of energy density and

momentum density by added divergences. Upon integration overall space, how-
ever, the added terms give no contribution, being transformed into surface in-

tegrals at infinity where all the fields and potentials are identically zero.
The connection of the time-time and time-space components of T°? with the

field energy and momentum densities suggests that there is a covariant general-

ization of the differential conservation law (6.108) of Poynting’s theorem. This

differential conservation statementis

d,7°? = 0 (12.107)

In proving (12.107) wetreat the general situation described by the tensor (12.103)
and the Euler-Lagrange equations (12.83). Consider

 

 

ap _ B — apOT > d45 a | PF

-> o£ o£

- c“ Ada.) bet (Jax) 1s OF
By means of the equations of motion (12.83) the first term can be transformed
so that

 Ce > ES OPd, + OF Maud)| — off
OPK O(DaPx)

Since £ = L(d,, 0%d,), the square bracket, summed, is the expression for an
implicit differentiation (chain rule). Hence

d,T°? = dPL(dy, 0%b,) — PL = 0

The conservation law or continuity equation (12.107) yields the conservation
of total energy and momentum uponintegration overall of 3-spaceat fixed time.

Explicitly, we have

0 = | 0,1°°" d’x = io | T°? d°x + | 0,1" d°x

If the fields are localized the second integral (a divergence) gives no contribution.
Then with the identifications (12.106) we find

d d
dt Ese = 9, dt Pica = O (12.108)

In this derivation of the conservation of energy (Poynting’s theorem) and
momentum and in the definitions (12.106) we have not exhibited manifest co-
variance. The results are valid for an observer at rest in the frame in which the
fields are specified. But the question of transforming from one frame to another

has not been addressed. With a covariantdifferential conservation law, 0,7°° = 0,

one expects that a covariant integral statement is also possible. The integrals in
(12.106) do not appearto have the transformation properties of the components

of a 4-vector. For source-free fields they do in fact transform properly (see Prob-

lem 12.18 and Rohrlich, Appendix A1-5), but in general do not. To avoid having
electromagnetic energy and momentum defined separately in eachinertial frame,
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without the customary connection between frames, one may construct explicitly
covariant integral expressions for the electromagnetic energy and momentum, 0
which the forms (12.106) are special cases, valid in only one reference frame.
This is discussed further in Chapter 16 in the context of the classical electromag-
netic self-energy problem. (See Rohrlich, Section 4-9, for an explicitly covariant
treatment of the conservation laws in integral form.)

B. Symmetric Stress Tensor

The canonical stress tensor T*?, while adequate so far, has a certain number

of deficiencies. We have already seen that T°° and T™ differ from the usua]
expressions for energy and momentum densities. Another drawbackis its lack
of symmetry—see T” and T”in (12.105). The question of symmetry arises when
we consider the angular momentum ofthefield,

1
Lisa = 7— | x x (Bx B) ay

The angular momentum density has a covariant generalization in terms of the

third-rank tensor,

MY = T#Pyy — T%7%x8 (12.109)

Then, just as (12.107) implies (12.108), so the vanishing of the 4-divergence

d,M°P” = 0 (12.110)

implies conservation of the total angular momentum of the field. Direct calcu-
lation of (12.110) gives

0 = (0.T)x? + TY — (0,T°%)x? — TRY

With (12.107) eliminating the first and third terms, we see that conservation of
angular momentum requires that T°? be symmetric. Twofinal criticisms of T°",
(12.104), are that it involves the potentials explicitly, and so is not gauge invariant,
and that its trace (7%) is not zero, as required for zero-mass photons.

There is a general procedure for constructing a symmetric, traceless,

gauge-invariant stress tensor 0°? from the canonical stress tensor T°? (see the

references at the end of the chapter). For the electromagnetic T°? of (12.104) we
proceed directly. We substitute 0°A* = —F’* + 0*A® and obtain

1 1 1
T°? — 4a eo al? + 1 oFP| Aq ooVF oxAP (12.111)

TT TT

The first terms in (12.111) are symmetric in a and B and gaugeinvariant. With

the help of the source-free Maxwell equations, the last term can be written

1 1
TY = —— g"F, 0XA® = — F** 9, AP
P 4a ® A At *

1
= Aq (F**9,A® + A”a,F**) (12.112)

TT

1
= — 9,(F°*AP= (FAP)
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The tensor 74 has the following easily verified properties:

(1) a7 = 0

(11) | To? d’x = 0

Thus the differential conservation law (12.107) will hold for the difference
(T°? — T°) if it holds for T°°. Furthermore,the integral relations (12.106) for
the total energy and momentum ofthe fields will also be valid in termsof the
difference tensor. We are therefore free to define the symmetric stress tensor O°":

Ov = Th — TH

or

Orr = : CMF PP + t OBE PUA 12.113~ Ag Syn 4® pr (12.113)

Explicit calculation gives the following components,

1
@©°° = — (E’ + B’)

Sa

. 1
©” = — (E x B),; (12.114)

4a

@i = wl 1 2 2

The indices i and j refer to Cartesian components in 3-space. The tensor 0° can

be written in schematic matrix form as

U
ace — ar=---- (12.115)

cg (Ty

In (12.115) the time-time and time-space components are expressed as the energy
and momentum densities (6.106) and (6.118), now in Gaussian units, while the
space-space components (12.114) are seen to be just the negative of the Maxwell

stress tensor (6.120) in Gaussian units, denoted here by T{”to avoid confusion
with the canonical tensor T*®. The various other, covariant and mixed, formsof

the stress tensor are

@ ui} Cg . u ' —cg

“ —cg $-T™ "Neg : 7)

oe — (LSB...
—cg : T™!

The differential conservation law

9,0°%° = 0 (12.116)
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embodies Poynting’s theorem and conservation of momentum forfreefields. Foy

example, with B = 0 we have

o= 9,0" =1 (H+ ¥-5)

Sa

c ot

where S = c°g is the Poynting vector. This is the source-free form of (6.108),
Similarly, for B = 1,

ig, wa
— 0,0 — of _ S — TT

ot j=1 OX;

a result equivalent to (6.121) in the absence of sources. The conservationoffield
angular momentum, defined through the tensor

Me8y _— eByy — A278 (12.117)

is assured by (12.116) and the symmetry of @°", as already discussed. There are
evidently other conserved quantities in addition to energy, momentum, and an-

gular momentum. The tensor M°°” has three time-space componentsin addition

to the space-space components that give the angular momentum density. These

three components are a necessary adjunct of the covariant generalization of an-

gular momentum. Their conservation is a statement on the center of mass motion

(see Problem 12.19).

C. Conservation Lawsfor Electromagnetic Fields Interacting
with Charged Particles

In the presence of external sources the Lagrangian for the Maxwell equations

is (12.85). The symmetric stress tensor for the electromagnetic field retainsits
form (12.113), but the coupling to the source current makesits divergence non-
vanishing. The calculation of the divergenceis straightforward:

1 1
d,0°F = Anor + 1 HEP)

1
= Aq (oF + Fur ouFAP + 9 Fur ore|

The first term can be transformed by means of the inhomogeneous Maxwell
equations (12.89). Transferring this term to the left-hand side, we have

1 1
d,0°7 + — FRI, = 37 wr(OXFrP + OXF+ oPFH)

C ri
 

The reason for the peculiar grouping of termsis that the underlined sum can be

replaced, by virtue of the homogeneous Maxwell equation (0“F*" + 9°FY* +
o*FP" = 0), by —o*FP" = +0°F¥*. Thus we obtain

1 1
d,0°° + — FRI, = ro (OXF? + orFHP)

C ri
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But the right-handside is now the contraction (in 4 and A) of one symmetric and
one antisymmetric factor. The result is therefore zero. The divergence of the
stress tensor is thus

a a1 BA
d,0°r = Pedy (12.118)

The time and space componentsof this equation are

1 (a 11(@sy.s)=-tae (12.119)
c \ot C

and

dg; oa 1“S§_

S\

©. 7M) — _| ok. + = (J x B). 12.120>. 2 ox, 2 |p i+ 7 ( | (12.120)

These are just the conservation of energy and momentum equationsof Chapter 6
for electromagneticfields interacting with sources described by J* = (cp, J). The
negative of the 4-vector on the right-hand side of (12.118) is called the Lorentz
force density,

1 1 1
f = er = (2 J: KE, pE + a4 x 8) (12.121)

If the sources are a numberof charged particles, the volumeintegral of f* leads

through the Lorentz force equation (12.1) to the time rate of change of the sum
of the energies or the momentaofall particles:

B 73, — APEacticles

Jar
With the qualification expressed at the end of Section 12.10.A concerning co-
variance, the integral over 3-space atfixed time of the left-hand side of (12.118)
is the time rate of change of the total energy or momentum ofthe field. We
therefore have the conservation of 4-momentum for the combined system of
particles andfields:

d
| d°x(d,0°° + f%) = i (Pied + Pbarticies) = 0 (12.122)

The discussion above focused on the electromagnetic field, with charged par-
ticles only mentioned as the sources of the 4-current density. A more equitable
treatment of a combined system of particles and fields involves a Lagrangian
having three terms, a free-field Lagrangian, a free-particle Lagrangian, and an
interaction Lagrangian that involves both field and particle degrees of freedom.
Variation of the action integral with respect to the particle coordinates leads to
the Lorentz force equation, just as in Section 12.1, while variation of the field
“coordinates” gives the Maxwell equations, as in Section 12.7. However, when
self-energy and radiation reaction effects are included, the treatment is not quite
so straightforward. References to these aspects are given at the end of the

chapter.

Mention should also be madeofthe action-at-a-distance approachassociated
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with the names of Schwarzschild, Tetrode, and Fokker. The emphasis is on the

charged particles and an invariant action principle is postulated with the inter-
action term involving integrals over the worldlines of all the particles. The idea

of electromagnetic fields and the Maxwell equations is secondary. This approach

is the basis of the Wheeler-Feynman absorbertheory of radiation.*

12.11 Solution of the Wave Equation in Covariant Form;

Invariant Green Functions

The electromagnetic fields F** arising from an external source J“(x) satisfy the

inhomogeneous Maxwell equations

OFF = “7 jp
C

With the definition of the fields in terms of the potentials this becomes

4
CAS — a8(a,A%) = — ye

If the potentials satisfy the Lorenz condition, 0,A“ = 0, they are thensolutions

of the four-dimensional wave equation,

CAS = = T(x) (12.123)

Thesolution of (12.123) can be accomplishedbyfinding a Green function D(x,x’)

for the equation

1,D(x, x!) = 6%a - x’) (12.124)

where 8(x — x') = 8(xy — x4) 6(x — x’) is a four-dimensional delta function.

In the absence of boundary surfaces, the Green function can depend only on the

4-vector difference z* = x* — x’*. Thus D(x, x’) = D(x — x’) = D(z) and (12.124)

becomes

[1,D(z) = 6(z)

We use Fourier integrals to transform from coordinate to wave numberspace.

The Fourier transform D(k) of the Green function is defined by

 

 

1 | ~ ;
D(z) = d*k D(k)e"** 12.125(2) Goa atk Biwbe (12.125)

where k- z = koz) — k-z. With the representation of the delta function being

1 |
S%(z) = | d‘ke'** 12.126

(z) (27)* € ( )

one finds that the k-space Green function is

- 1
D(k) = -—— 12.127(k) =~ (12.127)

*J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 21, 425 (1949).
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The Green function D(z) is therefore

—ik-z

D(z) = a:GayL | dk — ; (12.128) 

Because the integrand in (12.128) is singular, the expression as it standsis
ambiguousandis given definite meaning only by the handling ofthe singularities.
Weproceed by performing the integration over dk,first. Thus

e_ikoZo

D(z) = ~ aayam)| atk ge | dko ew (12.129)

where wehave introduced the notation, x = |k|. The k, integral is given meaning
by considering ky as a complex variable and treating the integral as a contour
integral in the ky plane. The integrand has two simple poles, at ky) = +k as shown
in Fig. 12.7. Green functionsthat differ in their behavior are obtained by choosing
different contours of integration relative to the poles. Two possible contoursare
labeled r and a in Fig. 12.7. These open contours maybeclosedatinfinity with
a semicircle in the upper or lowerhalf-plane, depending on the sign of Zo in the
exponential. For z) > 0, the exponential, e~°*°, increases without limit in the
upper half-plane. To use the residue theorem, we must therefore close the con-
tour in the lowerhalf-plane. The opposite holds for zo < 0.

Consider now the contour r. For z) < 0, the resulting integral vanishes be-
cause the contouris closed in the upperhalf-plane and encircles no singularities.
For Zz) > 0, the integral over kg is

—tkoZo e‘kozo

p dk)=ZULRes( = 7

2
2sin(KZo)

K

 

The Green function (12.129) is then

D,(z) = 222 | gry es BOO)
(27)

The integration over the angles of k leads to

DAZ) = Ne I dx sin(kR) sin(kZo) (12.130)

—_-—-—--—->--+}-—->- --—4

 Figure 12.7
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where R = |z| = |x — x’| is the spatial distance between x* and x’* Using some
simple trigonometry and a changeof variable, we can write (12.130) as

D,(z) = aDf dx[ei(zg-R)k __ elotRK)

The remaining integrals are just Dirac delta functions. Because z) > 0 and R> 0
the secondintegral is always zero. The Green function for contourr is therefore

A(X) — x0)

D(x ~ x) = 47R
d(Xp» — Xo — R) (12.131)

Here we have reintroduced the original variables x and x’. This Green function
is called the retarded or causal Green function because the source-point time x4
is always earlier than the observation-point time x». Equation (12.131), orits
Fourier transform with respect to xo, (47R)~' e’®*, is the familiar Green function
of outgoing waves of Chapter6.

With the choice of the contour a in Fig. 12.7, an exactly parallel calculation
yields the advanced Green function,

 

Q __ __ ’

D(x — x’) = 2 Go *o)I 5(xo — x, + R) (12.132)
4aR

These Green functions can be put in covariant form by use of the following
identity:

B[(x — x')"] = A[(%o — x0)" — [x — x’ [7]
= O(% — x6 — R)@&— x6 + R)]

1
~ OR [S(Xo — R) + 6(% — xo + R)I

Then, since the theta functions select one or the other of the two terms, we have

D(x ~ x!) = = O49 — 26) [cx - x) ans)

D(x ~ x") = 5= (85 = x) all — x’)
The theta functions, apparently noninvariant, are actually invariant under proper
Lorentz transformations whenconstrained by the delta functions. Thus (12.133)
gives the Green functions an explicitly invariant expression. The theta anddelta
functions in (12.133) show that the retarded (advanced) Green function is dif-
ferent from zero only on the forward (backward) light cone of the source point.

The solution of the wave equation (12.123) can now be written downin terms
of the Green functions:

A(x) = Af(x) + “| d*x’ D(x — x')J*(x') (12.134)

or

A“(x) = Agu(x) + = | d*x' D(x — x')J*(x') (12.135)
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where A%, and AZ,, are solutions of the homogeneous wave equation.In (12.134)

the retarded Green function is used. In the limit x)» ~ —, the integral over the
sources vanishes, assuming the sourcesare localized in space andtime, because
of the retarded nature of the Green function. Wesee thatthe free-field potential
A(x) has the interpretation of the ‘‘incident”’ or “‘incoming”’ potential, specified
at Xx)» — —. Similarly, in (12.135) with the advanced Green function, the ho-
mogeneous solution A%,,(x) is the asymptotic “‘outgoing” potential, specified at
Xp — +. The radiation fields are defined as the difference between the “‘out-

going’’ and the “incoming” fields. Their 4-vector potentialis

_ 4a
Aga(x) = AS, — AX = - | d*x' D(x — x')J*(x') (12.136)

where

D(z) = D(z) — D,{z) (12.137)

is the difference between the retarded and advanced Green functions.
Thefields of a charged particle moving in a prescribed path will be of interest

in Chapter 14. If the particle is a point charge e whose position in the inertial
frame K is r(t), its charge density and current density in that frame are

p(x, t) = e d[x — r(¢)]
I(x, t) = e v(t) d[x — r(t)] (12.138)

where v(t) = dr(t)/dt is the charge’s velocity in K. The charge and current den-
sities can be written as a 4-vector current in manifestly covariant form by intro-
ducing the charge’s 4-vector coordinate r°(r) as a function of the charge’s proper
time 7 and integrating over the proper time with an appropriate additionaldelta

function. Thus

J*(x) = ec | dt U*(t) 6[x — r(a)] (12.139)

where U* is the charge’s 4-velocity. In the inertial frame K, r* = [ct, r(t)] and
U* = (yc, yv). The use of (12.139) in (12.134) to yield the potentials andfields
of a moving charge is presented in Section 14.1.
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The invariant Green functions for the wave equation are derived in almost any book
on quantum field theory. One such book, with a concise covariant treatmentofclassical
electrodynamicsat its beginning,1s

Thirring, Section I.2 and Appendix II

Two reviews on the subject of the photon mass, already cited in the Introduction,are
A. S. Goldhaber and M. M.Nieto, Rev. Mod. Phys. 43, 277 (1971).
I. Yu. Kobzarev and L. B. Okun’, Uspek. Fiz. Nauk. 95, 131 (1968) [English

transl., Sov. Phys. Uspek. 11, 338 (1968)].

Problems

12.1 (a) Show that the Lorentz invariant Lagrangian (in the sense of Section 12.1B)

muU_U*p=-fy
2 C

gives the correct relativistic equations of motion for a particle of mass m and
charge q interacting with an external field described by the 4-vector potential

A(x).

(b) Define the canonical momenta and write out the effective Hamiltonian in

both covariant and space-time form. The effective Hamiltonian is a Lorentz

invariant. Whatis its value?

12.2. (a) Show from Hamilton’s principle that Lagrangiansthat differ only by a total
time derivative of some function of the coordinates and time are equivalent
in the sense that they yield the same Euler-Lagrange equations of motion.

(b) Show explicitly that the gauge transformation A* — A® + 0°A of the poten-
tials in the charged-particle Lagrangian (12.12) merely generates another

equivalent Lagrangian.

12.3. A particle with mass m and charge e movesin a uniform,static, electric field Ep.

(a) Solve for the velocity and position of the particle as explicit functionsof time,

assuming that the initial velocity v) was perpendicular to the electricfield.

(b) Eliminate the time to obtain the trajectory of the particle in space. Discuss
the shape of the path for short and long times (define ‘“‘short” and “‘long”’

times).

12.4 It is desired to make an E X B velocity selector with uniform, static, crossed,

electric and magnetic fields over a length L. If the entrance andexit slit widths are
Ax, discuss the interval Au of velocities, around the mean value u = cE/B,that is

transmitted by the device as a function of the mass, the momentum or energy of
the incidentparticles, the field strengths, the length of the selector, and any other
relevant variables. Neglect fringing effects at the ends. Base your discussion on
the practical facts that L ~ few meters, Emax ~ 3 X 10° V/m, Ax ~ 107-°-10"* m,
u ~ 0.5—0.995c. (It is instructive to consider the equation of motion in a frame
moving at the mean speed u along the beam direction, as well as in the laboratory.)

References: C. A. Coombeset al., Phys. Rev. 112, 1303 (1958); P. Eberhard, M.L.

Good, and H.K.Ticho, Rev. Sci. Instrum. 31, 1054 (1960).

12.5. A particle of mass m and charge e moves in the laboratory in crossed,static,
uniform, electric and magnetic fields. E is parallel to the x axis; B is parallel to the

y axis.

(a) For |E| < |B| makethe necessary Lorentz transformation described in Sec-
tion 12.3 to obtain explicitly parametric equationsfor the particle’s trajectory.

(b) Repeat the calculation of part a for |E| > |B].



618 Chapter 12 Dynamics of Relativistic Particles and Electromagnetic Fields—G

12.6

12.7

12.8

Static, uniform electric and magnetic fields, E and B, make an angle of 6 with

respect to each other.

(a)

(b)

By a suitable choice of axes, solve the force equation for the motion ofa
particle of charge e and mass m in rectangular coordinates.

For E and B parallel, show that with appropriate constants of integration
etc., the parametric solution can be written

R
x=ARsin¢d, y=ARcos¢?, %=—V1+ A’ cosh(pd)

p

R
ct = — V1 + A? sinh(p¢)

p

where R = (mc*/eB), p = (E/B), A is an arbitrary constant, and ¢ is the
parameter[actually c/R times the propertime].

A constant uniform magnetic induction B in the negative z direction exists in a
region limited by the planes x = 0 and x = a. For x < 0 and x > a,there is no
magnetic induction.

(a)

(b)

(c)

Determinethe total electromagnetic momentum G in magnitude anddirec-

tion of the combination of a particle with point charge q at (Xo, Yo, Zo) in the

presence of this magnetic induction. Find G for the charge located on either
side of and within the region occupied by the magnetic field. Assumethe
particle is at rest or in nonrelativistic motion.

The particle is normally incident on the field region from x < 0 with nonre-
lativistic momentum p. Assuming that p > qBa/c, determine the components
of momentum after the particle has emerged into the field-free region, x > a.
Compare the components of the sum of mechanical (particle) and electro-
magnetic momenta initially and finally. Why are some components of the
sum conserved and some not?

Assume that p < qBa/2c and that the initial conditions are such that the
particle’s motion is confined within the region of the magnetic induction at
fixed z. Discuss the conservation,or lack ofit, of the components of the sum
of mechanical and electromagnetic momentum as the particle movesin its
path. Comment.

In Problems 6.5 and 6.6 a nonvanishing momentum of the electromagneticfields
was found for a charge and a current-carrying toroid at rest. This paradox is among
situations involving “hidden momentum.” Since the field momentum is propor-
tional to 1/c*, you mayinferthat relativistic effects may enter the considerations.

(a)

(b)

Consider the chargecarriers in the toroid (or other current-carrying systems)
of mass m, charge e, and individual mechanical momentum p = ymv, and

the current density J = env, where n is the numberdensity of carriers and
is the relativistic Lorentz factor. Use conservation of energy for each charge
carrier to show that, for the “‘static’’ field situation of Problem 6.5, the total

mechanical momentum of the chargecarriers,

1
Pnech = | d’x ynmy = -2 | d*x BJ

just opposite to the field momentum of Problem 6.5a.

Consider the toroid of Problem 6.6 to be of rectangular cross section, with
width w and height 4 both small comparedto a, and hollow tubes of uniform
cross section A,,. Show that the electrostatic potential energy difference be-
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tween the inner and outer vertical segments of each tube yields the change
in ymc* necessary to generate a net vertical mechanical momentum equal
and opposite to the result of Problem 6.6a, with due regard to differences in

units.

Reference: Vaidman,op.cit.

The magnetic field of the earth can be represented approximately by a magnetic
dipole of magnetic moment M = 8.1 X 10” gauss-cm*. Consider the motion of
energetic electrons in the neighborhoodof the earth underthe action ofthis dipole
field (Van Allen electron belts). [Note that M points south.]

(a) Show that the equation for a line of magnetic force is r = rp sin*6, where 6

is the usual polar angle (colatitude) measured from the axis of the dipole,
and find an expression for the magnitude of B along any line of force as a

function of 6.

(b) A positively charged particle circles around a line of force in the equatorial
plane with a gyration radius a and a meanradius R (a < R). Show that the
particle’s azimuthal position (east longitude) changes approximately linearly

in time according to

a

A(t) = ho -5 (<) wp(t — to)

where wz, is the frequency of gyration at radius R.

(c) If, in addition to its circular motion of part b, the particle has a small com-
ponentof velocity parallel to the lines of force, show that it undergoes small
oscillations in § around 6 = 7/2 with a frequency 2 = (3/V2)(a/R) wg.Find
the change in longitude per cycle of oscillation in latitude.

(d) For an electron of 10 MeV kinetic energy at a mean radius R = 3 X 10’ m,

find wz and a, and so determine how long it takes to drift once around the

earth and how longit takes to execute one cycle of oscillation in latitude.
Calculate the same quantities for an electron of 10 keV at the sameradius.

A chargedparticle findsitself instantaneously in the equatorial plane of the earth’s
magnetic field (assumed to be a dipole field) at a distance R from the center of
the earth. Its velocity vector at that instant makes an angle a with the equatorial
plane (v,/v, = tan a). Assuming that the particle spirals along the lines of force
with a gyration radius a < R,andthat the flux linked by the orbit is a constant
of the motion, find an equation for the maximum magnetic latitude A reached by
the particle as a function of the angle a. Plot a graph (not a sketch) of A versus a.
Mark parametrically along the curve the values of a for which a particle at radius
R in the equatorial plane will hit the earth (radius Ro) for R/Ro = 1.2, 1.5, 2.0, 2.5,

3, 4, 5.

Considerthe precession of the spin of a muon,initially longitudinally polarized,
as the muon movesin a circular orbit in a plane perpendicular to a uniform mag-

netic field B.

(a) Show that the difference 0 of the spin precession frequency andthe orbital

gyration frequencyis

eBa
M,C

independent of the muon’s energy, where a = (g — 2)/2 is the magnetic
moment anomaly. (Find equations of motion for the components of spin
along the mutually perpendicular directions defined by the particle’s velocity,
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12.12

12.13

12.14

(b)

(c)

the radius vector from the centerofthe circle to the particle, and the magnetic
field.)

For the CERN MuonStorage Ring, the orbit radius is R = 2.5 meters anq

B = 17 X 10° gauss. Whatis the momentum of the muon? Whatis the time
dilatation factor y? How many periods of precession T = 27/Q occur per
observed laboratory mean lifetime of the muons? [m, = 105.66 MeV,

T = 2.2 X 10°°s,a = a/27].

Expressthe difference frequency 2 in units of the orbital rotation frequency
and compute how manyprecessionalperiods (at the difference frequency)
occur per rotation for a 300 MeV muon, a 300 MeVelectron, a 5 GeV elec-

tron (this last typical of the ee” storage ring at Cornell).

In Section 11.11 the BMT equation of motion for the spin of a particle of charge
e and a magnetic momentwith an arbitrary g factor was obtained.

(a)

(b)

(c)

(d)

(a)

(b)

(a)

Verify that (11.171) is the correct equation for the time derivative of the
longitudinal componentof the rest-frame spin vectors.

Let n be a unit 3-vector perpendicular to B and coplanar with B and s (fi is

generally time dependent). Let 6 be the angle between f and s. Show that
the time rate of change of 6 can be written as

d6_ €1/8 _ \n gB 1).dt me (§ )i (Bx B) + (& ;)i E

where E and B arethefields in the laboratory and cB = cBB is the particle’s

instantaneousvelocity in the laboratory.

For a particle moving undeflected through an E X B velocity selector and
with (n x B)-B = B,find d6/dt in terms of the gyration frequency eB/ymc.

By defining the two 4-vectors, L* = (yf, vB) and N* = (0, n), show that d6/
dz can be written in the quasi-covariant form

1a 18, fy|p,
dr mce|2 U

where U* is the particle’s 4-velocity.

Specalize the Darwin Lagrangian (12.82) to the interaction of two charged
particles (m,, qg,) and (my, gz). Introduce reduced particle coordinates, r =
X; — X%, V = V1 — V> and also center of mass coordinates. Write out the

Lagrangianin the reference frame in which the velocity of the center of mass
vanishes and evaluate the canonical momentum components, p, = dL/dv,,
etc.

Calculate the Hamiltonianto first order in 1/c* and show thatit is

2 4 24 (py. FY
a-E(L44),0n2(Ls4), ange (2 8)

2\m, m, r 8c? \mi m3 2m,m4c* r
 

Compare with the various terms in (42.1) of Bethe and Salpeter [op. cit.
(Section 12.6), p. 193]. Discuss the agreements and disagreements.

An alternative Lagrangian density for the electromagneticfield is

1 1
f= -— dAgd*A® —-J,A°

87 Cc

Derive the Euler-Lagrange equations of motion. Are they the Maxwell equa-

tions? Under what assumptions?
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(b) Show explicitly, and with what assumptions, that this Lagrangian density
differs from (12.85) by a 4-divergence. Doesthis added 4-divergenceaffect
the action or the equations of motion?

Consider the Proca equations for a localized steady-state distribution of current
that has only a static magnetic moment. This model can be used to study the
observable effects of a finite photon mass on the earth’s magnetic field. Note that
if the magnetization is M(x) the current density can be written as J = c(V <M).

(a) Show that if 4 = mf(x), where m is a fixed vector and f(x) 1s a localized
scalar function, the vector potential is

—p|x—x’|

d°x' A(x) = -m x V | f(x’)
x — x’|

(b) Ifthe magnetic dipole is a point dipole at the origin [f(x) = 6(x)], show that

the magnetic field away from the origin is

  
wre eEr 0 > eur

3 r
B(x) = [3r(f - m) — mi(1 + pr +

(c) The result of part b showsthat at fixed r = R (on the surface of the earth),

the earth’s magnetic field will appear as a dipole angular distribution, plus
an added constant magnetic field (an apparently external field) antiparallel
to m. Satellite and surface observations lead to the conclusion thatthis “‘ex-
ternal” field is less than 4 X 107° times the dipole field at the magnetic
equator. Estimate a lower limit on ~' in earth radii and an upperlimit on
the photon mass in grams from this datum.

This method of estimating mw is due to E. Schrédinger, Proc. R. Irish
Acad. A49, 135 (1943). See A. S. Goldhaber and M. M. Nieto, Phys. Rev.

Lett. 21, 567 (1968).

(a) Starting with the Proca Lagrangian density (12.91) and following the same
procedureas for the electromagnetic fields, show that the symmetric stress-
energy-momentum tensor for the Procafields is

1 1 1
Ow =er + 7 BFPY + w(aca" — fA")|

WT

(b) For thesefields in interaction with the external source J®, as in (12.91), show

that the differential conservation laws take the same form asfor the electro-

magnetic fields, namely,

JF?

C
0,07" =

(c) Show explicitly that the time-time and space-time components of 0°? are

1
@°° = — [E? + B? + p(A°A® + A; AD]

TT

| 1 |
@”° = tn [((E x B); + wA‘A®]

WT

Consider the ‘“‘Thomson”’ scattering of Proca waves(photons with mass) by a free

electron.

(a) As a preliminary, show that for an incident plane wave of unit amplitude,
A = €) cos(kz — wf), where €9 is a polarization vector of unit magnitude
describing either longitudinal (/) or transverse (tf) fields, the time-averaged
energy fluxes (measured by @*°) are F, = wk/87 and F, = (u/)’F,. Show
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(b)

(c)

(d)

also for arbitrary polarization that the ratio of time-averaged energyfiyx
to energy density is

(O")_,_k be
(qm ~ B= O> 13
 

as expected for particles of mass wp.

For polarization €, initially and polarization € finally, show that the “Thom-
son’’ cross section for scattering is |

do
—~ (€, €) = roEo |e* + €o/?dQ,

Fout

F;

where7p is theclassical electron radius, Eo is a factor for the efficiency of the

incident Procafield in exciting the electron, and thefinal factoris a ratio of

the outgoing to incident fluxes. What is the value of E,?

For an unpolarized transverse wave incident, show that the scattering cross
section is

2
d 2

(=) = 5 + cos*@ + (4) sin
t @

wherethefirst term is the familiar transverse to transverse scattering and the
second is transverse to longitudinal.

For a longitudinally polarized wave incident, show that the cross section,
summed over outgoing polarizations,is

2 2

da b\ 5) . 5 lL 5
——_ — La + fo(<<) (4) Ai sin 0 (4) cos*é

wherethefirst term is the longitudinal to transverse scattering and the second
is longitudinal to longitudinal.

Note that in the limit /w — 0, the longitudinal fields decouple and we
recover the standard Thomson crosssection.

12.18 Prove, by means of the divergence theorem in four dimensions or otherwise, that

for source-free electromagnetic fields confined to a finite region of space, the 3-
space integrals of @°° and ©"transform as the componentsof a constant 4-vector,
as implied by (12.106).

Source-free electromagnetic fields exist in a localized region of space. Consider
the various conservation laws that are containedin the integral of 0,M°**” = 0 over
all space, where M°*” is defined by (12.117).

12.19

(a)

(b)

Show that when 6 and y are both space indices conservation of the totalfield
angular momentum follows.

Show that when B = 0 the conservation law is

AX CPun

dt Exp

where X is the coordinate of the center of mass of the electromagneticfields,

defined by

K | ud’ = | xu ax

where u is the electromagnetic energy density and E,,, and P,,,, are the total

energy and momentumofthefields.
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A uniform superconductor with London penetration depth Ay,fills the half-space
x > 0. The vector potential is tangential and for x < 0 is given by

Ay _— (ae’* 4 be"**)e7i#

Find the vector potential inside the superconductor. Determine expressions for
the electric and magneticfields at the surface. Evaluate the surface impedance Z,
(in Gaussian units, 47/c times the ratio of tangential electric field to tangentiai
magnetic field). Show that in the appropriate limit your result for Z, reduces to

that given in Section 12.9.

A two-fluid model for the electrodynamics of superconductors posits two types of
electron, normal and superconducting, with numberdensities, charges, masses, and

collisional damping constants, n,, e;, m;, and y,, respectively (j = N, S). The elec-
trical conductivity consists of the sum of two terms of the Drude form (7.58) with
foN > nj, e > e;, mM > M;, Yo > y;. The normal (superconducting) electrons are

distinguished by yy # 0 (ys = 0).

(a) Show that the conductivity of the superconductor at very low frequenciesis
largely imaginary (inductive) with a small resistive component from the nor-
mal electrons.

(b) Show that use of Ohm’s law with the conductivity of part a in the Maxwell

equations results in the static London equation for the electric field in the
limit w — 0, with the penetration depth (12.100), provided the carriers are
identified with the superconducting componentof the electric fluid.
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In this chapter we considercollisions between swiftly moving, charged particles,
with special emphasis on the exchange of energy between collision partners
and on the accompanying deflections from the incident direction. We also
treat Cherenkov radiation andtransition radiation, phenomenaassociated with
charged particles in uniform motion through material media.

A fast charged particle incident on matter makescollisions with the atomic
electrons and nuclei. If the particle is heavier than an electron (mu or pi meson,
K meson,proton,etc.), the collisions with electrons and with nuclei have different
consequences. The light electrons can take up appreciable amounts of energy
from the incident particle without causing significant deflections, whereas the
massive nuclei absorb very little energy but because of their greater charge cause
scattering of the incident particle. Thus loss of energy by the incident particle
occurs almost entirely in collisions with electrons. The deflection of the particle
from its incident direction results, on the other hand, from essentially elastic

collisions with the atomic nuclei. The scattering is confined to rather small angles,
so that a heavy particle keeps a moreorlessstraight-line path while losing energy
until it nears the end of its range. For incident electrons both energy loss and
scattering occurin collisions with the atomic electrons. Consequently the pathis
much less straight. After a short distance, electrons tend to diffuse into the ma-

terial, rather than goin a rectilinear path.
The subject of energy loss and scattering is an important one andis discussed

in several books(see references at the end of the chapter) where numericaltables
and graphs are presented. Consequently our discussion emphasizes the physical

ideas involved, rather than the exact numerical formulas. Indeed,a full quantum-

mechanical treatment is needed to obtain exact results, even thoughall the es-
sential features are classical or semiclassical in origin. All the orders of magnitude
of the quantum effects are easily derivable from the uncertainty principle,as will
be seen.

We begin by considering the simple problem of energy transfer to a free

electron by a fast heavy particle. Then the effects of a binding force on the
electron are explored, and the classical Bohr formula for energy loss is obtained.
A description of quantum modifications and the effect of the polarization of the
medium is followed by a discussion of the closely related phenomenon of
Cherenkov radiation in transparent materials. Then the elastic scattering of in-

cident particles by nuclei and multiple scattering are presented. Finally, wetreat
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transition radiation by a particle passing from one medium to anotherofdifferent
optical properties.

13.1 Energy Transfer in a Coulomb Collision Between Heavy
Incident Particle and Stationary Free Electron;
Energy Loss in Hard Collisions

A swift particle of charge ze and mass M (energy E = yMc*, momentum P =

yBMc) collides with an atomic electron of charge —e and mass m. Forenergetic
collisions the binding of the electron in the atom can be neglected; the electron
can be considered free and initially at rest in the laboratory. For all incident
particles except electrons and positrons, M >> m. Then thecollision is best
viewed as elastic Coulombscattering in the rest frame of the incidentparticle.
The well-known Rutherford scattering formula is

do ze? \" , 0
dO, = 2pu Cosec > (13.1)

where p = yf8mc and v = Bc are the momentum andspeed of the electron in

the rest frame of the heavy particle (exact in the limit M/m — ©). The cross
section can be given a Lorentz-invariant form by relating the scattering angle to
the 4-momentum transfer squared, Q? = —(p — p’)*. Forelastic scattering,
Q* = 4p’ sin’(6/2). The result is

do ze .
Ta? = 40 5 13.2dg (ie) 32)

where Bc, the relative speed in each particle’s rest frame, is found from B* =

1 — (Mmc’/P - py’.
The cross section for a given energy loss T by the incident particle, that is,

the kinetic energy impartedto the initially stationary electron, is proportionalto
(13.2). If we evaluate the invariant Q7 in the electron’s rest frame, we find Q? =
2mT. With Q? replaced by 2mT, (13.2) becomes

do _ 2a1z7e"

dT mc*p°T’

Equation (13.3) is the cross section per unit energy interval for energy loss T by
the massive incidentparticle in a Coulombcollision with a free stationary elec-
tron. Its range of validity for actual collisions in matteris

(13.3)

Tnin < T < Tnax

with 7,,;, set by our neglect of binding (T,;, = h(w) where h(w) is an estimate

of the mean effective atomic binding energy) and T,,,, governed by kinematics.
Wecanfind 7,4, by recognizing that the most energetic collision in the rest frame
of the incident particle occurs whentheelectron reversesits direction. After such

a collision, the electron has energy E’ = ymc* and momentum p' = yGmcin the

direction of the incidentparticle’s velocity in the laboratory. The boost to the
laboratory gives

Tmax = E — mc* = y(E' + Bep’) — mc? = 2y’B’?mc* (13.4)
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Wenote in passing that (13.4) is not correct if the incident particle has too high
an energy. The exact answer for 7,,,, has a factor in the denominator, D =

1 + 2mE/M*c? + m*/M’. For muons (M/m ~ 207), the denominator must be
taken into accountif the energy is comparable to 44 GeV orgreater. For pro-

tons that energy is roughly 340 GeV. For equal masses, it is easy to see that

Tmax = (y — Lmce?.
Whenthe spin of the electron is taken into account, there is a quantum-

mechanical correction to the energy loss cross section, namely, a factor of

1 — B* sin?(6/2) = (1 — B* T/Tax):

da 214z7e" T
_ — —“"__ |] — g?

(a) meB?T? ( P Z) (135)
The energy loss per unit distance in collisions with energy transfer greater

than e for a heavyparticle passing through matter with N atomsper unit volume,
each with Z electrons, is given by the integral,

 

 

dE Tmax a

af (r>e)=Nnz{ T= dT
dx e dT (13.6)

- 764 2B2me ;
= 2m7NZ meB In 5 Bp

In the result (13.6) we assumed e << T,,,, and used (13.5) for the energy-transfer
cross section. The small term, — 8’, in the square brackets is the relativistic spin

contribution. Equation (13.6) represents the energy loss in close collisions.It is
only valid provided ¢ >> fh(w) because binding has been ignored.

An alternative, classical or semiclassical approach throws a different light on the
physics of energy loss. In the rest frame of the heavy particle the incident electron ap-
proaches at impact parameter b. There is a one-to-one correspondence between b and
the scattering angle 0 (see Problem 13.1). The energy transfer T can be written as

2z7e" 1

mv2 bb? + b©?min
T(b) = 

with b©), = ze’/pu. For b >> b©., the energy transfer varies as b~’, implying that, if the
min

energy transfer is greater than ¢, the impact parameter mustbe less than the maximum,
1/2

277e4

mvs
 rato =(

Whenthe heavyparticle passes through matterit ‘‘sees’”’ electrons at all possible impact

parameters, with weighting according to the area of an annulus, 27b db. Theclassical

energy loss per unit distance for collisions with transfer greater than e is therefore

  
dE DO) ze bo (e) °
Gy (E> 8) = 2aNZ I T(b)b db = 20NZ ——@ In} | (13.7)

Substitution of bya, and bwin leads directly to (13.6), apart from the relativistic spin cor-

rection. That we obtain the same result (for a spinless particle) quantum mechanically
and classically is a consequence of the validity of the Rutherford cross section in both

regimes.
If we wish to find a classical result for the total energy loss per unit distance, we must

address the influence of atomic binding. Electronic binding can be characterized by the
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frequency of motion (@)orits reciprocal, the period. The incident heavy particle produces
appreciable time-varying electromagnetic fields at the atom for a time At ~ b/yu [see
(11.153)]. If the characteristic time Ar is long compared to the atomic period, the atom
responds adiabatically—it stretches slowly during the encounter and returns to normal,
without appreciable energy being transferred. On the other hand,if Aris very short com-
pared to the characteristic period, the electron can be treated as almost free. The dividing

line is (w)At ~ 1, implying a maximum effective impact parameter

dQ ~ 2a (13.8)
(w)

beyond which nosignificant energy transfer is possible. Explicit illustration ofthis cutoff
for a charge bound harmonically is found in Problems 13.2 and 13.3.

If (13.8) is used in (13.7) instead of b&),(e), the total classical energy loss per unit

distance is approximately

dE ze"
— = 2nNZ ——— In(B2 13.9
(¢) . mc?B? nt -) ( )

where

 ypime _ ypme’
ze*{w) nha)

In (13.10) we have inserted a numerical constant A of the order of unity to allow for our
uncertainty in b©,. The parameter = ze’/fv is a characteristic of quantum-mechanical
Coulombscattering: 7 << 1 is the strongly quantum limit; 7 >> 1 is the classicallimit.

Equation (13.9) with (13.10) contains the essentials of the classical energy loss for-
mula derived by Niels Bohr (1915). With many different electronic frequencies, (w) is the
geometric meanofall the frequencies w,;, weighted with the oscillator strength f,:

Z In(w) = >) f; Ino, (13.11)

B.= (13.10)

Equation (13.10) is valid for 7 > 1 (relatively slow alpha particles, heavy nuclei) but
overestimates the energy loss when n < 1 (muons, protons, even fast alpha particles). We
see below that when 7 < 1 the correct result sets 7 = 1 in (13.10).

13.2. Energy Lossfrom Soft Collisions; Total Energy Loss

The energy loss in collisions with energy transfers less than e, including those
small compared to electronic binding energies, really can be treated properly
only by quantum mechanics, although after the fact we can “explain” the result
in semiclassical language. Theresult, first obtained by Bethe (1930), is

dE _ ze 5 _
dx (T < e) = 27NZ meB {In|BZ(e)] Bp | (13.12)

where

- yu (2me)"”
B,(e) = filo) (13.13)

Theeffective excitation energy f(w) is given by (13.11), but now with the proper

quantum-mechanicaloscillator strengths and frequency differences for the atom,

including the contribution from the continuum. The upperlimit e on the energy



628 Chapter 13. Energy Loss, Scattering; Cherenkov and Transition Radiation—G

transfers is assumed to be beyondthe limit of appreciable oscillator strength,
Such a limit is consonant with the lowerlimit ¢ in Section 13.1, chosen to make
the electron essentially free.

The total energy loss per unit length is given by the sum of (13.6) and (13.12):

dE ze
Fe = AUNZ mop {In(B,) — B*} (13.14)

where

2"B2mc?

The general behavior of both the classical and quantum-mechanical energy
loss formulasis illustrated in Fig. 13.1. They are functions only of the speed of
the incident heavy particle, the mass and charge of the electron, and the mean
excitation energy f(w). For low energies (yB < 1) the main dependencejs as
1/B*, while at high energies the slow variation is proportional to In(y). The min-
imum value of dE/dx occurs at yB ~ 3. The coefficient in (13.12) and (13.14)is
numerically equal to 0.150 z*(2Z/A)p MeV/cm, where Z is the atomic number
and A the mass numberof the material, while p (g/cm*) is its density. Since
2Z/A ~ 1, the energy loss in MeV-(cm*/g) for a singly charged particle in alu-
minum is approximately what is shownin Fig. 13.1. For aluminum the minimum
energy loss is roughly 1.7 MeV -(cm*/g); for lead,it is 1.2 MeV-(cm*/g). At high
energies corrections to the behaviorin Fig. 13.1 occur. The energy loss becomes
heavy-particle specific, through the mass-dependent denominatorD in T,,,,,, and
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Figure 13.1 Energy loss as a function of y8 of the incident heavy particle. The solid
curve is the total energy loss (13.14) with i(w) = 160 eV (aluminum). The dashed curve
is the energy loss in soft collisions (13.12) with « = 10 keV. The ordinate scale
correspondsto the curly-bracketed quantities in (13.12) and (13.14), multiplied by 0.15.
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has a different energy variation and dependenceon the material, because of the
density effect discussed in Section 13.3.

The restricted energy loss shown in Fig. 13.1 is applicable to the energy loss
inferred from tracks in photographic emulsions. Electrons with energies greater
than about 10 keV havesufficient range to escape from silver bromide grains.

The density of blackening along a track is therefore related to the restricted
energy loss. Note that it increases more slowly than the total for large yB—as

In(y) rather than In(y*). A semiclassical explanation is given below.

Comparison of B, with the classical B, (13.10) showsthat their ratio is 7 = ze/hv.
To understand how this factor arises, we turn to semiclassical arguments. B, is the ratio
of b©, (13.8) to b©, = ze’/ymv?. The uncertainty principle dictates a different bi, for
71 <1. In the rest frame of the heavy particle the electron has momentum p = ymv.Ifit

is described by a transversely localized wave packet (to define its impact parameter as
well as possible), the spread in transverse momenta Ap around zero mustsatisfy Ap <p;
otherwise, its longitudinal direction would beill-defined. This limit on Ap translates into
an uncertainty Ab in impact parameter, Ab >> h/p, or in other words, an effective quan-

tum-mechanical lowerlimit,

pa. — (13.16)
ymvu

Evidently, in calculating energy loss as an integral over impact parameters, the larger
of the two minimum impact parameters should be used. Theratio b©),/b@, = ny. When
7 > 1, the classical lower limit applies; for 7 < 1, (13.16) applies and (13.15) is the correct

expression for B.
The value of B,(€) in (13.12) can also be understood in terms of impact parameters.

The soft collisions contributing to (13.12) come semiclassically from the more distant
collisions. The momentumtransfer 6p to the struck electron in such collisions is related

to the energy transfer T according to 6p = (2mT)'”. On the other hand,the localized
electron wave packet has a spread Ap in transverse momenta. To be certain that the
collision produces an energy transfer less than e, we must have Ap < Spmax = (2me)"”,
hence Ab > h/(2me)'”. The effective minimum impact parameter for soft collisions with

energy transfer less than ¢ is therefore

h
b®(e) ~ (2me)'”

(13.17)

For collisions so limited in impact parameter between (13.17) and bymax = yu/(w), we find

yu(2me)'”"
B,(€) = he)

in agreement with Bethe’s result.

The semiclassical discussion of the minimum and maximum impact param-
eters elucidates the reason for the difference in the logarithmic growth between

the restricted and total energy losses. At high energies the dominant energy
dependenceis through dE/dx « In(B) ~ In()max/Dmin)- For the total energy loss,
the maximum impact parameter is proportional to y, while the quantum-
mechanical minimum impact parameter (13.16) is inversely proportionalto y.
The ratio varies as y’. For energy loss restricted to energy transfers less than e,
the minimum impact parameter (13.17) is independentofy, leading to B,(e€) & y.
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Despite its attractiveness in making clear the physics, the semiclassica] de-
scription in terms of impact parameters contains a conceptual difficulty that war.
rants discussion. Classically, the energy transfer 7 in each collision is relateg
directly to the impact parameter b. When b >> b?)., T(b) ~ 2z7e*/mv7b? (Problem
13.1). With increasing b the energy transfer decreases rapidly until at 5 =
bmax ~ yul(w) it becomes

Tmax) ~ > (") (He?) h{w) (13.18)

Here vy = c/137 is the orbital speed of an electron in the groundstate of hydrogen
and Jy, = 13.6 eV its ionization potential. Since empirically i(w) = ZI, we see

that for a fast particle (v >> vu) the classical energy transfer (13.18) is much
smaller than the ionization potential, indeed, smaller than the minimum possible

atomic excitation.

Weknow, however, that energy must be transferred to the atom in discrete

quantum jumps. A tiny amount of energy such as (13.18) simply cannotbe ab-
sorbed by the atom. We mightargue that the classical expression for 7(b) should
be employedonly if it is large compared to sometypical excitation energy of the
atom. This requirement would set quite a different upper limit on the impact
parameters from b,,,, ~ yu/(w) and lead to wrongresults. Could b,,,, nevertheless

be wrong? After all, it came from consideration of the time dependenceof the

electric and magnetic fields (11.152), without consideration of the system being
affected. No, time-dependentperturbations of a quantum system causesignificant

excitation only if they possess appreciable Fourier components with frequencies

comparable to 1/fh times the lowest energy difference. That was the “adiabatic”
argument that led to b,,,, in the first place. The solution to this conundrumlies

in another direction. The classical expressions must be interpreted in a statistical
sense.

The classical concept of the transfer of a small amount of energy in every
collision is incorrect quantum-mechanically. Instead, while on the average over
many collisions, a small energy is transferred, the small average results from
appreciable amounts of energy transferred in a very small fraction of thosecol-

lisions. In most collisions no energy is transferred. It is only in a statistical sense
that the quantum-mechanical mechanism of discrete energy transfers and the

classical process with a continuum of possible energy transfers can be reconciled.
The detailed numerical agreement for the averages (but not for the individual
amounts) stems from the quantum-mechanical definitions of the oscillator

strengths f; and resonant frequencies w, entering (w). A meaningful semiclassical

description requires (a) the statistical interpretation and (b) the use of the un-
certainty principle to set appropriate minimum impact parameters.

The discussion so far has been about energy loss by a heavy particle of mass
M >> m.Forelectrons (M = m), kinematic modifications occur in the energy

loss in hard collisions. The maximum energy loss is Tmax = (y — 1)mc*. The
argumentof the logarithm in (13.6) becomes(y — 1)mc*/e. The Bethe expression
(13.12) for soft collisions remains the same. The total energy loss for electrons
therefore has B, (13.15) replaced by

V2 yBV y — 1 mc? _ V2? mc?
re 13.19

hi) hiw) (
 B,(electrons) =
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the last form applicable for relativistic energies. There are spin and exchange
effects in addition to the kinematic change, but the dominant effect is in the
argument of the logarithm; the other effects only contribute to the added

constant. |

The expressions for dE/dx represent the average collisional energy loss per

unit distance by a particle traversing matter. Because the numberofcollisions
per unit distance is finite, even though large, and the spectrum of possible energy
transfers in individual collisions is wide, there are fluctuations around the aver-

age. These fluctuations produce straggling in energy or range for a particle tra-

versing a certain thickness of matter. If the numberof collisions is large enough
and the mean energyloss nottoo great, the final energies of a beam of initially
monoenergetic particles of energy Ey are distributed in Gaussian fashion about
the mean E. With Poissonstatistics for the numberofcollisions producing a given
energy transfer T, it can be shown(see, e.g., Bohr, Section 2.3, or Rossi, Section

2.7) that the mean square deviation in energy from the mean1s

? = 2aNZz*e*"(y + 1)t (13.20)

wheret is the thickness traversed. This result holds provided OQ <«< E and), <<

(Ey — E), and also OQ >> Tmax ~ 2y’B’mc’. For ultrarelativistic particles the last
condition ultimately fails. Then the distribution in energies is not Gaussian, but
is described by the Landau curve. The interested reader may consult the refer-

ences at the end of the chapter for further details.

13.3 Density Effect in Collisional Energy Loss

For particles that are not too relativistic, the observed energy loss is given ac-
curately by (13.14) [or by (13.9) if 7 > 1] for particles of all kinds in mediaof all
types. For ultrarelativistic particles, however, the observed energy lossts less than
predicted by (13.14), especially for dense substances. In terms of Fig. 13.1 of
(dE/dx), the observed energy loss increases beyond the minimum with a slope of
roughly one-half that of the theoretical curve, corresponding to only one power
of y in the argumentof the logarithm in (13.14) instead of two. In photographic
emulsions the energy loss, as measured from grain densities, barely increases
above the minimum to a plateau extending to the highest knownenergies. ‘This
again correspondsto a reduction of one powerofy, this time in B,(e€) (13.13).

This reduction in energy loss, known as the density effect, wasfirst treated
theoretically by Fermi (1940). In our discussion so far we havetacitly made one
assumption that is not valid in dense substances. We have assumedthatit is
legitimate to calculate the effect of the incident particle’s fields on one electron

in one atom at a time, and then sum up incoherently the energy transferstoall
the electrons in all the atoms with b,.,, < b < Dmax. Now Dmax 1S very large

compared to atomic dimensions, especially for large y. Consequently in dense
media there are many atomslying betweenthe incidentparticle’s trajectory and
the typical atom in question if b is comparable to b,,,x. These atoms, influenced

themselvesby the fast particle’s fields, will produce perturbingfields at the chosen
atom’s position, modifying its response to the fields of the fast particle. Said in
another way, in dense media the dielectric polarization of the materialalters the
particle’s fields from their free-space valuesto those characteristic of macroscopic
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fields in a dielectric. This modification of the fields due to polarization of the
medium must be taken into accountin calculating the energy transferredin djs.

tant collisions. For close collisions the incident particle interacts with only one
atom at a time. Then the free-particle calculation without polarization effects wi]
apply. The dividing impact parameter between close anddistantcollisionsis of
the order of atomic dimensions. Since the joining of two logarithmsis involved
in calculating the sum, the dividing value of b need not be specified with great
precision.

Wewill determine the energy loss in distant collisions (b = a), assumingthat
the fields in the medium can be calculated in the continuum approximation of q
macroscopic dielectric constant e(w). If a is of the order of atomic dimensions,
this approximation will not be good for the closest of the distant collisions, but
will be valid for the great bulk of the collisions.

The problem of finding the electric field in the medium due to the incident
fast particle moving with constant velocity can be solved most readily by Fourier
transforms. If the potentials A,,(x) and source density J,,(x) are transformed in
space and time according to the generalrule,

 F(x, t) = (ny | d°k | dw F(k, w)e"**~ (13.21)

then the transformed wave equations become

wo Ar
ie 2 cw)O( w) = (a) p(k, w)

, (13.22)
5 w Ar

k* — ce E(w) A(k, w) = C J(k, w)

The dielectric constant e(w) appears characteristically in positions dictated by
the presence of D in the Maxwell equations. The Fourier transforms of

p(x, t) = ze 6(x — vt)
and (13.23)

J(x, t) = vp(x, ft)

are readily found to be

p(k, w) =~ 9m —k-v)
27

 

(13.24)
J(k, w) = vo(k, o)

From (13.22) we see that the Fourier transformsof the potentials are

2 d(w — k-®(k, 0) = a _ 6(@ v)
E( W W

k? — > E(w)

c (13.25)
and

A(k, w) = €(w) - O(k, «)
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From the definitions of the electromagnetic fields in terms of the potentials we
obtain their Fourier transforms:

E(k, ) = oe- kJor w)

B(k, «) = ie(w)k x ~ &(k, w)
(13.26)

In calculating the energy loss to an electron in an atom at impact parameter),

we evaluate

oO

AE = —-e | v:E dt = 2e Re | iwx(w) + E*(w) dw (13.27)
— oo 0

where x(q) is the Fourier transform in time of the electron’s coordinate and E(w)
is the Fourier transform in timeof the electromagnetic fields at a perpendicular

distance b from the pathof the particle moving along the x axis. Thus the required
electric field is

E(w) = | d?k E(k, we” (13.28)

where the observation point has coordinates(0, b, 0). To illustrate the determi-
nation of E(w) we consider the calculation of E(w), the componentof E parallel
to v. Inserting the explicit forms from (13.25) and (13.26), we obtain

21 O(@ — vkE,(o) = —22@— f keibhs ese _ |=vk) (43,99)
e(w)(2m) e- © ew)

The integral over dk, can be done immediately. Then

_—-2izew 1 5 [ ibk, [ dk

Fie) = (Qn 92? | - B*| ~ 00 alae ~o ki + kz + d?
 

where

S
|

g
,

|

5
,

|
g
,

Ww
2 _ _

Mv = y2e(w) = [1 — B’e(o)] (13.30)

The integral over dk, has the value w/(A? + k3)'”, so that E,(@) can be written

_ __ izew * e!P*.E\(w) = Fea P7 [- Greet (1331)

The remaining integral is a representation of a modified Bessel function.* The
result is

 

 

WT
E,(w)= (2) 2=0) (13.32)

*See, for example, Abramowitz and Stegun (p. 376, formula 9.6.25); Magnus, Oberhettinger, and Soni
(Chapter XI), or Bateman Manuscript Project, Table ofIntegral Transforms, Vol. 1 (Chapters I-III).
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where the square root of (13.30) is chosen so that A lies in the fourth quadrant.
A similar calculation yields the otherfields:

E(w) = (2) —”_ K,(Ab)
v \m) ee) (13.33)

B3(@) = E(w)BE,(w)

In the limit €(w) — 1 it is easily seen that fields (13.32) and (13.33) reduceto the
results of Problem 13.3.

To find the energy transferred to the atom at impact parameter b we merely
write down the generalization of (13.27):

AE(b) = 2e >» f; Re i iwXx;(w) » E*(@) dw

where x;(@) is the amplitude of the jth type of electron in the atom. Rather than
use (7.50) for x;(@) we express the sum of dipole moments in terms of the mo-
lecular polarizability and so the dielectric constant. Thus

-e D fino) = 5 lel) ~ NEC) 

where N is the numberof atoms per unit volume. Then the energy transfer can
be written

oO

AE(b) = 1 Re I —iwe(@) |E(w)|? dw (13.34)

The energy loss per unit distance in collisions with impact parameter b = a
is evidently

dx

If fields (13.32) and (13.33) are inserted into (13.34) and (13.35), we find, after
some calculation, the expression due to Fermi,

(<2) = 2aN |: AE(b)b db (13.35)

 dE 2 (ze) e 1
(e) = 7 2 Re I iwd*aK,(A*a)Ko(Aa)(a — ‘ dw (13.36)

where A is given by (13.30). This result can be obtained moreelegantly bycal-

culating the electromagnetic energy flow through a cylinder of radius a around
the path of the incident particle. By conservation of energy this is the energylost
per unit time by the incidentparticle. Thus

dE 1dE C [
— =SS 27aB3E, d
(ae) u dt Ag Jon

The integral over dx at one instant of time is equivalent to an integral at one
point on the cylinder overall time. Using dx = v dt, we have

(az) =-> [- B(t)E\(t) dt
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In the standard waythis can be converted into a frequencyintegral,

(@) = —ca Re | B3(w)E\(@) dw (13.37)

With fields (13.32) and (13.33) this gives the Fermi result (13.36).
The Fermi expression (13.36) bears little resemblance to ourearlier results

for energy loss. But under conditions where polarization effects are unimportant

it yields the same results as before. For example, for nonrelativistic particles
(8 < 1) it is clear from (13.30) that A = w/v, independent of e(w). Then in
(13.36) the modified Bessel functions are real. Only the imaginary part of 1/e(@)
contributes to the integral. If we neglect the polarization correction of Section
4.5 to the internal field at an atom, the dielectric constant can be written

  AnNe? fi
OeE(w) =~ 1 +

() 7 wo; — wo— iol,
(13.38)

where we have used the dipole moment expression (7.50). Assuming that the
second term is small, the imaginary part of 1/e(w) can be readily calculated and
substituted into (13.36). Then the integral over dw can be performed in the
narrow-resonance approximation. If the small-argument limits of the Bessel
functions are used, the nonrelativistic form of (13.9) emerges, with B, =
v/a(w). If the departure of A from w/yvu in (13.30) is neglected, (13.9) emerges
with B. = yu/a(w).

The density effect evidently comes from the presence of complex arguments

in the modified Bessel functions, corresponding to taking into account e(w) in
(13.30). Since e(w) there is multiplied by B’, it is clear that the density effect can
be really important only at high energies. The detailed calculations for all ener-
gies with some explicit expression such as (13.38) for e(w) are quite complicated
and not particularly informative. We content ourselves with the extremerelativ-

istic limit (8 = 1). Furthermore,since the important frequencies in the integral
over dw are optical frequencies andthe radiusa is of the order of atomic dimen-

~ (walc) << 1. Consequently we can approximate the Bessel functions

by their small-argument limits (3.103). Then in therelativistic limit the Fermi
expression (13.36)is

(z@)~22 an Re | io( _ ifm(22) - = Inf - <)]} du

(13.39)

         

  

It is worthwhile right here to point out that the argumentof the second logarithm
is actually [1 — B*e(w)]. In the limit e = 1, this log term gives a factor y in the
combined logarithm, corresponding to the old result (13.9). Provided e(w) # 1,
we can write this factor as [1 — e(w)], thereby removing one power of y from
the logarithm, in agreement with experiment.

The integral in (13.39) with e(w) given by (13.38) can be performed most
easily by using Cauchy’s theorem to changetheintegral over positive real w to
one over positive imaginary w, minus one over a quarter-circle at infinity. The
integral along the imaginary axis gives no contribution. Provided the I’; in (13.38)
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are assumed constant, the result of the integration over the quarter-circle can be
written in the simple form:

dE\ _ (ze)’a, jn( 1:123¢ ,
dx b>a Cc? aWy ( 3.40)

where w,is the electronic plasma frequency

  

> _ 4aNZe*0= (13.41)

The correspondingrelativistic expression without the density effect is

dE (ze)’w, (1.123yc( ~n( r) (13.42)
b>a

  
dx C aiw)

Wesee that the density effect produces a simplification in that the asymptotic
energy loss no longer depends on the details of atomic structure through (w)
(13.11), but only on the numberof electrons per unit volume through w,. Two
substances having very different atomic structures will produce the sameenergy
loss for ultrarelativistic particles provided their densities are such that the density

of electrons is the same in each.
Since there are numerouscalculated curves of energy loss based on Bethe’s

formula (13.14), it is often convenient to tabulate the decrease in energy loss due
to the density effect. This is just the difference between (13.40) and (13.42):
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Figure 13.2. Energyloss, including the density effect. The dashed curveis the total
energy loss without density correction. The solid curves have the density effect
incorporated, the upper one being the total energy loss and the lower one the energy
loss due to individual energy transfers of less than 10 keV.
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For photographic emulsions, the relevant energy loss is given by (13.12) and

(13.13) with e ~ 10 keV. With the density correction applied, this becomes con-
stant at high energies with the value,

  dE(é) , (ze)’ws, (7 (13.44)

dx 2c? hw,

For silver bromide, iw, = 48 eV. Then for singly charged particles (13.44), di-
vided by the density, has the value of approximately 1.02 MeV (cm’/g). This
energy loss is in good agreementwith experiment, and correspondsto an increase

above the minimum valueof less than 10%. Figure 13.2 showstotal energy loss
and loss from transfers of less than 10 keV for a typical substance. The dashed
curve is the Bethe curve for total energy loss without correction for density effect.

13.4 Cherenkov Radiation

The density effect in energy loss is intimately connected to the coherent response
of a medium to the passage ofa relativistic particle that causes the emission of
Cherenkovradiation. They are, in fact, the same phenomenon in different lim-
iting circumstances. The expression (13.36), or better, (13.37), represents the en-
ergy lost by the particle into regions a distance greater than b = a awayfrom its
path. By varying a we can examine how the energy is deposited throughout the
medium. In (13.39) we have considered a to be atomic dimensions and assumed
|Aa| << 1. Now wetakethe opposite limit. If |Aa| >> 1, the modified Bessel
functions can be approximatedby their asymptotic forms. Thenthefields (13.32)
and (13.33) become

 

 

ZEW 1 er?
E,(w, b) > 1 sm f — aD, v

ze A _)
E,(w, b) > ve(a) ip e (13.45)

B;(@, b) > Be(w)E2(o, b)

The integrand in (13.37) in this limitis

ze . |A* 1 ae
(—caB3E,) > 2 (-1)of1 — ea| (+a (13.46)

The real part of this expression, integrated over frequencies, gives the energy
deposited far from the path of the particle. If A has a positive real part, as 1s
generally true, the exponential factor in (13.46) will cause the expression to van-
ish rapidly at large distances. All the energy is deposited near the path. This1s
not true only when A is purely imaginary. Then the exponential is unity; the

expression is independentof a; someofthe energy escapesto infinity as radiation.
From (13.30) it can be seen that A can be purely imaginary if e(w) is real (no
absorption) and B’e(w) > 1. Actually, mild absorption can be allowed for, but
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in the interests of simplicity we will assume that €(w) is essentially real from now
on. The condition B*e(w) > 1 can be written in the more transparent form,

Veta (13.47)

This showsthat the speed of the particle must be larger than the phase velocity of
the electromagnetic fields at frequency w in order to have emission of Cherenkoy
radiation of that frequency.

Consideration of the phase of \ as B’e changes from less than unity to greater
than unity, assuming that €(w) has an infinitesimal positive imaginary part when
w > 0, shows that

 v >

A= -i|A| for B’e > 1

This meansthat (A*/A)'” = i and (13.46)is real and independentof a. Equation
(13.37) then represents the energy radiated as Cherenkovradiation per unit dis-
tance along the path of the particle:

dE\ _ (ze) 1
(F).. c Joa oft zw) ae (13.48)

The integrand obviously gives the differential spectrum in frequency. Thisis the
Frank—Tamm result, first published in 1937 in an explanation of the radiation
observed by Cherenkovin 1934. Theradiation is evidently not emitted uniformly
in frequency. It tends to be emitted in bands situated somewhat below regions
of anomalous dispersion, where e(w) > B~*, as indicated in Fig. 13.3. Of course,
if B = 1 the regions where e(w) > B* may be quite extensive.

Anothercharacteristic feature of Cherenkov radiation is its angle of emis-

sion. At large distances from the path the fields become transverse radiation
fields. The direction of propagation is given by E x B. As shownin Fig. 13.4, the
angle 6, of emission of Cherenkovradiation relative to the velocity of the particle
is given by

tan 6¢ = -— (13.49)

From the farfields (13.45) wefind

COS Oc = e(w) (13.50)

 

Figure 13.3. Cherenkov band.
Radiation is emitted only in shaded

9 o> frequency range, where e(w) > B*.
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273 Figure 13.4

The criterion B*e > 1 can now be rephrased as the requirementthat the emission
angle @¢ be a physical angle with cosine less than unity. In passing we note from
Fig. 13.4 that Cherenkov radiation is completely linearly polarized in the plane
containing the direction of observation and the path of the particle.

The emission angle 0- can be interpreted qualitatively in terms of a “‘shock”’
wavefront akin to the familiar shock wave (sonic boom) producedbyanaircraft
in supersonicflight. In Figure 13.5 are sketched two sets of successive spherical
wavelets moving out with speed c/Ve from successive instantaneouspositions of
a particle moving with constant velocity v. On the left v is assumed to beless
than, and on theright greater than, c/Ve. For v > c/Ve the wavelets interfere
so as to produce a “‘shock”’ front or wake behindthe particle, the angle of which

is readily seen to be the complementof 0¢. An observerat rest sees a wavefront
moving in the direction of 4c.

The qualitative behavior shown in Fig. 13.5 can be given quantitative treat-

: ut —>|

U< C/-Ve U>C/-Vve

Figure 13.5 Cherenkov radiation. Spherical wavelets of fields of a particle traveling
less than and greater than the velocity oflight in the medium.For v > c/Ve, an
electromagnetic ‘‘shock”’ wave appears, moving in the direction given by the Cherenkov
angle 6c.

 



640 Chapter 13 Energy Loss, Scattering; Cherenkov and Transition Radiation—G

ment by examining the potentials P(x, t) or A(x, t) constructed from (13.25) with
(13.21). For example, the vector potential takes the form,

etki—vt)pik-p

ki(1 — Bre) + ky
 A(x, t) = oy B | dk

where € = e(k,v), while p and k,are transverse coordinates. With the unrealistic,

but tractable, approximation that €is a constant the integral can be donein closed
form. In the Cherenkov regime (8*e > 1) the denominatorhas poles on the path

of integration. Choosing the contour for the k, integration so that the potential
vanishes for points ahead of the particle (x — vt > 0), the result is found to be

2z€

V(x — vty — (B%e — 1)p?

inside the Cherenkov cone and zero outside. Note that A is singular along the
shock front, as suggested by the wavelets in Fig. 13.5. The expression (13.51) can

be taken as indicative only. The dielectric constant does vary with w = k,v. This

functional dependence will remove the mathematical singularity in (13.51).
The properties of Cherenkovradiation can be utilized to measurevelocities

of fast particles. If the particles of a given velocity pass through a medium of

knowndielectric constant e, the light is emitted at the Cherenkov angle (13.50).
Thus a measurementof the angle allows determination of the velocity. Since the

dielectric constant of a medium in generalvaries with frequency,light of different
colors is emitted at somewhat different angles. Narrow-bandfilters may be em-
ployed to select a small interval of frequency and so improve theprecision of
velocity measurement. For very fast particles (8 <= 1) a gas may be usedto pro-
vide a dielectric constant differing only slightly from unity and having (e — 1)
variable over wide limits by varying the gas pressure. Counting devices using
Cherenkovradiation are employed extensively in high-energy physics, as instru-
ments for velocity measurements, as mass analyzers when combined with mo-
mentum analysis, and as discriminators against unwanted slow particles.

 A(x, t) = B (13.51) 

13.5 Elastic Scattering of Fast Charged Particles by Atoms

In Section 13.1 we considered the scattering of electrons by an incident heavy
particle in that particle’s rest frame in order to treat energy transfers to the
electrons. We now turnto the elastic scattering that accompaniespassage ofswift
particles, whether heavyorlight, through matter because of interaction with the
atoms. Chargedparticles are elastically scattered by the time-averaged potential
created by the atomic nucleus and its associated electrons. The potential is
roughly Coulombic in character but is modified at large distances by the screening
effect of the electrons and at short distances by the finite size of the nucleus.

For a pure Coulomb field, the scattering cross section is given by the
Rutherford formula (13.1), modified at large angles by spin-dependent correc-
tions [see above (13.5)]. At small angles, all particles, regardless of spin, scatter
according to the small-angle Rutherford expression

dao  (2zZe2\" 1=~ 22" > (13.52)
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Even at 0 = 7/2, the small-angle result is within 30% of the exact Rutherford
formula. Such accuracy is sufficient for present purposes.

The singular nature of (13.52) as 6 — 0 is a consequenceofthe infinite range
of the Coulomb potential. Because of electronic screening, the differential scat-
tering cross section is finite at 6 = 0. A simple classical impact parameter cal-
culation (following Problem 13.1b) with a Coulombforce cutoff sharply at r = a
gives a small-angle cross section

2

do 2z7Ze* 1

ia ( pu (+Bay (89)
 

where Onin 18 the classical cutoff angle,

2

gig, = AE (13.54)
pva

A better form of screened Coulomb interaction is V(r) = (zZe’/r)e~"’’, with
~ 1.4 ajpZ~'° (from a rough fit to the Thomas—Fermi atomic potential). A

classical calculation with such a potential gives a small-angle cross section for
0 — 0 that rises less rapidly than 6~*, butstill is singular at 9 = 0. Quantum
mechanically, either the Born approximation or a WKBeikonal approachyields
a small-angle cross section of the form (13.53) with 6,,:, the quantum-mechanical
cutoff angle

@ —- xe oO,04) = pa 192 p (13.55)

where p is the incident momentum (p = yMv), and m is the electron’s mass. In
passing, we note that the ratio of classical to quantum-mechanicalangles 6,,;,, 1S
1 = zZe*/hv, in agreement with the corresponding ratio of minimum impact
parameters [see below (13.16)]. For fast particles in all but the highest Z
substances, 7 < 1; the quantum-mechanical expression (13.55) should be used
for Onin:

At comparatively large angles (butstill small in actual magnitude) thescat-
tering cross section departs from (13.53) because of the finite size of the nucleus.
For charged leptons (e, , 7) the influence of the finite size is a purely electro-
magnetic effect, but for hadrons (7, K, p, a, etc.) specifically strong-interaction
effects also arise. Since the gross overall effect 1s to lower the cross section below
(13.53) at larger angles for whatever reason, we examine only the electromagnetic

aspect. The charge distribution of the atomic nucleus can be approximated
crudely by a uniform volume distribution inside a sphere of radius R,falling
sharply to zero outside. The electrostatic potential inside the nucleusis parabolic
in shape with finite value at r = 0:

 

 

37Ze- r-fe 1-—& r<R
2R 3R

V(r) = ; for (13.56)
zZe

r>R,

Theclassical scattering cross section from such a potential exhibits singular be-
havior at a maximum angle given approximately by the classical formula (13.54),
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but with a — R. This phenomenon is a consequence of the scattering angle
0(b) = Ap(b)/p vanishing at b = 0, rising to a maximumatjust less than b = R
andfalling again for larger b. The maximumtranslatesinto a vanishing derivative
dé/db and so an infinite differential cross section. The bizarre classical behavior

is the vestige of what occurs quantum mechanically. The wave nature of the

incident particle makes the nuclear scattering very much like the scattering of

electromagnetic wavesby localized scatterers, discussed in Chapter 10. At short
wavelengths, the scattering is diffractive, confined to an angular range A@ ~ 1/kR

where k = p/h. Depending onthe radial dependenceofthe localized interaction,
the scattering cross section may exhibit wiggles or secondary maxima and min-
ima, butit will fall rapidly below the point Coulombresult at larger angles. Said
another way, in perturbation theory the scattering amplitude is the productof
the Coulomb amplitude for a point charge and a form factor F(Q7) that is the
spatial Fourier transform of the charge distribution. The form factor is defined
to be unity at Q* = 0, but becomesrapidly smaller for (OR) > 1. Whatever the
viewpoint, the finite nuclear size sets an effective upper limit of the scattering,

—— h 274 me
max ~~ pR ~ Ale Pp

Thefinal expression is based on the estimate, R = 1.4 A’? x 10°m. Wenote
that 6nax => Omin for all physical values of Z and A. If the incident momentum

is so small that 6,,.., = 1, the nuclear size has no appreciable effect on thescat-

tering. For an aluminumtarget, 0,,,, = 1 when p ~ 50 MeV/c, correspondingto

50 MeV kinetic energy for electrons and 1.3 MeV for protons. Only at higher
energies are nuclear-sized effects important. Atp ~ 50 MeV/c, Onin ~ 10°* radian

in aluminum.

The general behavior of the scattering cross section is shown in Fig. 13.6.

The dot-dash curveis the small-angle Rutherford formula (13.52); the solid curve
showsthe qualitative behavior of the cross section including screening andfinite
nuclear size. The total scattering cross section can be obtained by integrating
(13.53) over the total solid angle,

(13.57)

 
2zZe’ ;

pv

_{[do. _ in 6 dé
a= | 70 38 6d0 dd ~ 2m > @+YP (13.58)

)
—

lo
g
(
z

Figure 13.6 Atomicscattering,
| including effects of electronic screening

at small angles and finite nuclear size at

large angles.
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The result is

  
2zZe?\" 2zZe?\"

om o( é “| -62 = ra é “| (13.59)
pu hu

Thefinal expression is obtained by use of (13.55) for Onin. It shows that at high
velocities the total scattering cross section can be far smaller than the classical
geometrical area zra* of the atom.

13.6 Mean Square Angle ofScattering; Angular Distribution

of Multiple Scattering

Rutherford scattering is confined to very small angles even for a point Coulomb

field, and for fast particles 6,,,, is small compared to unity. Thusthere is a very

large probability for small-angle scattering. A particle traversing finite thickness

of matter will undergo very many small-angle deflections and will generally

emerge at a small angle that is the cumulative statistical superposition of a large
numberof deflections. Only rarely will the particle be deflected througha large
angle; since these events are infrequent, such a particle will have made only one
such collision. This circumstance allows us to divide the angular range into two
regions—oneregion at comparatively large angles, which containsonly the single
scatterings, and one region at very small angles, which contains the multiple or
compoundscatterings. The complete distribution in angle can be approximated

by considering the two regions separately. The intermediate region of so-called

plural scattering must allow a smoothtransition from small to large angles.

The important quantity in the multiple-scattering region, where there is a
large succession of small-angle deflections symmetrically distributed about the

incident direction, is the mean square angle for a single scattering. This is defined

by

(0°) = ————_ (13.60)
da
— dQ
an"

With the approximationsof Section 13.5 we obtain

 
9

(6?) = 202i n( as (13.61)
min

If the quantum value (13.55) of Onin is used along with 6,4, (13.57), then with

A = 2Z, (13.61) has the numerical form:

(@) = 462, In(204Z~"3) (13.62)

If nuclear size is unimportant (generally only of interest for electrons, and per-
haps other particles at very low energies), Qnax Should be put equal to unity in
(13.61). Then instead of (204Z~'°), the argument of the logarithm in (13.62)

19
becomes (Fr2
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It is often desirable to use the projected angle of scattering 0’, the projection
being made on some convenientplane such as the plane of a photographic emul-

sion or a bubble chamber, as shown in Fig. 13.7. For small angles it is easy to
show that

(0"°) = 3(6") (13.63)

In each collision the angular deflections obey the Rutherford formula (13.52)
suitably cut off at Onin ANd Omax, With average value zero (when viewedrelative

to the forward direction, or as a projected angle) and mean square angle (6°)
given by (13.61). Since the successive collisions are independent events, the
central-limit theorem of statistics can be used to show that for a large number n

of such collisions the distribution in angle will be approximately Gaussian around
the forward direction with a mean square angle (@*) = n(0’). The numberof

collisions occurring as the particle traverses a thickness ¢ of material containing
N atomsper unit volumeis

  

  

 

22Ze\ 1n = Not ~ aN( cee . (13.64)
pu Orin

This means that the mean square angle of the Gaussian is

22Ze?\" (6(@2) = 2h cae n( as) I (13.65)
pv min

Or, using (13.62) for (0°),

22Ze?\”
(O*) = san cae In(204Z ~~") t (13.66)

pu

The mean square angle increaseslinearly with the thickness ¢. But for reasonable
thicknesses such that the particle does not lose appreciable energy, the Gaussian
will still be peaked at very small forward angles. Parenthetically, we remark that
the numerical coefficient in the logarithm can differ from author to author—for
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example, Rossi has 175 instead of 204. Wealso note that in practice the Gaussian
approximation holds only for large n—see the last paragraph ofthis section for
some elaboration on this point.

The multiple-scattering distribution for the projected angle of scattering1s

1 12

———_. exp| -—; dé’
Vn@") | a)

where both positive and negative values of 0’ are considered. The small-angle
Rutherford formula (13.52) can be expressed in terms of the projected angle as

P,(6') dé’ = (13.67)

 

   

2
da am(2zZe*\ 1
—_=-> — 13.68de’ 2 ( pv g’? ( )

This gives a single-scattering distribution for the projected angle:

Po!) do’ = Neo ag = = NI 22Ze*\ a (13.69)
° dg’ 2 pv g°

The single-scattering distribution is valid only for angles large comparedto (@*)"”
and contributesa tail to the Gaussian distribution.

If we express angles in termsof the relative projected angle,

Q’

a= (oy (13.70)

the multiple- and single-scattering distributions can be written

1 _»
Py(a) da = —=e* da
" Var (13.71)

J da
8 In(204Z~"3) a

where (13.66) has been used for (07). We note that the relative amounts of mul-
tiple and single scatterings are independent of thickness in these units, and de-
pend only on Z. Even this Z dependenceis not marked. Thefactor 8 In(204Z ~“*)
has the value 36 for Z = 13 (aluminum) andthe value 31 for Z = 82 (lead).
Figure 13.8 showsthe general behaviorof the scattering distribution as a function
of a. The transition from multiple to single scattering occurs in the neighborhood

of a = 2.5. At this point the Gaussian has a value of 1/600 timesits peak value.
Thusthe single-scattering distribution gives only a very small tail on the multiple-

scattering curve.
There are two things that cause departures from the simple behavior shown

in Fig. 13.8. The Gaussian shapeis the limiting form of the angular distribution

for very large n. If the thickness ¢ is such that n (13.64) is not very large (e.,
n = 200), the distribution follows the single-scattering curve to smaller angles

than a =~ 2.5, and is more sharply peaked at zero angle than a Gaussian.* On
the other hand, if the thickness is great enough, the mean square angle (0)
becomes comparable with the angle 0. (13.57) which limits the angular width

of the single-scattering distribution. For greater thicknesses the multiple-scatter-

 P;(a) da =

*For numerical evaluation for very thin samples(e.g., gases), see P. Sigmund and K. B. Winterbon,

Nucl. Instrum. Methods 119, 541-557 (1974).
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Figure 13.8 Multiple- and single-scattering distributions of projected angle. In the
region of plural scattering (a ~ 2—3) the dashed curve indicates the smoothtransition
from the small-angle multiple scattering (approximately Gaussian in shape) to the wide-
angle single scattering (proportional to a~°).

ing curve extends in angle beyond the single-scattering region, so that thereis
no single-scattering tail on the distribution (see Problem 13.8).

13.7 Transition Radiation

A charged particle in uniform motion in straight line in free space does not
radiate. It was shown in Section 13.4, however, that a particle moving at constant
velocity can radiate if it is in a material medium and is moving with a speed
greater than the phase velocity of light in that medium. This radiation, with its
characteristic angle of emission, 0¢ = sec’'(Be'’”), is Cherenkovradiation. There
is another type of radiation, transition radiation, first noted by Ginsburg and

Frank in 1946, that is emitted whenever a charged particle passes suddenly from
one medium into another. Far from the boundaryin thefirst medium,the particle
has certain fields characteristic of its motion and of that medium. Later, whenit

is deep in the second medium,it has fields appropriate to its motion and that
medium. Even if the motion1s uniform throughout,the initial andfinalfields will
be different if the two media have different electromagnetic properties. Evidently
the fields must reorganize themselves as the particle approaches and passes
through the interface. In this process of reorganization somepiecesofthe fields
are shaken off as transition radiation.
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Figure 13.9 A charged particle of charge ze and velocity v is normally incident along
the z axis on a uniform semi-infinite dielectric medium occupying the half-space z > 0.
The transition radiation is observed at angle 6 with respect to the direction of motion
of the particle, as specified by the wave vector k andassociated polarization vectors
€, and €,.

Important features of transition radiation can be understood without elab-
orate calculation.* We considera relativistic particle with charge ze and speed

vu = Bc normally incident along the z axis from vacuum (z < 0) on a uniform
semi-infinite medium (z > 0) with index of refraction n(w), as indicated in Fig.
13.9. The moving fields of the charged particle induce a time-dependent polar-
ization P(x’, t) in the medium. The polarization emits radiation. The radiated
fields from different points in space combine coherently in the neighborhoodof
the path and for a certain depth in the medium,givingrise to transition radiation
with a characteristic angular distribution and intensity.

The angulardistribution and the formation length D are a direct consequence
of the requirement of coherence for appreciable radiated intensity. The exciting
fields of the incident particle are given by (11.152). The dependenceat a point
x’ = (z', p’, ’) on inverse powersof [p’* + y7(z' — vt)’] implies that a Fourier
component of frequency w (a) will movein the z direction with velocity v and so
have an amplitude proportional to e’’?’”, and (b) will have significant magnitude
radially from the path only out to distances of the orderof p,,,, = yu/w. On the

*The need for a qualitative discussion has been impressed on me by numerousquestions from col-
leagues nearandfar and by V. F. Weisskopf on the occasion of a seminar by him where hepresented
a similar discussion.
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other hand, the time-dependentpolarization at x’ generates a wave whose form

in the radiation zone is

ikr

A = — exp[—ik(z' cos 6 + p' sin @ cos $’)) 

where A is proportional to the driving field of the incidentparticle, k = n(w)a/c
andit is assumed thatthe radiation is observed in the x-z plane andin the forward
hemisphere. Appreciable coherent superposition from different points in the me-

dium will occur provided the product of the driving fields of the particle and the

generated wave does not change its phase significantly over the region. There]-
evant factor in the amplitudeis

exo(i < “| exp|— < n(@) cos 6 “| exp|— < n(@)p’ sin 6 cos a
U C C

~ 2 li - o\>' _,;2 ' sin 8 cos= expyi— B n(@) cos |z' exp i n(w)p sin cos

In the radial direction coherence will be maintained only if the phase involving
p’ is unity or less in the region 0 < p’ S p,,,, where the exciting field is appreciable.

Thus radiation will not be appreciable unless

w Uv,
~n(w) & sino <1
C w

or

n(w)yé = 1 (13.72)

for y >> 1. The angular distribution is therefore confined to the forward cone,
y@ = 1, as in all relativistic emission processes.

The z’-dependent factor in the amplitudeis

expyi® 2 — n(@) cos ol}

The depth d(w) up to which coherence is maintained is therefore

1
2 —n(@) cos | d(w) = 1

Weapproximate n(w) = 1 — (w;/2w*) for frequencies above the optical region
where Cherenkov radiation does not occur, B~' ~ 1 + 1/2y” for a relativistic

particle, and cos 6 = 1, to obtain

2yclw
d(v)~ (13.73)

vryp

where we have introduced a dimensionless frequency variable,

@
yp =— (13.74)

YHp
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Wedefine the formation length D as the largest value of d(v) as a function of v:

D=dij=~ (13.75)

For substances with densities of order of unity, the plasma frequency is w, =
3 x 10'° s“', corresponding to an energy iw, ~ 20 eV. Thus c/w, ~ 10~° cm and
even for y 2 10° the formation length D is only tens of micrometers. In air at
NTP it is a factor of 30 larger because of the reduced density.

The coherence volume adjacent to the particle’s path and the surface from
which transition radiation of frequency w comesis evidently

Vw) ~ mpinex(eo) dw) ~ 2m=) aa
P

This volume decreases in size rapidly for v > 1. We can therefore expect that in

the absence of compensating factors, the spectrum of transition radiation will
extend up to, but not appreciably beyond, v =

We have obtained someinsight into the mechanism of transition radiation
and its main features. It is confined to small angles in the forward direction

(y@ = 1). It is produced by coherent radiation of the time-varying polarization
in a small volume adjacent to the particle’s path and at depths into the medium
up to the formation length D. Its spectrum extends up to frequencies of the order
of w ~ yw,. It is possible to continue these qualitative arguments and obtain an
estimate of the total energy radiated, but the exercise begins to have the ap-
pearance of virtuosity based on hindsight. Instead, we turn to an actual calcula-
tion of the phenomenon.

An exact calculation of transition radiation is complicated. Some references

are given at the end of the chapter. We content ourselves with an approximate

calculation that is adequate for most applications andis physically transparent.
It is based on the observation that for frequencies above the optical resonance
region, the indexof refraction is not far from unity. The incident particle’s fields
at such frequenciesare not significantly different in the medium and in vacuum.

This means that the Fourier componentof the induced polarization P(x’, w) can
be evaluated approximately by

P(x’, w) ~ odew w) (13.76)

where E; is the Fourier transform of the electric field of the incident particle in
vacuum. The propagation of the wave radiated by the polarization must be de-
scribed properly, however, with the wave number k = wn(w)/c appropriate to
the medium. This is because phase differences are important, as already seen in

the qualitative discussion.
The dipole radiation field from the polarization P(x’, w) d°x' in the volume

element d°x' at x’ is, according to (9.18),

ikR

dEad = R
 (k x P) x k d°x'
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where k is the wave vector in the direction of observation and R = r — k.“xX!

With the substitution of (13.76) and an integration over the half-space z’ > 0,
the total radiated field at frequency w is

ikr __ 1 a a .

Fead — : tle| (k x E;) x ke** d°x'
z'>0

 

r An

With the approximation,

2
Wp

E(w) =~ 1 - 2 (13.77)

the radiated field for w > w, becomes

r \4ac’

eX ~@, . So ikex’ 7301
Eevad = — |= _ (k x E,) x ke d°x (13.78)

From equationsgiven later [see (14.52) and (14.60)], this means that the energy
radiated has the differential spectrum in an angle and energy,

PI cc (@\
dwdQ 32m \c

Note that the driving fields E; are defined by the Fourier transform of thefields
of Section 11.10. In our approximation it is not necessary to use the more elab-
orate fields of Sections 13.3 and 13.4. In the notation of Fig. 13.9 the incident

fields are (see Problems 13.2 and 13.3)

2 .
E,(x, ) = peseePemex, (22)

7 yu" YU

2E(x ») = “i? ae eek(22)

wT yu YU

The integral in (13.79) can be evaluated as follows. Wefirst exploit the fact that
the z dependenceof FE;is only via the factor e’”*”, and write

2

 | | [k x E,(x, w)] x ke~™** d?x (13.79)
  

(13.80)

F= | [k x E,(x, @)] x ke~** d3x
z>0

1 _ exp(: — k cos a)z||

| ax) aot ) 
k x E|] 0 x ke—ikxsin@

=
@
— k cos@

V

The upper limit Z on the z integration is a formal device to show that the con-
tributions from different z values add constructively and cause the amplitude to
grow until Z = D. Beyondthe depth D the rapidly rotating phase prevents further
enhancement. For effectively semi-infinite media (slabs of thickness large com-
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pared with D) we droptheoscillating exponential in Z on physical grounds* and

obtain, for a single interface,

F = [| dx dy [k x E,|,-0 k eHesing

(: — k cos |
U

The electric field transverse to k can be expressed in terms of the components
E,, E, and the polarization vectors €, and €, shown in Fig. 13.9 as

 

[k x E,] x k = (E, cos 6 cos ¢@ — E, sin #)e, + E, sin de,

where @ is the polar angle of k and the prime has been dropped from the azi-
muthal angle of integration. The component parallel to €, integrates to zero
becauseit is odd in y. Thus, substituting from (13.80), we have

 

 

le ps xX

F = = {| dx eik*sin? co 6 —=——  E, — sin oe. |
@ Vx" + y . z=0
—-—kcosé

= BesLEWTI ax dy e” tkxsine

=_ k cos)

x w sin 6
x @ ————_ K,

|

—_ Vx’? + y*?] + i— K, \/y2 + y2

cs Vie y (2 . °) y ($ nT )
Thefirst term can be transformed by an integration by parts in x, using

0
—«(2 Wx + ) — yu eo Ke2 \/x2 4 )

+ y yu Ww yu

so that

ze sin i cos § —
@

2 =) —ikxsin@ w z 3F=e, /- dx dy e *S™°Ko| — Vx* + y
T w YU

(2 — k cos 7

The remaining integral can be evaluated from the cosine transform,

in K)j(BV 2? + t’) cos(az)dz = Va* + 6’) (13.81)

 

TT

WarpO"
The result for F is

2V 27 ze sin it cos 6 — 25)
Y

2

(2 — k cos )( < stk sin)
U Yu

*A less cavalier treatment of the dependence on thickness is necessary for foils that are not thick

compared to D,or whena stack offoils is employed. See Problems 13.13 and 13.14.

 (13.82)
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In the approximationofrelativistic motion (y >> 1), small angles (0 << 1), and
high frequencies (w >> w,), this becomes

2 Vn

F ~ ¢,4V20 — (<) + id (13.83)
@ V 1

V

 

P

where v is the dimensionless frequency variable (13.74) and 7 = (y6)* is an
appropriate angular variable. With dO, = d@ d(cos 0) = dd d/2y’, the energy
distribution in v and 7 is

 

 d*I _ 7 d*I

dvdn vy >” dw dQ (13.84)
e720, 7
 

2
1

“(1 +> + ”| (1 + n)?
yp

Angular distributions for fixed v values are shownin Fig. 13.10. At low frequen-
cies the spectrum peaks at 7 = 1 and thenfalls relatively slowly as 77‘ until the
value 7 = v* is reached. Thenit falls off as n>. For v = 1, the spectrum peaks
at n = 3 and falls at 7° for » >> 1. At n = 0 the denominator in (13.84) is
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Figure 13.10 Angular distributions of transition radiation at vy = 0.1, v = 1 and vy >1.
The solid curves are the normalized angular distributions, that is, the ratio of (13.84) to
(13.87). The dashed curve is v* times that ratio in the limit v > ©.
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coherence volume V(w), above].

653

(1 + v*)’, showing that for v >> 1 there is negligible intensity at any angle[cf.

The energy spectrum, integrated over the angular variable 1, is

dl _ Zeyw,

dv —swc

1
ci + 2p’) n(1 + =) — 2

It has the small and large v limits,

(13.85)

dv om

p< ]

TTC 1
(13.86)

6y4 ; vy> 1
V

The energy spectrum is shown on a log-log plot in Fig. 13.11. The spectrum
diverges logarithmically at low frequencies, where our approximate treatment

radiation per interface is
fails in any event, butit has a finite integral. The total energy emittedin transition
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Figure 13.11 Normalized frequency distribution (1//)(d//dv) of transition radiation as
a function of v = w/yw,. The dashed curves are the two approximate expressions in
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From Fig. 13.11 we can estimate that about half the energy is emitted in the range

0.1 < v < 1. In quantum language, we say that an appreciable fraction of the

energy appears as comparatively energetic photons. For example, with y = 10°

and iw, = 20 eV, these quanta are in the soft x-ray region of 2 to 20 keV.

Thepresenceof the factor of yin (13.87) makestransition radiationattractive

as a mechanism forthe identification of particles, and perhaps even measurement

of their energies, at very high energies where other meansare unavailable. The

presence of the numerical factor 1/(3 X 137) meansthat the probability of en-

ergetic photon emission per transit of an interface is very small. It is necessary

to utilize a stack of many foils with gaps between. The foils can be quite thin,

needing to be thick only compared to a formation length D (13.75). Then a

particle traversing each foil will emit twice (13.87) in transition radiation (see

Problem 13.13). A typical set-up might involve 200 Mylar foils of thickness 20

um, with spacings 150-300 um.* The coherent superposition of the fields from

the different interfaces, two for each foil, causes a modulation of the energy and

angular distributions (see Problem 13.14).
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The calculation of transition radiation from the traversal of interstellar dust grains by
energetic particles, done in the same approximation as in Section 13.7, is given by

L. Durand, Astrophys. J. 182, 417 (1973).

A review of both Cherenkovradiation and transition radiation with muchhistory,is

given by
V. L. Ginsburg, Usp. Fiz. Nauk 166, 1033 (1996) [transl. Phys. Usp. 39, 973
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For current applications of both Cherenkovandtransition radiation, however, the reader
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Problems

13.1 If the light particle (electron) in the Coulombscattering of Section 13.1 1s treated
classically, scattering through an angle 6 is correlated uniquely to an incidenttra-

jectory of impact parameter b according to

  

2 0
b= ce cot=

pv 2

do b |db
h = d the diff. tial scatter tion is —~ = —— ||.where p ymu an e differential scattering cross section 1s 10 sind \do

(a) Express the invariant momentum transfer squared in terms of impact param-

eter and show that the energy transfer 7(b)is

2.77e4 1

mv. b2 + b&mim
 T(b) =

where b©), = ze*/pv and T(0) = Tmax = 2Y¥B’mc?’.
mim

(b) Calculate the small transverse impulse Ap given to the (nearly stationary)
light particle by the transverse electric field (11.152) of the heavy particle
q = ze as it passes by at large impact parameter b in a (nearly) straight line
path at speed v. Find the energy transfer T ~ (Ap)*/2m in terms of b. Com-
pare with the exact classical result of part a. Comment.

13.2 Time-varying electromagnetic fields E(x, t) and B(x,f) of finite duration act on a
charged particle of charge e and mass m bound harmonically to the origin with
natural frequency w) and small damping constant I’. The fields may be caused by
a passing charged particle or some other external source. The charge’s motion in
response to the fields is nonrelativistic and small in amplitude compared to the
scale of spatial variation of the fields (dipole approximation). Show that the energy
transferred to the oscillator in the limit of very small dampingis

2Te
AE = — | E(ao) |?

m

where E(w) is the symmetric Fourier transform of E(0, ¢):

E(0, 0 = = [. E(w)e“ da; E(@) = =[ E(0,tye’dt
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13.3

13.4

13.5

13.6

The external fields of Problem 13.2 are caused by a charge ze passing the Origin

in a straight-line path at speed v and impact parameterb. Thefields are given by
(11.152).

(a) Evaluate the Fourier transforms for the perpendicular and parallel compo-
nents of the electric field at the origin and show that

E\(@) = — (2) EK,(&); E,(@) = 71 ho (2) EKo(€)

where € = wb/yvu, and K,(&) is the modified Bessel function of the second
kind and order v. [See references to tables of Fourier transforms in Section
13.3.]

(b) Using the result of Problem 13.2, write down the energy transfer AE to a

harmonically bound charged particle. From the limiting forms of the modified
Bessel functions for small and large argument, show that yourresult agrees
with the appropriate limit of T7(b) in Problem 13.1 on the one hand and the
argumentsat the end of Section 13.1 on the adiabatic behavior for b >> yu!wo
on the other.

(a) Taking f(w) = 12Z eV in the quantum-mechanical energy-loss formula,cal-

culate the rate of energy loss (in MeV/cm)in air at NTP, aluminum,copper,
and lead for a proton and a mu meson,each with kinetic energies of 10, 100,
1000 MeV.

(b) Convert your results to energy loss in units of MeV - (cm*/g) and compare
the values obtained in different materials. Explain whyall the energy losses
in MeV-(cm7/g) are within a factor of 2 of each other, whereasthe valuesin
MeV/cm differ greatly.

Consider the energy loss by close collisions of a fast, but nonrelativistic, heavy
particle of charge ze passing through an electronic plasma. Assume that the
screened Coulombinteraction V(r) = ze* exp(—kpr)/r, where kp is the Debye
screening parameter, acts between the electrons and the incidentparticle.

(a) Show that the energy transfer in a collision at impact parameterb is given
approximately by

AE(b) = k3K2(kpb)2(ze*)’
mv?

where m is the electron mass and is the velocity of the incident particle.

(b) Determine the energy loss per unit distance traveled for collisions with im-
pact parametergreater than b,,,. Assuming kpbpin << 1, show that

dE ~ (ze)? 2 l 1

dx Jeper PP LATDin

where Dyin is given by the larger of the classical and quantum minimum
impact parameters [(13.16) and above].

 

The energy loss in a plasma from distant collisions can be found with Fermi’s
method for the density effect. Consider the nonrelativistic limit of (13.36) with the
relative dielectric constant of a plasma given by (7.59) augmented by some
damping,

Wp
(0) = 1 Fe iad



13.7

13.8

13.9

13.10
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Assumethat the arguments of the Bessel functions are small (corresponding to a
speed of the incident particle large compared to thermal speeds in the plasma).

(a) Showthat the energy loss (13.36) for kpb > 1 becomes

dE 277e" i, LW 1.123kpvwe) we ZE Re Inf "2" dew
dx kpb>1 TU 0 E(w) @

(b) With the assumption that [<< wm, in e(w), show that the formula of part a
yields

dE _ ze" 2 In 1.123kpv

AX |ispot ye? Wy,

Combine with the close-collision result of Problem 13.5 to find the total en-
ergy loss of a nonrelativistic particle passing through a plasma,

dE ~ ze 2 In Av

dx ye“? WyDmin

where A is a number of order unity. The presence of w, in the logarithm
suggests that the energy loss may be quantized in units of hw,. In fact, elec-
trons passing through thin metallic foils do show this discreteness in energy
loss, allowing determination of effective plasma frequencies in metals. [See
H. Raether, Springer Tracts in Modern Physics, Vol. 38, ed. G. Hohler,

Springer-Verlag, Berlin (1965), pp. 84-157.]

With the same approximations as were used to discuss multiple scattering, show
that the projected transverse displacement y (see Fig. 13.7) of an incidentparticle
is described approximately by a Gaussian distribution,

  

 

 
2

—y
P(y) dy = A ex d(y) dy of2s| y

where the mean square displacementis (y*) = (x7/6)(®*), x being the thickness of
the material traversed and (7) the mean square angle ofscattering.

If the finite size of the nucleus is taken into accountin the “‘single-scattering”’ tail
of the multiple-scattering distribution, thereis a critical thickness x, beyond which
the single-scattering tail is absent.

(a) Define x, in a reasonable way and calculate its value (in cm) for aluminum
and lead, assuming that the incident particle is relativistic.

(b) For these thicknesses calculate the numberof collisions that occur and de-

termine whether the Gaussian approximationis valid.

Assuming that Plexiglas or Lucite has an index of retraction of 1.50 in the visible
region, compute the angle of emission of visible Cherenkov radiation for electrons
and protons as a function of their kinetic energies in MeV. Determine how many
quanta with wavelengths between 4000 and 6000 A are emitted per centimeter of
path in Lucite by a 1 MeVelectron, a 500 MeV proton, and a 5 GeV proton.

A particle of charge ze moves along the z axis with constant speed v, passing

z = 0 at t = 0. The medium through whichthe particle movesis described by a
dielectric constant e(w).

(a) Beginning with the potential ®(k, w) of (13.25), show that the potential of
frequency @ is given as a function of spatial coordinate x by

— _%e 2 lol — R2 iwz/uD(w,=eal evi Bre
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13.11

13.12

13.13

where z and p = Vx’ + y’ are the cylindrical coordinates of the observation
point.

(b) Assuming that € is independent of frequency and that B’e < 1, take the

Fourier transform with respect to w of the expression in part a and obtain
(x, ¢). Calculate the electric and magnetic fields and compare them to the
vacuum fields (11.152). Show that, among other things, the vacuum factor y
is replaced by l = (1 — Be)”.

(c) Repeat the calculations of parts a and b with B’e > 1. Show that now

ze iE ge]n,(lel VFe~1) * uo(Lele vFe=1)
ve(w) 2 v v

for w 2 0. Calculate the remaining Fourier transform to obtain ®(x,f). Relate
your answerto the result given in Section 13.4 for A(x, £).

 P(w, x) =

A magnetic monopole with magnetic charge g passes through matter and loses
energy by collisions with electrons, just as does a particle with electric charge ze.

(a) Inthe same approximation as presented in Section 13.1, show that the energy

loss per unit distance is given approximately by (13.14), but with ze — Bg,

yielding

dE ge (2y¥mv?
—= ~ 4aNZ2 1
(a_ aN mc? of hiw)

monopole

 

(b) With the Dirac quantization condition (6.153) determining the magnetic
charge, what z value is necessary for an ordinary charged particle in order
that it lose energy at relativistic speeds at the same rate as a monopole?
Sketch for the magnetic monopole a curve of dE/dx equivalent to Fig. 13.1
and commenton thedifferences.

A relativistic particle of charge ze moves along the z axis with a constant speed
Bc. The half-space z = 0 is filled with a uniform isotropic dielectric medium with
plasma frequency ,, and the space z > 0 with a similar medium whose plasma
frequency is @. Discuss the emission of transition radiation as the particle tra-
verses the interface, using the approximation of Section 13.7.

(a) Show that the radiation intensity per unit circular frequency interval and per

unit solid angle is given approximately by

  Pl vee 1 - 1
dodQ we |L ot 5p 1, op

yo w yo w
where @ is the angle of emission relative to the velocity of the particle and

y= (1 - py”.
(b) Show that the total energy radiatedis

I
3c (@, + @)

Considerthe transition radiation emitted bya relativistic particle traversing a di-
electric foil of thickness a perpendicular to its path. Assuming thatreflections can

be ignored because

|[n() — 1)/[n(w) + 1]
is very small, show that the differential angular and frequency spectrum is given

by the single-interface result (13.84) times the factor,

1
F =4sin’0, with o= (1+ 54a) a



13.14

13.15

13.16

Ch.13 Problems 659

Here D = yc/w, is the formation length, v = w/yw,, and n = (y6)*. Provided
a >> D, the factor & oscillates extremely rapidly in angle or frequency, averaging
to (#) = 2. For such foils the smoothed intensity distribution is just twice that for

a single interface. Frequency distributions for different values of T = 2D/a are
displayed in Fig. 1 of G. B. Yodh, X. Artru, and R. Ramaty, Astrophys. J. 181, 725
(1973).

Transition radiation is emitted by a relativistic particle traversing normally a uni-
form array of N dielectric foils, each of thickness a, separated by air gaps (effec-
tively vacuum), each of length b. Assumethat multiple reflections can be neglected
for the whole stack. This requires

n(w) — 1

n(w) + 1

2
Wy 1

~—_—_ —

~ teN  
(a) Show that if the dielectric constant of the medium varies in the z direction

as e(w, Z) = 1 — (w;/w*)p(z), the differential spectrum of transition radiation
is given approximately by the single-interface result (13.84) times

2

Se =

 
[ | dz p(z)e”"” exp(~ cos 6| k(z') i’

 
where p(0) = 1 by convention, w = w/v — k(0) cos 6, and k(z) =
(w/c) V e(w, Z).

(b) Show that for the stack of N foils

sin?[N(® + V)]
sin’[® + WV]

where © is defined in Problem 13.13 and W = v(1 + n)(b/4D). Compare
G. M. Garibyan, Zh. Eksp. Teor. Fiz. 60, 39 (1970) [transl. Sov. Phys. JETP
33, 23 (1971)].

The practical theory of multilayered transition radiation detectors is
treated in great detail by X. Artru, G. B. Yodh, and G. Mennessier, Phys.
Rev. D 12, 1289 (1975).

(a) Find the number N,of transition radiation quanta with frequencies greater
than w, emitted per interface, starting from the energy spectrum (13.85).
Show that for y > 1,

F = 4 sin’O 

where terms of order 1/7 have been neglected.

(b) Using the result from part a for the number of photons and the value
iw, = 20 eV, find the mean energy of the photons (in keV) for y = 10°,
10*, 10°.

A highly relativistic neutral particle of mass m possessing a magnetic moment pu
parallel to its direction of motion emits transition radiation as it crosses at right
angles a plane interface from vacuum into a dielectric medium characterized at
high frequencies by a plasma frequency w,. The magnetic momentwp is defined in
the particle’s rest frame. [The particle could be a neutron or, of more potential
interest, a neutrino with a small mass.]

(a) Showthat the intensity of transition radiation is given by (13.79), provided
the electric field of the incident particle E,, is given by (Bu/yze) times the
partial derivative in the z direction of E, in (13.80). Note that the electric
field actually points azimuthally, but this affects only the polarization of the
radiation, notits intensity.
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(b)

(c)

(d)

Show that in the combined limit of y >> 1 and w >> ,, the intensity distrj-

butions in angle and frequency are given by (13.84) and (13.85), each mul-

tiplied by (ww/zeyc)’.

By expressing yw in units of the Bohr magneton pg = ef/2m.c and the plasma

frequency in atomic units (Aw) = e/a) = 27.2 eV), show that the ratio of
frequency distributions of transition radiation emitted by the magnetic mo-

mentto that emitted by an electron with the same speed1s

ai) a (wi) (hee
dI.(v) 4 MB hwo

where a = 1/137 is the fine structure constant and v = a/yw, 1s the dimen-

sionless frequency variable.

Calculate the total energy of transition radiation, imposing conservation of
energy, that is, v S Ymax = mc/hw,. [This constraint will give only a crude
estimate of the energy in the quantum regime where Ymax < 1 because the
derivation is classical throughout.] Show that the ratio of total energies for
the magnetic momentandanelectron of the same speed can be written as

2 2
I A hw
fo 2 (PY) (?) . Gian)
I. 20 UB hw

where G ~ 1 for Yaa, >> 1 and G = (10 vax!) + [ING/Mmax) —2/3] for

Voax << 1. For fixed particle energy and magnetic moment, how does the

actual amountof radiated energy vary with the particle’s mass for very small

mass?

Hint: the integrals of Section 2.7 of Gradshteyn and Ryzhik may be of use, al-

though integration by partsis effective.



CHAPTER 14

Radiation by Moving Charges

It is well known that accelerated charges emit electromagnetic radiation. In
Chapter 9 we discussed examples of radiation by macroscopic time-varying
charge and current densities, which are fundamentally charges in motion. Butin
one class of radiation phenomenathe source is a moving point charge or a small
number of such charges. In such problemsit is useful to develop the formalism
in a waythatrelates the radiation intensity and polarization directly to properties
of the charge’s trajectory and motion. Ofparticularinterest are the total radiation
emitted, the angular distribution of radiation, and its frequency spectrum. For
nonrelativistic motion the radiation is described by the well-known Larmorresult
(see Section 14.2). But for relativistic particles a number of unusual andinter-
esting effects appear. It is these relativistic aspects that we wish to emphasize. In
the present chapter a numberof general results are derived and applied to ex-

amples of charges undergoing prescribed motions, especially in external force

fields.
Deflection of ultrarelativistic electrons in magnetic fields found in accelera-

tors, but also in plasmas andastrophysical contexts, leads to copious emission of
radiation called ‘‘synchrotron radiation.’ The basic properties of synchrotron
radiation are derived in Sections 14.5 and 14.6. The broad frequency spectrum,
often corresponding to millions of harmonics of the basic frequencyof particle

motion, finds uses in solid-state physics and biology wherever intense beamsof
x-rays are desirable. These applications have led to the creation of dedicated
“light sources” with special “‘insertion devices” called wigglers and undulators.
The physics of these magnetic structures, designed to produce spectral “lines”
(actually narrow peaks) of very high brightness and adjustable photon energy,is
discussed in Section 14.7.

14.1 Liénard-Wiechert Potentials and Fieldsfor a Point Charge

In Section 12.11 it was shown that if there are no incomingfields the 4-vector
potential caused by a charged particle in motion is

4
A(x) = tr | d*x' D(x — x')J*(x') (14.1)

C

where D,(x — x’) is the retarded Green function (12.133) and

JI*(x') = ec | dtV“(r) 5[x' — r(7)] (14.2)

661
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is the charge’s 4-vector current, V°(r) its 4-velocity and r“(7) its position. Inser-

tion of the Green function and the current into (14.1) gives, upon integration

over d‘x',

A%x) = 2| deV%(r) Ox — ro] Alle — CDF) (143)
The remaining integral over the charge’s proper time gives a contribution only

at T = 7, where 7is defined by the light-cone condition,

[x — r(m)]}° = 0 (14.4)

and the retardation requirement xX> ro(7). The significance of these conditions
is shown diagrammatically in Fig. 14.1. The Green function is different from zero
only on the backwardlight cone of the observation point. ‘The world line of the

particle r(7) intersects the light cone at only two points, one earlier and onelater
than x,. The earlier point, r“(79), is the only part of the path that contributes to
the fields at x*. To evaluate (14.3) we use the rule,

a[f(x)] = 5 PS)
l(a)dx x=xX,

wherethe points x = x, are the zeros of f(x), assumedto be linear. We need

  

 

d
” [x — r(n))? = —2[x - r(r)]eV"(7) (14.5)

evaluated at the one point, tT = 7). The 4-vector potential is therefore

eV(r)
A(x) = 14.6Telan uo) 

where 7is defined by (14.4) and the retardation requirement.

The potentials (14.6) are known as the Liénard—Wiechert potentials. ‘They
are often written in noncovariant, but perhaps more familiar, form as follows.
Thelight-cone constraint (14.4) implies x9 — ro(7>) = |x — r(t)| = R. Then

V- (x — 1) = Volxo — rol(t)] — V+ [x — r(7o)]

ycCR — yv-nR (14.7)

ycR(1 — B +n)

Time

r(T)

r(T9)

/ \ Co
  

Figure 14.1
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where nis a unit vector in the direction of x — r(r) and B = v(r)/c. The potentials
(14.6) can thus be written

eBe

0.9|G| Aw =[ao] ass
The subscript “‘ret’? means that the quantity in the square bracketsis to be eval-
uated at the retarded time 7, given by, 7o(7) = Xo — R. It is evident that for

nonrelativistic motion the potentials reduce to the well-knownresults.
The electromagnetic fields F°?(x) can be calculated directly from (14.6) or

(14.8), but it is simpler to return to the integral over dz, (14.3). In computing F'°?
the differentiation with respect to the observation point x will act on the theta
and delta functions. Differentiation of the theta function will give d[xo — ro(7)]
and so constrain the delta function to be 6(—R’). There will be no contribution
from this differentiation except at R = 0. Excluding R = 0 from consideration,
the derivative 0°A?is

0*A® = 2e | dt V®(r) O[xo — ro(t)] 0%S{[x — r(7)]’} (14.9)

The partial derivative can be written

d dr d
od = o°f - — Alf] = o°f -—-— 6

where f = [x — r(7)]’. The indicated differentiation gives

— &@ary* d
adf] = V-@-—ndr Lf]

Whenthis is inserted into (14.9) and an integration by parts performed,the result
is

d (x — r)*V®
gcAP = 2e | dtfeo A[xo —_ ro(7)| d{[x — r(7)]’} (14.10)

In the integration byparts the differentiation of the theta function gives no con-

tribution, as already indicated. The form of (14.10) is the sameas (14.3), with
V°(r) replaced by the derivative term. The result can thus be read off by substi-

tution from (14.6). The field strength tensoris

e d (x — r)*V" — (x — r)Pv*

ise] V(x — 1) | Oey)
Here r* and V® are functions of 7. After differentiation the whole expression is
to be evaluated at the retarded proper time 75.

Thefield-strength tensor F*° (14.11) is manifestly covariant, but not overly
explicit. It is sometimes useful to have the fields E and B exhibited as explicit
functions of the charge’s velocity and acceleration. Some of the ingredients

needed to carry out the differentiation in (14.11) are

(x —r)* = (R, Rn), V" = (ye, ycB)
dv*
Tp eVB: B. cxB + cy'B(B « B)] (14.12)

Fe =

 

dV°

dt

 2 (Vien) = 8+ =D
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where B = dB/dtis the ordinary acceleration, divided by c. Whenthese and (14.7)
are employedthe fields (14.11) can be written in the inelegant, but perhaps more
intuitive, forms,

B = [n x E].,., (14.13)

- n-B e [n x {(n — B) x B}
Ba) = daa —B-ae a (1 —B-n)R I. (14-14)

Fields (14.13) and (14.14) divide themselvesnaturally into “‘velocity fields,”’ which
are independent ofacceleration, and ‘“‘accelerationfields,” which depend linearly
on f. The velocity fields are essentially static fields falling off as R~*, whereas
the acceleration fields are typical radiation fields, both E and B being transverse
to the radius vector and varying as R7’.

For the special circumstance of a particle in uniform motion the second term
in (14.14) is absent. The first term, the velocity field, must be the same asthat
obtained in Section 11.10 by means of a Lorentz transformation of the static

Coulombfield. One wayto establish this is to note from (14.11) for F°? thatif
V* is constant, the field is

 
 

ec?
OB_

© iV @— nF |(x — r)*V® — (x — r)PV7] (14.15)

in agreement with the third covariant form in Problem 11.17. It may be worth-
while, nevertheless, to make a transformation of the charge’s coordinates from
its present position (used in Section 11.10) to the retarded position used here in

order to demonstrate explicitly how the different appearing expressions, (11.152)

and (14.14), are actually the same. The two positions of the charge are shown
in Fig. 14.2 as the points P and P’, while O is the observation point. The distance
P'Qis BRcos 6= B -nR.Therefore the distance OQ is (1 — B+ n)R. But from the

triangles OPQ and PP'Q we have [(1 — B- n)RJ}° = r* — (PO) =r? — B’R’sin’6.
Then from the triangle OMP’ we have R sin 6 = b, so that

1
(1 —B-mRE = 3? + v2? — Bb? = 3 (b2 + yvt?) (14.16)

  
  > rl

Tp’ o Tp M

r<——BR >< ut > 

Figure 14.2 Present and retarded positions of a charge in uniform motion.
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The transverse component E, from (11.152),

 

 

eyb
by = (b? + yv21)? (14.17a)

can thus be written in terms of the retarded position as

FE, =e (14.17b)
© “LY — B+ nyPR* |... |

This is just the transverse componentof the velocity field in (14.14). The other
components of E and B comeoutsimilarly.

14.2 Total Power Radiated by an Accelerated Charge:
Larmor’s Formula and Its Relativistic Generalization

If a charge is accelerated but is observed in a reference frame where its velocity
is small comparedto that of light, then in that coordinate frame the acceleration
field in (14.14) reducesto

e|n xX (nx B)
E, = - ———-_ 14.18ee, aa

The instantaneousenergy flux is given by the Poynting vector,

C C
= —E x B= — |E,/| 4.S=7 4, (Eel n (14.19)

This means that the powerradiated per unit solid angle is*

dP c 5 Oe a
— = — = —— X X .Fo Gy! RE«? 7—|n (m B) (14.20)

If © is the angle between the acceleration Vv and n, as shownin Fig. 14.3, then
the power radiated can be written

dP_ ie
dQ 4ac°

This exhibits the characteristic sin*® angular dependence,whichis a well-known
result. We note from (14.18) that the radiationis polarized in the plane containing
v and n. The total instantaneous powerradiatedis obtained by integrating (14.21)
over all solid angle. Thus

 |v|* sin?O (14.21)

er.
3 lv! (14.22)P=

W
I
N

This is the familiar Larmorresult for a nonrelativistic, accelerated charge.

*As noted in Chapter9, in writing angular distributions of radiation we always exhibit the polarization
explicitly by writing the absolute square of a vector that is proportionalto the electric field. If the
angulardistribution for someparticular polarization is desired, it can be obtained by taking the scalar
product of the vector with the appropriate polarization vector before squaring.
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Figure 14.3

Larmor’s formula (14.22) can be generalized by arguments about covariance

under Lorentz transformationsto yield a result that is valid for arbitrary velocities
of the charge. Radiated electromagnetic energy behaves under Lorentz transfor-

mation like the zeroth componentof a 4-vector (see Problem 12.18). This can be

used (see Rohrlich, p. 109ff.) to show that the power P is a Lorentz invariant.If
we can find a Lorentz invariant that reduces to the Larmor formula (14.22) for
6 < 1, then we have the desired generalization. There are, of course, many
Lorentz invariants that reduce to the desired form when £ — 0. But from (14.14)
it is evident that the general result must involve only B and B. With this restriction
on the order of derivatives that can appear, the result is unique. To find the
appropriate generalization we write Larmor’s formula in the suggestive form:

2 e (dp dp=.— (ae. 2) (14.23) 
3m’ dt dt

where m is the massof the chargedparticle, and p its momentum. The Lorentz
invariant generalization1s

2 e* f[dp, dp”p=—-< oP CP 14.24
3 mc? ( dt ee) ( )
 

where dr = dt/y is the proper time element, and p* is the charged particle’s
momentum-energy 4-vector.* To check that (14.24) reduces properly to (14.23)
as B — 0 we evaluate the 4-vector scalar product,

_4p, ap _(dp\ 1 (dE) _ (ap) (dP) gs)
dr dt at c* dr dt at

If (14.24) is expressed in terms of the velocity and acceleration by means of

E = ymc’ and p = ymv, we obtain the Liénard result (1898):

p ==" (6)- (8 x BY (14.26)
Onearea of application of the relativistic expression for radiated power1s

that of charged-particle accelerators. Radiation losses are sometimesthe limiting

factor in the maximumpractical energy attainable. For a given applied force(1.e.,

*That (14.24) is unique can be seen by noting that a Lorentz invariant is formed by taking scalar

products of 4-vectors or tensors of higher rank. The available 4-vectors are p* and dp”/dr. Only form
(14.24) reduces to the Larmor formula for 8 — 0. Contraction of higher rank tensors such as

p"(dp’/dr) can be shownto vanish,or to give results proportional to (14.24) or m’.
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a given rate of change of momentum), the radiated power (14.24) dependsin-
versely on the square of the mass of the particle involved. Consequently these
radiative effects are largest for electrons.

In a linear accelerator the motion is one-dimensional. From (14.25)it is ev-
ident that in that case the radiated poweris

2 e (dp\=< (2) (14.27) 
3 mc dt

The rate of change of momentum is equal to the change in energy of the particle

per unit distance. Consequently

22 (=) (14.28)
3 mc? dx

showing that for linear motion the power radiated dependsonly on the external

forces that determine the rate of changeof particle energy with distance, not on
the actual energy or momentum ofthe particle. The ratio of powerradiated to

powersupplied by the external sourcesis

P 2 e 1dE 2 (e*/lmc*) dE

(dEldt) 3mciv dx 3 mc? dx
  (14.29)

wherethe last form holds for relativistic particles (8 — 1). Equation (14.29) shows
that the radiation loss in an electron linear accelerator will be unimportant unless
the gain in energy is of the order of mc? = 0.511 MeV in distance of e*/mc* =
2.82 X 107'? cm, or of the order of 2 < 10'* MeV/m! Typical energy gains are
less than 50 MeV/m. Radiation losses are completely negligible in linear accel-
erators, whether for electrons or heavier particles.

Circumstanceschangedrastically in circular accelerators like the synchrotron

or betatron. In such machines the momentum p changesrapidly in direction as
the particle rotates, but the change in energy per revolution is small. This means

that

 

1 dE
—| = > - 14.30¢r| yo |p| — (14.30)

Then the radiated power (14.24) can be written approximately

2 e 2 e*c
P=- y’w* |p|? = ty" 14.313 mee. Ip = pe Bry ( )

where we have used w = (cB/p), p being the orbit radius. This result was first
obtained by Liénard in 1898. The radiative-energy loss per revolution is

2 Aare?sE = (UP p = “75 635A (14.32)
cp 3 p

where 1/p is actually 1/27 times the path integral aroundtheringof [1/p(s)]’. For
high-energy electrons (@ = 1) this has the numerical value,

[E(GeV)]*
S5E(MeV) = 8.85 X 10°*

p(meters)
(14.33)

In the first electron synchrotrons, p ~ 1 meter, E,,ax = 0.3 GeV. Hence 6Emax =

1 keV per revolution. This was less than, but not negligible comparedto, the
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energy gain of a few kilovolts per turn. At higher energies the limitation on
available radiofrequency power to overcomethe radiation loss becomes a dom-

inant consideration. In the 10 GeV Cornell electron synchrotron, for example,

the orbit radius is p ~ 100 meters, the maximum magnetic field is ~3.3 kG, and
the rf voltage per turn is 10.5 MV at 10 GeV. According to (14.33) the loss per
turn is 8.85 MeV. These same general considerations apply to electron-positron

storage rings, where rf power must be supplied just to maintain the beamsat a
constant energy as they circulate. At the LEP ring in Geneva, Switzerland, for
beams at 60 GeV the loss per turn is about 300 MeV perelectron.

The power radiated in circular electron accelerators can be expressed nu-
merically as

P (watts) = 10° SE (MeV) J (amp) (14.34)

where J is the circulating beam current. This equation is valid if the emission of
radiation from the different electrons in the circulating beam is incoherent. In

the largest electron storage rings the radiated power amounts to tens of watts
per microampere of beam. While this powerdissipation is a waste to high-energy
physicists, the radiation has unique properties that make it a valuable research
tool. These properties are discussed in Section 14.6, and in greater detail for

dedicated “‘light sources” in Section 14.7.

14.3 Angular Distribution ofRadiation Emitted
by an Accelerated Charge

For an accelerated chargein nonrelativistic motion the angular distribution shows
a simple sin*® behavior, as given by (14.21), where © is measuredrelative to the
direction of acceleration. For relativistic motion the acceleration fields depend
on the velocity as well as the acceleration. Consequently the angular distribution

is more complicated. From (14.14) the radial component of Poynting’s vector can

be calculated to be

 

Amc
n x [(n — B) x BI]feel) asa

It is evident that there are twotypesof relativistic effect present. Oneis the effect
of the specific spatial relationship between B and 8, which will determine the

detailed angular distribution. The otheris a general, relativistic effect arising from
the transformation from the rest frame of the particle to the observer’s frame
and manifesting itself by the presence of the factors (1 — B-n) in the denomi-
nator of (14.35). For ultrarelativistic particles the latter effect dominates the

whole angular distribution.
In (14.35) S-n is the energy per unit area per unit time detected at

an observation point at time ¢ of radiation emitted by the charge at time f’ =

t — R(t')/c. If we wanted to calculate the energy radiated during a finite period
of acceleration, say from t' = 7, to t' = T>, we would write

 

e* 1
[S ° Nfret — {a

t=T7+[R(T>\c] eo? dt
E= [S-n]... dt = (S-n) — dt’ (14.36)

=T, dtt=7,+[R(7,)/c]
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Thus wesee that the useful and meaningful quantity is (S- n) (dt/dt'), the power
radiated per unit area in terms of the charge’s own time. Wetherefore define
the powerradiated per unit solid angle to be

dP(t') 5 dt _,
70 R*(S- n) Hi R*S-n(1 B-n) (14.37)

If we imagine the charge to be accelerated only for a short time during which B
and B are essentially constant in direction and magnitude, and we observe the

radiation far enough away from the charge that n and R change negligibly during

the acceleration interval, then (14.37) is proportional to the angular distribution

of the energy radiated. With (14.35) for the Poynting vector, the angular distri-

bution is

dP(t') __e? |m x {(n — B) x BIP
dQ, Amc (1—n- Bp)
 (14.38)

The simplest example of (14.38) is linear motion in which B and B are par-
allel. If 6 is the angle of observation measured from the commondirection of B

and B, then (14.38) reduces to

dP(t')  e7v" sin’6

dQ, 4ac? (1 — B cos 6)
  (14.39)

For B < 1, this is the Larmorresult (14.21). But as 6 — 1, the angular distri-
bution is tipped forward more and more and increases in magnitude,as indicated
schematically in Fig. 14.4. The angle 6,,,.. for which the intensity is a maximum

is

— et} 1 5_ ay} +Onax = COS E (V1 + 156 »| ay (14.40)

where the last form is the limiting value for B — 1. In this same limit the peak
intensity is proportional to y*®. Even for B = 0.5, corresponding to electrons of
~80 keV kinetic energy, Omnax = 38.2°. Forrelativistic particles, 6,4. 18 very small,

being of the orderof the ratio of the rest energy of the particletoits total energy.

Thus the angular distribution is confined to a very narrow conein the direction
of motion. For such small angles the angular distribution (14.39) can be written

approximately

dP(t') 8 ev? (6)
iQ ~ney (+ y6) (14-41)
 

Figure 14.4 Radiation pattern for
charge acceleratedin its direction of
motion. The two patterns are not to
scale, the relativistic one (appropriate
for y ~ 2) having been reduced by a
factor ~10? for the same acceleration.
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dP
dQ

 | ] |
| { |
| | |
| | !l !

-1.0 0 1.0
ya—>

Figure 14.5 Angular distribution of radiation for relativistic particle.

The natural angular unit is evidently y~'. The angular distribution is shown in
Fig. 14.5 with angles measuredin these units. The peak occurs at y@ = 3, and the
half-power points at y@ = 0.23 and y@ = 0.91. The root mean square angle of
emission of radiation in the relativistic limitis

1 me?(Py? =~ = (14.42)

This is typical of the relativistic radiation patterns, regardless of the vectorial
relation between £ and B. The total power radiated can be obtained by inte-

grating (14.39) over all angles. Thus

e-

3P(t') = == vy (14.43)

W
i
l
d

a

in agreement with (14.26) and (14.27).
Another example of angular distribution of radiation is that for a charge in

instantaneously circular motion with its acceleration B perpendicularto its ve-
locity §. We choose a coordinate system such that instantaneously is in the z
direction and is in the x direction. With the customarypolar angles 0, ¢ defining
the direction of observation, as shownin Fig. 14.6, the general formula (14.38)
reduces to

   

dP(t' 2 ° (2 * 2 2(‘)_ |v] _ __sin*6 cos*¢ | (14.44)

dQ, 4nc’ (1 — B cos 6) y’(1 — B cos 6)*

We note that, although the detailed angular distribution is different from the
linear acceleration case, the same characteristic relativistic peaking at forward

  

z

A B

n

6 |
|
|
|
|

N | y

B Lo |Ne
Nx Figure 14.6



Sect. 14.4 Radiation Emitted by a Charge in Arbitrary, Extremely Relativistic Motion 671

angles is present. In the relativistic limit (y >> 1), the angular distribution can
be written approximately

dP(t') 2e* . lv? E — 4e ae|
14,

dQ) TC Y (1 + yay (1 + y76*)? (14.45)

The root mean square angle of emission in this approximationis given by (14.42),
just as for one-dimensional motion. The total power radiated can be found by
integrating (14.44) overall angles or from (14.26):

2 e* |¥/? 4
14.43 co ( 6)P(t!) =

It is instructive to compare the powerradiated for acceleration parallel to
the velocity (14.43) or (14.27) with the powerradiated for acceleration perpen-
dicular to the velocity (14.46) for the same magnitude of applied force. For cir-

cular motion, the magnitude of the rate of change of momentum (whichis equal
to the applied force) is ynv. Consequently, (14.46) can be written

2 e ./dp\
Pcircular (t") — 5 . (2) (14.47)

 
3 mc? dt

Whenthis is comparedto the corresponding result (14.27) for rectilinear motion,

wefind that for a given magnitude of applied force the radiation emitted with a
transverse acceleration is a factor of y* larger than with a parallel acceleration.

14.4 Radiation Emitted by a Charge in Arbitrary,
Extremely Relativistic Motion

For a charged particle undergoing arbitrary, extremely relativistic motion the
radiation emitted at any instant can be thoughtof as a coherent superposition of

contributions coming from the components of acceleration parallel to and per-
pendicular to the velocity. But we have just seen that for comparable parallel
and perpendicular forces the radiation from the parallel componentis negligible
(of order 1/y*) compared to that from the perpendicular component. Conse-

quently we may neglect the parallel componentof acceleration and approximate

the radiation intensity by that from the perpendicular componentalone. In other
words, the radiation emitted by a charged particle in arbitrary, extremerelativ-
istic motion is approximately the same as that emitted by a particle moving
instantaneously along the arc of a circular path whose radius of curvature p is
given by

p=—=— (14.48)
Vi, UL

where U,is the perpendicular componentof acceleration. The form of the angular
distribution of radiation is (14.44) or (14.45). It correspondsto a narrow cone or
searchlight beam of radiation directed along the instantaneous velocity vector of
the charge.

For an observer with a frequency-sensitive detector the confinementof the
radiation to a narrow pencil parallel to the velocity has important consequences.
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The radiation will be visible only when the particle’s velocity is directed toward
the observer. For a particle in arbitrary motion the observer will detect a pulse

or burst of radiation of very short time duration (or a succession of such bursts
if the particle is in periodic motion), as sketched in Fig. 14.7. Since the angular
width of the beam is of the order of y~', the particle will travel only a distance
of the order of

d=*
Y

corresponding to a time,

At= +

while illuminating the observer. To make the argument conceptually simple,
neglect the curvature of the path during this time and supposethat a sharp rec-

tangular pulse of radiation is emitted. In the time At the front edge of the
pulse travels a distance,

p
D=cAt=

YB
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Figure 14.7 A relativistic particle in periodic motion emits a spiral radiation pattern
that an observerat the point A detects as short bursts of radiation of time duration
I = Lic, occurring at regular intervals Ty = Lo/c. The pulse length is given by (14.49),
while the inierval Ty = 2ap/v = 27p/c. For beautiful diagramsof field lines of radiating
particles, see R. Y. Tsien, Am. J. Phys. 40, 46 (1972).
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Since the particle is moving in the same direction with speed v and moves a
distance d in the time Af, the rear edge of the pulse will be only a distance

1 pp
L=D-d= 4 -1)8= 38 14.49

(3 y 2y° 0449)

behind the front edge as the pulse movesoff. The pulse length is thus L in space,
or L/c in time. From general arguments about the Fourier decompositionoffinite
wavetrains this implies that the spectrum ofthe radiation will contain appreciable
frequency components uptoa critical frequency,

o,~ =~ (<)3 (14.50)

For circular motion c/p is the angular frequency of rotation wy) and even for
arbitrary motionit plays the role of a fundamental frequency. Equation (14.50)
showsthata relativistic particle emits a broad spectrum of frequencies, up to y°
times the fundamental frequency. In a 200 MeVsynchrotron, ym, = 400, while

@) =~ 3 X 10° s"*. The frequency spectrum of emitted radiation extends up to
~2 x 10'°s~', or down to a wavelength of 1000 A, even though the fundamental
frequency is in the 100 MHzrange. For the 10 GeV machine at Cornell, y,,., =

2 X 10* and wy = 3 X 10°s”'. This means that w, = 2.4 X 10’? s~!, corresponding
to 16 keV x-rays. In Section 14.6 wediscuss in detail the angular distribution of
the different frequency components, as well as the total energy radiated as a
function of frequency. In Section 14.7 we show how to modify the spectrum with
magnetic insertion devices.

14.5 Distribution in Frequency and Angle ofEnergy
Radiated by Accelerated Charges: Basic Results

The qualitative arguments of Section 14.4 show that for relativistic motion the
radiated energy is spread over a wide range of frequencies. The range of the
frequency spectrum was estimated by appealing to properties of Fourier integrals.

The argument can be made precise and quantitative by the use of Parseval’s

theorem of Fourier analysis.
The general form of the powerradiated per unit solid angle is

dP(t) _ 2
“AO = | A(t)| (14.51)

where

A(t) = () [RE]ex (14.52)

E beingthe electric field (14.14). In (14.51) the instantaneous poweris expressed
in the observer’s time (contrary to the definition in Section 14.3), since we wish
to consider a frequency spectrum in terms of the observer’s frequencies. For
definiteness wethink of the acceleration occurring for somefinite intervalof time,

or at least falling off for remote past and future times, so that the total energy
radiated is finite. Furthermore, the observation point is considered far enough
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away from the charge that the spatial region spannedbythe charge while accel-

erated subtends a small solid-angle element at the observation point.
The total energy radiated per unit solid angle is the time integral of (14.51):

dWw *
qo - | A(t) | dt (14.53)

This can be expressed alternatively as an integral over a frequency spectrum by

use of Fourier transforms. We introduce the Fourier transform A(@) of A(t),

1 [- ;
A = —— A t ev dt 14.54

(#) V 27 J-x (1) ( )

andits inverse,

1 ” |
A(t) = Vag [- A(w)e'* dw (14.55)

Then (14.53) can be written

dW __ 1 ° [ [ / * / i(w’ —w)t

10 an}. HI, de |, de’ A*(@')

+

Aloe (14.56)

Interchanging the orders of time and frequency integration, we see that the time
integral is just a Fourier representation of the delta function 6(w’ — w). Conse-
quently the energy radiated per unit solid angle becomes

d co

— = |A(w) |? dw (14.57)

The equality of (14.57) and (14.53), with suitable mathematical restrictions on
the function A(t), is a special case of Parseval’s theorem.It is customary to in-

tegrate only over positive frequencies, since the sign of the frequency has no

physical meaning. Thentherelation,

dw [{* d*I(a,n)

ah dean * (0408)
defines a quantity that is the energy radiated per unit solid angle per unit fre-
quencyinterval:

 

 

d*I 2 2=: + — 14.5<a |A(@)P |A(-0)] (14.59)
If A(t) is real, from (14.55) it is evident that A(—w) = A*(@). Then

d*I 5= 14.60Fo7 2 1A) (14.60)
This result relates in a quantitative way the behavior of the powerradiated as a
function of time to the frequency spectrum of the energy radiated.

By using (14.14) for the electric field of an accelerated charge we can obtain
a general expression for the energy radiated per unit solid angle per unit fre-
quency interval in terms of an integral over the trajectory of the particle. We
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must calculate the Fourier transform (14.54) of A(t) given by (14.52). Using
(14.14), we find

(2 \" ¢° {x [am - B) x 6)at) = (55) [e psn i dt (14.61)

where ret means evaluatedat t’ + [R(t’)/c] = t. We changethe variable of inte-
gration from ¢ to ¢’, thereby obtainingthe result:

_ e pe iw(t’+[R(t’)icy) [(n — B) X B]A(w) = (=) [e (10 pe at (14.62)

Since the observation point is assumed to be far away from the region of space

where the acceleration occurs, the unit vector n is sensibly constant in time.
Furthermore the distance R(t’) can be approximatedas

R(t') =x —n-r(t’) (14.63)

where x is the distance from an origin O to the observation point P, and r(t’) is
the position of the particle relative to O, as shownin Fig. 14.8. Then, apart from
an overall phase factor, (14.62) becomes

— e* _ ° iw(t—n-r(t)/c n x [(n B) x B]A(w) = (=) [ e (mre) pn? dt (14.64)

The primes on the time variable have been omitted for brevity. The energy ra-
diated per unit solid angle per unit frequencyinterval (14.60) is accordingly

  

  

  

2
~ nx [(n a B) x B] iw(t—ner(t)/c)[- 1a 0 dt (14.65)

For a specified motion r(t) is known, B(t) and B(t) can be computed, and the
integral can be evaluated as a function of w andthe direction of n. If accelerated

motion of more than one chargeis involved, a coherent sum of amplitudes A;(w),

one for each charge, must replace the single amplitude in (14.65) (see Problems
14.23, 15.1, 15.4-15.8).

Even though (14.65) has the virtue of explicitly showing the time interval of
integration to be confined to times for which the acceleration is different from

zero, a Simpler expression for some purposes can be obtained by anintegration

by parts in (14.64). It is easy to demonstrate that the integrand in (14.64), ex-
cluding the exponential, is a perfect differential:

n X [(n— B) X B]__ d n x (nx B)

d*I e?

dw dQ 47°c
  

 

 

R(t’)

 

Figure 14.8
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Then an integration by parts leads to the intensity distribution:

d*I ew

dw dQ 42°c

2

| n X (n X Pj” dt (14.67)

  

The reader may rightly ask whether (14.67) is correct in all circumstancesasit
stands. Suppose that the acceleration is different from zero only for T; <t < T>.
Whythenis the integration in (14.67) over all time? The precise answeris that
(14.67) can be shown,by adding and subtracting the integrals over the times when
the velocity is constant, to follow from (14.65) provided ambiguities at t = +0
are resolved by inserting a convergence factor e~*”' in the integrand and taking
the limit « — 0 after evaluating the integral. In processes like beta decay, where
the classical description involves the almost instantaneous halting or setting in
motion of charges, extra care must be taken to specify each particle’s velocity as
a physically sensible function of time.

We remind the reader that in (14.67) and (14.65) the polarization of the
emitted radiation is specified by the direction of the vector integral in each. The
intensity of radiation of a certain fixed polarization can be obtained by taking
the scalar product of the appropriate unit polarization vector with the vector
integral before forming the absolute square.

For a numberof charges e; in accelerated motion the integrand in (14.67)
involves the replacement,

N
eRehelene 5 S e,B,eKeon© (14.68)

J=1

In the limit of a continuous distribution of charge in motion the sum overj
becomesan integral over the current density J(x, t):

1
eBeKelonr@) _, — | d°x I(x, theeon (14.69)

C

Then the intensity distribution becomes

2
d*I 2 ;

< | dt | d°x n x[n X J(x, tele (14.70)dw dQ 473

  

a result that can be obtained from thedirect solution of the inhomogeneous wave
equation for the vector potential.

14.6 Frequency Spectrum ofRadiation Emitted by a Relativistic
Charged Particle in Instantaneously Circular Motion

In Section 14.4 we saw that the radiation emitted by an extremely relativistic
particle subject to arbitrary accelerations is equivalent to that emitted by a par-
ticle moving instantaneously at constant speed on an appropriate circular path.
The radiation is beamedin a narrow conein the direction of the velocity vector
and is seen by the observeras a short pulse of radiation as the searchlight beam
Sweeps across the observation point.
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To find the distribution of energy in frequency and angleit is necessary to
calculate the integral in (14.67). Because the duration of the pulse is very short,
it is necessary to know thevelocity B and position r(t) over only a small arc of

the trajectory whose tangent points in the general direction of the observation
point. Figure 14.9 shows an appropriate coordinate system. The segmentof tra-
jectory lies in the x-y plane with instantaneousradius of curvature p. Since an
integral will be taken overthe path, the unit vector n can be chosen withoutloss
of generality to lie in the x-z plane, making an angle 6 (the latitude) with the x
axis. Only for very small 6 will there be appreciable radiation intensity. The origin
of time is chosen so that at t = 0 the particle is at the origin of coordinates.

The vector part of the integrand in (14.67) can be written

n X (n X B) = pl- sin(2 + €) cos( sin | (14.71)

where €) = €, is a unit vector in the y direction, correspondingto polarization in
the plane of the orbit; €, = m X €, is the orthogonal polarization vector corre-
sponding approximately to polarization perpendicular to the orbit plane (for @
small). The argument of the exponential1s

of — nr) = of — e sin(®) COs | (14.72)

Since we are concerned with small angles @ and comparatively short times around
t = 0, we can expand both trigonometric functions in (14.72) to obtain

of: — a1) =~ 7 (5 + i -+ S a (14.73)

where B has been put equal to unity wherever possible. Using the time estimate
picy for t and the estimate (6°)'” (14.42) for 6, it is easy to see that neglected
terms in (14.73) are of the order of y~ times those kept.

With the same type of approximations in (14.71) as led to (14.73), the radi-
ated energy distribution (14.67) can be written

d*I e*w* °

dw dQ 471°c
 —€)A)(@) + €,A,(@) (14.74)

  

 
  Figure 14.9
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where the amplitudes are*

c {* w 1 Cr
A ~o| t j>—|(— 4+ 6 lr +—~lhdt

\(@) p 66 exp) 2 (3 “|

14.7

A |(@) a| expy i — Lg) 4 SE dt us)a) => — > >1 _, ©XP 7 7 3p”

1 1/2

A change of variable to x = es/o(4 + | | and introduction of the
Y

parameter6,

1 3/2

wp 5
= — — + Q .é 30 (2 (14.76)

allows us to transform the integrals in A,(w) and A,(@) into the form:

1 oO

A\(w) = - (4 + | | x exp[isE(x + 3x°)] dx

(14.77)1/21 oO

A,(w) = - o(Z + | i exp[is€(x + 4x°)] dx

The integrals in (14.77) are identifiable as Airy integrals, or alternatively as mod-
ified Bessel functions:

“ : 3 1.3 — 1I x sin[sé(x + 3x°)] dx = VA K33(€)

; (14.78)
J, cosliete + eV] dr = Kile)

Consequently the energy radiated per unit frequencyinterval per unit solid angle
18

d?] e? Wp ; 1 5 2 5 Q 5

da 10 = 3772 oe + 0 K53(€) + (1/y”) 1 @2 Ki73(€) (14.79)

The first term in the square bracket corresponds to radiation polarized in the
plane of the orbit, and the second to radiation polarized perpendicular to that

plane.

Wenowproceed to examine this somewhat complexresult. First we integrate
overall frequencies andfind that the distribution of energy in angle is

cn aee
dQ Jo dowd” 16 p (ly + 8)” 7 (ly) + &

 

 

| (14.80)

*The fact that the limits of integration in (14.75) are t = + may seem to contradict the approxi-
mations made in going from (14.72) to (14.73). The point is that for most frequencies the phase of
the integrandsin (14.75) oscillates very rapidly and makesthe integrandseffectively zero for times

much smaller than those necessary to maintain the validity of (14.73). Hence the upper and lower
limits on the integrals can be taken as infinite without error. Only for frequencies of the order of
w ~ (c/p) ~ wo does the approximation fail. But we have seen in Section 14.4 that for relativistic

particles essentially all the frequency spectrum is at much higher frequencies.
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This shows the characteristic behavior seen in Section 14.3. Equation (14.80) can
be obtained directly, of course, by integrating a slight generalization of the
circular-motion power formula (14.44) overall times. As in (14.79), thefirst term
in (14.80) correspondsto polarization parallel to the orbital plane, and the second
to perpendicular polarization. Integrating overall angles, we find that seven times

as much energy is radiated with parallel polarization as with perpendicular po-
larization. The radiation from relativistically moving charge is very strongly,
but not completely, polarized in the plane of motion.

The properties of the modified Bessel functions summarized in (3.103) and
(3.104) show that the intensity of radiation is negligible for € >> 1. From (14.76)
we see that this will occur at large angles; the greater the frequency, the smaller
the critical angle beyond whichthere will be negligible radiation. ‘This showsthat
the radiation is largely confined to the plane containing the motion, as shown by
(14.80), being more confined the higher the frequency relative to c/p. If w gets
too large, however, we see that é will be large at all angles. Then there will be
negligible total energy emitted at that frequency. Thecritical frequency w, be-

yond whichthere is negligible radiation at any angle can be defined by € = 1/2
for 6 = 0. Then we find*

3

3 3/C 3 E C
= — —-}=-—-{|—>] - 14.81
a) ” (<) 2 (*,) p ( )

This critical frequency is seen to agree with our qualitative estimate (14.50) of
Section 14.4. If the motion of the chargeis truly circular, then c/p is the funda-

mental frequency of rotation, wo. Then we can define a critical harmonic fre-

quency w, = N.@o, with harmonic number,

n=2 (=) (14.82)
2 mc?

Since the radiation is predominantly in the orbital plane for y >> 1, it is
instructive to evaluate the angular distribution (14.79) at 6 = 0. For frequencies
well below thecritical frequency (w <<w,), we find

_@ r) 2 3 1/3 wp 2/3

ele | (a) (2) aaa
For the opposite limit of w >> w,, the result1s

d*]

dw dQ)
  

 

3 2

~ye OD poole (14.84)
p-0 47 € Ow.

d*]

dow dQ
 

 

These limiting forms show that the spectrum at 6 = 0 increases with frequency

roughly as w”” well below thecritical frequency, reaches a maximumin the neigh-
borhood of w,, and then drops exponentially to zero above that frequency.

The spread in angle at a fixed frequency can be estimated by determining

*Our present definition of w, differs from earlier editions. The present one, defined originally by

Schwinger (1949), is in general use.
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the angle 6. at which &(6.) =~ &(0) + 1. In the low-frequency range (o < ,),

(0) is very small, so that &(0,) = 1. This gives
30 WB 4 Qu, 1/3

0. =

|

— = — (14.85)
wp y\ @

We note that the low-frequency components are emitted at much wider angles

than the average, (6?)' ~ y~1. In the high-frequency limit (w > @,), €(0)is large

compared to unity. Then the intensity falls off in angle approximately as

 

 

 

d*I d*I 30v202
~ —3wy 0°/20, 14.

dodQ dw dQ) 5-5 “ (14.86)

Thusthe critical angle, defined by the 1/e point, is
1/2

1 [2@
g6.~-—{(— 14.

"OY (3 S87)
This showsthat the high-frequency components are confined to an angular range

much smaller than average. Figure 14.10 shows qualitatively the angulardistri-

bution for frequencies small compared with, of the order of, and much larger

than w,. The natural unit of angle yd is used.

The frequencydistribution of the total energy emitted as the particle passes

by can be found by integrating (14.79) over angles:

  

dl {we a [ d?I
— =2 = 2 dé 14.
do 2 Jn do dg 8 9 18

*

7" J. da dO (14.88)

(rememberthat 6 is the latitude). We can estimate the integral for the low-

frequency range by using the value of the angular distribution (14.83) at 6 = 0

and thecritical angle 0, (14.85). Then we obtain

dl d?I > (wp\"~ = (<2) (14.89)— ~ 276.
dw dow aQ c\e

showingthat the spectrum increases as w'” for w << w,. This gives a very broad,

flat spectrum at frequencies below w,. For the high-frequency limit where w >> w,

we can integrate (14.86) over angles to obtain the reasonably accurate result,

 

 6=0

We

dl 5 1/2

da 37/2 — (2) ee (14.90)
Ww

 d
7
I

d
w
d
Q

Figure 14.10 Differential frequency
spectrum as a function of angle. For
frequencies comparableto thecritical

frequency w,, the radiation is confined

to angles of the order of y”*. For
much smaller (larger) frequencies, the

angular spread is larger (smaller).
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A proper integration of (14.79) over angles yields the expression,”

2 2
a _\v3e,2 | Ksj3(x) ax (14.91)
dw C We Jolew,

In the limit w < w, this reduces to the form (14.89) with a numerical coefficient
3.25, while for w >> w, it is equal to (14.90). The behavior of d//dw as a function
of frequency is shown in Fig. 14.11. The peak intensity is of the order of e*ylc,

and the total energy is of the order of e*yw,/c = 3e*y*/p. This is in agreement
with the value of 47e’y*/3p for the radiative loss per revolution (14.32) in circular

accelerators.
The radiation represented by (14.79) and (14.91) is called synchrotron radi-

ation becauseit wasfirst observed in electron synchrotrons (1948). The theoret-

ical results are much older, however, having been obtained for circular motion

by Schott (1912) although their expression in the present amenable form is due

to Schwinger. Forperiodic circular motion the spectrumis actually discrete, being
composedof frequenciesthat are integral multiples of the fundamental frequency
W@, = c/p. Since the charged particle repeats its motion at a rate of c/27p revo-
lutions per second,it is convenientto talk about the angular distribution of power
radiated into the nth multiple of wo instead of the energy radiated per unit fre-
quency interval per passage of the particle. To obtain the harmonic power ex-

pressions, we merely multiply d//dw (14.91) or d*I/dw dQ (14.79) by the repetition
rate c/27p to convert energy to power, and by w» = c/p to convert per unit

frequency interval to per harmonic. Thus

dP, 1 (<) a]
dQ 2m\p)/ dw dQ

1 (<) dl
P,==-(-]}] —

27 \p}) da

These results have been compared with experiment at various energy synchro-

trons.’ The angular, polarization, and frequency distributions are all in good

agreement with theory. Because of the broad frequency distribution shown in

Fig. 14.11, covering the visible, ultraviolet, and x-ray regions, synchrotron radi-
ation is a useful tool for studies in condensed matter and biology. We examine
synchrotron light sources and some of the insertion devices used to tailor the

spectrum for special purposesin the next section.
Synchrotron radiation has been observed in the astronomical realm associ-

ated with sunspots, the Crab nebula, and from the particle radiation belts of

Jupiter. For the Crab nebula the radiation spectrum extends over a frequency

range from radiofrequencies into the extreme ultraviolet, and showsvery strong

polarization. From detailed observations it can be concluded that electrons with

  

 eee (14.92)

 W-NWH

*This result and the differential distribution (14.79) are derived in a somewhat different way by
J. Schwinger, Phys. Rev. 75, 1912 (1949). Schwinger later showed that the first-order quantum-
mechanical corrections to the classical results involve the replacement of w — (1 + fa/E) in

w' d?I/dw dQ or w™' dI/dw [Proc. Natl. Acad. Sci. 40, 132 (1954)] and are thus negligible provided

hw, <E, or equivalently, y << (pmc/h)"”.

*F, R. Elder, R. V. Langmuir, and H. C. Pollock, Phys. Rev., 74, 52 (1948); D. H. Tomboulain and

P. L. Hartman, Phys. Rev., 102, 1423 (1956); G. Bathow,E. Freytag, and R. Haensel, J. Appl. Phys.,

37, 3449 (1966).



682 Chapter 14 Radiation by Moving Charges—G

 

0.6 TTT TTT TY TT TTT TTT ty ttre Frc TTT FT TULF TU TT TUT TP

L

0.5

 

  
0.4

0.3

Fl
y)

0.2

0.1

t
o
r
t
e
r
r
t
t
o
r
r

i
t
i
r
e

r
t
e

i
i
i

t
i

i
i

a
|

  Cote hebt

1 2 3 4 5

y

(a)

0.0 

©

 0.6 IT TTTT] TT T tt | Tr TOT trl

0.5

0.4

p
r
r
r
r
y
p

r
r

r
r

y
r
t
r

0.3

F(
y)

0.2

0.1

P
r

r
r
p
t
b
r

yp
b
r

  0.0 l Lop pid l Lope l l Lt tt
 

o
O
r
e

r
e a r
e

©

(b)

Figure 14.11 Normalized synchrotron radiation spectrum (1/I)(di/dy) =

(9V'3/8a)y | Ks,3(x) dx, where y = w/w, and I = 47re*y*/3p:(a) linear abscissa scale
y

and (b) logarithmic abscissascale.

energies ranging up to 10'* eV are emitting synchrotron radiation while moving

in circular or helical orbits in a magnetic induction of the order of 10°* gauss

(see Problem 14.26). The radio emission at ~10° MHz from Jupiter comes from

energetic electrons trapped in Van Allen belts at distances from a few to 30-100

radii (R,) from Jupiter’s surface. Data from a space vehicle (Pioneer 10, Decem-

ber 4, 1973, encounter with Jupiter) passing within 2.8R, showed a roughly dipole
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magnetic field with a dipole momentof 4R; gauss. Appreciable fluxes of trapped

electrons with energies greater than 3 MeV and a few percent with energies

greater than 50 MeV were observed. Taking 1 gauss as a typical field and 5 MeV
as a typical energy, Eqs. (12.42) and (14.81) show that the spiraling radius is of
the order of 100-200 meters, w) ~ 2 X 10° s~’, and that about 10° significant
harmonicsare radiated.

The treatment of synchrotron radiation presented here is completely classi-

cal, but the language of photons can be used,if desired. The numberof photons
per unit frequency interval is obtained by dividing the intensity distribution
(14.91) [or (14.79)] by Aw. Then the photon frequencydistribution is

dN I 9V3 [
a! SOKi A(x) 14.9
dy hho, 8m Jy Bsn) & (14.93)

where y = w/w, and I = 47e’y*/3pis the total energy radiated per revolution.

Integration over frequency gives the mean numberof photons emitted perrev-
olution perparticle,

Sa
N =—= ya 14.94VAY (14.94)

where a is the fine structure constant. The mean energy per photon1s I/N:

8hw) = ——~ ho, 14.95
1) 3a (49)

Asalready remarked, because w, is proportional to y’ and y = O(10*) for GeV
energies, fundamental wavelengths (27p) of the order of hundredsof meters give
rise to synchrotron photons of wavelengths downto 10° '° meter (1 angstrom) or
less, corresponding to keV x-rays.

14.7  Undulators and Wigglersfor Synchrotron Light Sources

The broad spectrum of radiation emitted by relativistic electrons bent by the
magnetic fields of synchrotron storage rings providesa useful source of energetic
photons for research and wasutilized initially in a “‘parasitic’’ mode by biologists
and condensed matter physicists. Curved crystals or other devices were used to

select specific frequencies from the continuum. As applications grew, the need
for brighter sources with the radiation more concentrated in frequencyled to the

development of magnetic “insertion devices” called wigglers and undulators to

be placed in the synchrotron ring. The magnetic properties of these devices cause
the electrons to undergo special motion that results in the concentration of the

radiation into a much more monochromatic spectrum or series of separated
peaks. The basic formula for the radiationis still (14.67), although here we use
invariance arguments and Lorentz transformations to make the results more

physically understandable.
Theessential idea of undulators and wigglers is that a charged particle, usu-

ally an electron and usually movingrelativistically, (y >> 1), is caused to move

transversely to its general forward motion by magnetic fields that alternate pe-
riodically. The external magnetic fields induce small transverse oscillations in the

motion; the associated accelerations cause radiation to be emitted. A typical
configuration of magnets, with an alternating vertical magnetic field at the path
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Figure 14.12 (a) Schematic diagram of alternating-polarity bending magnets for a
wiggler or undulator. (b) Sketch of approximately sinusoidal path of electron in the x-z
plane. The magnetperiod is Ao, the maximum transverse amplitudeis a, and the

maximum angle is Wo.

of the particle, is sketched in Fig. 14.12a. The path of the particle is in the hori-

zontal (x-z) plane.

A. Qualitative Features

If the periodicity of the magnetic field structure is Ao, the particle’s path will
be approximately sinusoidal in the transverse direction with the same period,as
sketched in Fig. 14.12b. We have x ~ a sin(27Z/A9), with the maximum amplitude
a dependent on the strength of the wiggler’s magnetic field and the particle’s
energy. The maximum angular deviation % away from the forward direction is

proportional to a; it is an important parameter, which distinguishes undulators
from wigglers. We have

d 2
Yo = — _."- Koa, where Kop = 277/Xo (14.96)

dz z=0 Xo

is the fundamental wave numberof the system. [Actually, the time taken for the
particle to traverse one period of the magnetstructure is T = Ao/Bc and so the

real fundamental wave numberof the radiation is Bky. For y >> 1 the difference

is insignificant.|
For y >> 1, the radiation emitted by the charged particle is confined to a

narrow angular region of angular width A@ = O(1/y) about the actual path. As
the particle movesin its oscillatory path sketchedin Fig. 14.125, the ‘“‘searchlight”
beam of radiation will flick back and forth about the forward direction. Quall-
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tatively different radiation spectra will result, depending on whether yp is larger
or smaller than A@.

(a) Wiggler (hb >> AO)

For Ww >> AQ, an observer detects a series of flicks of the searchlight beam,

with a repetition rate given by the relation, 1) = w9/2a = ck,/27. With A, of the
order of a few centimeters, »» = O(10 GHz). The phenomenonis very much as
in an ordinary synchrotron with bunches spaced a few centimeters apart. The
spectrum of radiation extends to frequencies that are y° times the basic frequency
Q, = c/R, where R is the effective radius of curvature of the path. The minimum
value of R is generally the one of interest. It occurs at the maximum amplitude
of the transverse motion and is

_ 1 _ Ao
kia 27

 (14.97)

The wiggler radiation spectrum is a smooth, featureless spectrum very muchlike
the synchrotron radiation spectrum of Fig. 14.11, with a fundamentalfrequency,
QO, = 2aciip/Ao, and a critical frequency y° times this value. If the wiggler magnet
structure has N periods, the intensity of radiation will be N timesthatfor a single
pass of a particle in the equivalent circular machine.

It is useful to introduce the parameter K, a scaled angle, by

K = yo

A wiggler is characterized by K >> 1. In terms of K,its critical frequency1s

2
o, = o(vx =) (14.98)

Users of synchrotron light sources tend to speak of wavelength rather thanfre-
quency. Thecritical wavelength is

Xo
= 14.9 

(b) Undulators (% << AO or K < 1)

If fj) <A@, the searchlight beam of radiation moves negligibly comparedto
its own angular width. This means that the radiation detected by an observeris
an almost coherent superposition of the contributions from all the oscillations of

the trajectory. For perfect coherence and an infinite number of magnet periods

(and infinitesimal angular resolution of the detector), the radiation would be
monochromatic. For finite N the spread in frequency is Aw/w = O(1/N);finite
angular acceptance also causes a spread because of the Dopplershift. Neverthe-
less, the frequency spectrum from an undulator is sharply peaked (actually a
series of peaks in practice, but with a most intense “‘fundamental’’).

The frequency of the “‘line’’ from an undulator can be estimated by consid-
ering the particle in its rest frame. The FitzGerald—Lorentz contraction means
that in that frame the magnetstructure is rushing bythe particle with a spatial
period A,/y. The frequency of simple dipole radiation in that frame is thus
w' ~ y(27c/\,). In the laboratory frame the relativistic Doppler shift, w’ =
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yo(1 — B cos 6) ~ w(1 + y°6’)/2y, leads to a spectral line at an angle 6 with
frequency

2" 27°C
~~ ———— — 14.1

Note that at small angles (y@ < 1) this frequency has the same y-dependence
as the wiggler’s critical frequency, (14.98), for a fixed K.

B. Some Details of the Kinematics and Particle Dynamics

Wewish to considerthe particle in its average rest frame,in which it executes
oscillations both transversely and longitudinally. If its initial Lorentz parameters
are y and $B, they remain unchanged because the magnetic field does no work on
the particle. But because of the transverse motion, the particle’s average speed
in the z direction, Bc, and its associated 7,are less than the instantaneous param-

eters. The average rest frame moveswith speed Bc with respectto the laboratory.
One wayto find B and ¥is to consider the path shown in Fig. 14.12b and

compute its length for one cycle:

Xo Xo

s= I V1 + (dx/dz) dz ~ | [1 + 3(dx/dz)’ +--+] dz (14.101)
0

or

5 ~ Ao(1 + 348) (14-102)
Here we have assumed that w << 1, and we assume below that y >> 1. Since

the particle travels this path as speed Bc, we infer that

iB
1+ y3/4

Even though B ~ 1 and % << 1, so that B ~ 1, the difference between B and B

producesa finite (not infinitesimal) difference between ¥ and y:

1 _

a1 B~ 1 BL — 2H6)

= y? + 55 = y71 + 3K’)

B = ~ p(t - 4a) (14.108)

Wetherefore find

— Y
Y Viti (14.104)

Since K >> 1, is possible even if % < 1, y can differ significantly from y, at least
for wigglers.

The transverse motion has been assumedto be sinusoidal. How is that con-
nected to the structure of the magnet that causes the motion? With B and y
constant, the x component of the Lorentz force equation can be written
x = —eB,B,/ym, where B,B, is assumed to be negligible or zero. Approximating
z = ct and B, = 1, we have

yme* d*x _ yme* 5
= 14.105

B,(z) = e dz e- ( )
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The requisite magnetic structure is B, = By sin koz, where By = ymc*kéale. Since

K = ykoa, the important parameter K can be expressed in terms of the known
field of the magnetandits period,

eBo _ CBoAg
= 14.106

komc?—- 2armc? (14.106)

An actual magnet structure will be periodic, but not sinusoidal. We can,
however, make a Fourier decomposition of the actual B, in multiples of ko. Each
component will contribute to the motion. The fundamental will dominate. For
simplicity, we keep only that contribution.

The longitudinal oscillations can be found,at least approximately, from the
constancy of B. We have B2 = B* — B%. Since | B,| < B, we can write

BgB
2B P

But x = a sinkoz ~ a sin(Koct). Thus B, ~ koa cos(koct). We then have the

componentof B in the z direction as

BAt) ~ B- sk cos*(Kct)

— a°[1 + cos(2koct)]
2— Ke

= B- 4p cos(2kct)

B. ~ B-

Integrating cB,(t) once with respectto t, we find the longitudinal and transverse
motions to be

 
Aok

z(t) = Bet — = sin(2kyct) and x(t) = Ty—— sin(koct) (14.107)

C. Particle Motion in the Average Rest Frame

It is informative to examinethe particle’s motion in the frame K’, moving
with speed B in the positive z direction. The Lorentz transformations equations
are

x' =x, zZ = ¥(z - Bct), ct’ = y(ct — BZ)

Substituting z(t) from (14.107) into the last equation, we have

_ BK?
ct’ = Hfer — Bp’) + oo sin 20| 

where 0 = koct. Neglect of the last term gives the first approximation, t = ‘yt’.
Then with this result inserted into 6, we find a better approximation,

1 Kk? may
Ake (; ; a) sin(2 ykoct’)

or (14.108)

 t= yt' —

__, 1K’ my
0 = ykoct | 74K sin(2 ykoct’)
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Usually the first term is adequate, but in computing time derivatives in the mov-
ing frame, the second term is necessary when differentiating 0(t').

The particle’s coordinates in the moving frameare

K
x'(t') = vk sin 6(t’) = a sin 6(t’)

ke 2
Ke,

z'(t') = “trike sin 20(t') = -~—4sin 20(1')
8V1 + K?/2

The motion is a figure-eight pattern of the form

x’ x"? Kaz! _ +2(Z'max . 7 1 - ey where (Z')max —

9\/1

+

R22

Figure 14.13 shows the shape of the particle’s orbit in the moving frame for the
regime K >> 1. For K = 1, the z’ amplitudeis 0.576 timesas large as is shown.
For K << 1, the z’ oscillations are negligible; the motion is simple harmonic in
the transverse direction.

An important feature of the motion in the moving frame is the maximum
speed of the particle. A straightforward calculation yields the square of the par-
ticle’s speed in the moving frameto be

2K? K* K? °
Bp”? = ; LR cos?0 ++cos'20}1 —+COS 20

(14.109)

 

where it is now safe to put 6(t') = ykoct’. The last factor comes from the form
of d6(t’)/dt'. The two limits of K are instructive. For K << 1, the leading term
gives

B’ ~ K cos 8, K<tl (14.110a)

corresponding to nonrelativistic simple harmonic motion. This limit is for an un-
dulator. In the opposite limit, K — ©, the leading behavioris

B’ ~1-(cos’9-3), K—>© (14.110b)

In this (strong wiggler) limit, the particle’s speed varies between 3c/4 and c in
the course of the motion,quite relativistic. From Problems 14.12, 14.14, and 14.15,

one can infer that the radiation in the moving frame consists of many harmonics
of the basic frequency, with an angulardistribution thatis far from a simple dipole
pattern. The laboratory radiation pattern from a strong wiggler is better de-
scribed by the contributions from the successive segments of the path whose

tangents point in the direction of observation.

z

Figure 14.13 Orbit of the particle in
the moving (average rest) frame for K
>> 1. The arrow indicates the

direction of motion in the laboratory
frame.
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D. Radiation Spectrumfrom an Undulator

When K < 1, the motion in the average rest frame is very simple. The

particle moves in nonrelativistic simple harmonic motion alongthe x axis. It emits
monochromatic dipole radiation whose powerdifferential distribution1s

dP' ec
= — k'*d’ sin’O

dQ' 8&7
 

where k' = yk, 1s the wave numberin the moving frame. The coordinates are

shownin Fig. 14.14. Now k” sin?® can be written as k’” sin*® = k'* — k’? cos’®
=k? + kj?, With K = ykoa ~ ykoa for K << 1, the power angular distribution
becomes

dP’ ec— 2 2(]-12 + 1270 ag RUE +) (14.111) 

To find the laboratory spectrum in angle and frequency(actually, either angle
or frequency), we exploit certain invariances. Since the phase-space density d°k/w
is a Lorentz invariant, it is useful to consider w’ d?P'/d°k', rather than dP'/dQ’.

Inserting a delta function 6(k’ — yko) to assure the monochromatic nature of the
radiation in the moving frame, we have

oe
 d3P' = (ki? + ki?) (14.112)

@

S(k' — Mo) d?k’

Vko

where d°k' = k’* dk' dQ’. Consider now d?P’. If we multiply by the time At?’it
takes for one period of the magnetstructure to pass by the particle in the moving
frame (At’ = Ao/yBc ~ Ao/Fc), we obtain the energy radiated per period into the
invariant element of phase space. If we divide by iw’ = fck’, we obtain the
differential number d°N’ of photons emitted into d°k'/w’' per passage of a magnet
period. But the number of photons is an invariant quantity. We can therefore
write the connection between the laboratory differential radiation spectrum and
the spectrum in the moving frame as

aP At @ d?P’

(d°k/w) At o' (d*k'lo’)
 

  

|
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|
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|

—S Figure 14.14 Radiation direction and angles

oN in average rest frame. Particle motion is in the

x x-z plane.
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With Az’/At = 1/y and d°k/w = k dk dQ/c, we have

dP _ e’cK*® ke

dkdQ 8ry ke

All that remains is to express the primed quantities in terms of the laboratory
variables. The Lorentz transformations are

ky = ky =k sin@sin 4, d=

ki = yk(cos 6 — B)

k' = yk(1 — B cos 8)

Using the constraint of the delta function, we have

k =<0
1 — Bcosé

 (ki? + ki?) - &(k’ — Yko) (14.113)

If we make the appropriate approximations for y >> 1 (ie, 6 < 1,
B~1— 1/27’, etc.), (14.113) can be written

PP e’cyKke . — n+ 4n sind
  

dndkdé

=

2a (1 + »)*

where 7 = (¥6)’ is the natural angle variable to replace cos @. Note that, be-
cause of the delta function, the frequency and angular distributions are not
independent.

Jou + 9) —277ko] (14.114)

(a) Angular Distribution

If we chooseto integrate over the frequency spectrum dk, wefind the angular
distribution of power to be

 

2p 2 m2 2)-2 1 _ 2 + 4 12d _ ecy K*k| ( n) 7 sin’? (14.115)

dn dd 27 (1 + 7)

After integration over azimuth, the polar angle spectrum is

dP 1+ 7 |
— = 3P| ———~ (14.116ae

where

2 yy?K2 2

P=os (14.117)

is the total power radiated. It is easy to verify that the average value of 7 is

(n) = 1.

(b) Frequency Distribution

To obtain the frequency distribution emitted into an angular range, 7, <
1 < 1, We integrate (14.114) over dd dy. Theresult is

dP
a 3P[v(1 — 2v + 27*)] fOr Umin < VU < Vmax (14.118)
V

where v = k/2¥*ky and Unin = 1/(1 + 12), Vmax = 1/11 + m). The complete
normalized frequency spectrum is plotted in Fig. 14.15a: the sharply peaked spec-
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Figure 14.15 (a) Normalized frequency spectrum for K << 1 and sinusoidal motion.
The dashedlines indicate the frequency interval visible if the angular acceptanceis
0 < yé < 4. (b) Log-log plot of intensity of fundamental and second harmonic for K =
0.5 with a sinusoidal magnetic field. In real undulators, the spectrum shape depends on

details of the undulator structure.
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trum between the dashed lines corresponds to an angular acceptance 0 < 9 < 1/9
(6 < 1/3¥y). Note that this spectrum is for perfectly sinusoidal motion of the par-
ticle at all times. If the number N of magnetperiodsis finite, the duration of the
oscillatory motionis finite; the radiated wavetrain will have a fractional spread
in frequency of the order of 1/N. For large N this spread is generally small com-

pared to the spread from finite acceptance.
For small, but not negligible, K, there are higher harmonics. These can be

thought of as coming from higher multipoles caused by the figure-eight motion

shown in Fig. 14.13. The second harmonic comes from a coherent superposition
of the fields of a dipole in the z direction [z’ « sin 26(t')| and a quadrupole caused
by the x’ motion. See Problem 14.27. The resulting frequency spectrum is shown
in Fig. 14.155 for K = 0.5, with higher harmonics decreasingin intensity, at least
for K < 1.

(c) Energy ofPhotons and Number Emittedper Magnet Period

The radiated poweris given by (14.117) and the maximum energy of photons
in the fundamentalis ha,,, = 2ykofic (at y = 0). The amountof energy radiated
per passage of one magnet period is AF = PAt, where At = Aj/c. The number
of photons N,, emitted per magnet period can thus be estimated to be N, =
PAtlh@max = O(aK7), where a is the fine structure constant. A calculation based

on (14.118) divided by fiw gives

2
N, = > aK? (14.119)

Y

E. Numerical Values and Representative Spectra and Facilities

The parameters K and ha,,,, are given for electronsin practical (accelerator)
units by

eB eBor
So = ——* = 93.4 By(T)Ao(m) K= =

komc? 2amc

and

9.496[E (GeV)?
hOmax(€V) = (1 + K*/2)Ao(m)

 

Typical undulators have By = O(0.5 T), Ag = O(4cm), EF = O(1-7 GeV). Hence
K = O(2) and hay, = O(80 eV—-4 keV). Wigglers have By = O(1 T) and Ay =
O(20 cm). Then K = O(20).

There are dozens of synchrotron light facilities around the world. Typical of
the modern dedicatedfacilities (as of 1998) are

Advanced Light Source (ALS), Lawrence Berkeley National Laboratory,
E = 1.5 GeV

National Synchrotron Light Source (NSLS), Brookhaven National Laboratory,
E = 0.75, 2.5 GeV

European Synchrotron Radiation Facility (ESRF), Grenoble, France, FE = 6 GeV
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Figure 14.16 Representative photon spectra for actual light sources. The bending
magnet and wiggler spectra are continuousand are closely proportional to (14.79),
evaluated at 6 = 0. The undulator curves are the envelopes of a series of sharp peaksat
multiples of the fundamental. See text for definition of brightness.

Tristan Light Source, KEK National Laboratory, Tsukuba, Japan, E = 6.5 GeV

Advanced Photon Source (APS), Argonne National Laboratory, E = 7 GeV

The lower energy facilities provide photons in the tens of eV to several keV
range; the high-energy facilities extend to 10-75 keV,and even higher at reduced

flux. Figure 14.16 shows some representative spectra of actual light sources. The
spectral brightnesses indicate the typical capabilities available at relatively low-
energy rings such as the ALS andthe higher energyrings such as the APS. For

undulators the smooth curves represent the envelope of the narrow “‘lines.”’
Brightness or brilliance is defined as the number of photons per second per mil-
liradian in the vertical and horizontal directions per 0.1% fractional bandwidth
in photon energy, divided by 27 timesthe effective source area in square milli-
meters. High brilliance rather than high flux is generally desired.

F. Additional Comments

There is a vast amount of detail about synchrotron light sources, the design
of beams, the transport of photons to experiments, and so on. We make only a
few comments here.

1. An undulator’s fundamental frequency w,,,, can be tuned by varying the

undulator parameter K by changing the gap in the magnet structure and so
changing By [see (14.106)].

2. The simple undulator with beam oscillations in the horizontal plane provides
linearly polarized light. Circular polarization can be provided by use of a
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helical undulator designed to makethetransverse trajectory an ellipse. A]-

ternately, two undulatorsat right angles with an adjustable longitudinal spac-

ing between them can be used to produce circular polarization or any other
state because of the coherent superposition of the radiation from all the
magnet periods.

3. Free electron lasers are closely related to wigglers and undulators. An un-

dulator can be thoughtof as radiating in the forward direction at frequency
Wmax Dy spontaneous emission. Addition of a co-traveling electromagnetic
waveof almost the same frequency providesthe possibility of interaction and

stimulated emission and growth of the wave.

Further details about the sources and about their uses in research can be

found in the references cited at the end of the chapter.

14.8 Thomson Scattering ofRadiation

If a plane wave of monochromatic electromagnetic radiation is incident on a free
particle of charge e and mass m,the particle will be accelerated and so emit
radiation. This radiation will be emitted in directions other than thatof the in-
cident plane wave, but for nonrelativistic motion of the particle it will have the
same frequency as the incident radiation. The whole process may be described

as scattering of the incident radiation.

Accordingto (14.20) the instantaneous powerradiated into polarizationstate
e by a particle of charge e in nonrelativistic motionis

Pe
dQ 41c?
 le* - v|? (14.120)

The acceleration is provided by the incidentplane wave.If its propagation vector

is ky, and its polarization vector €, the electric field can be written

E(x, t) = €)Eye*o*

Then, from the force equation for nonrelativistic motion, we have the

acceleration,

W(t) = €) — Epesio (14.121)
yn

If we assumethat the charge moves a negligible part of a wavelength during one
cycle of oscillation, the time average of |v|” is$Re(v - v*). Then the average power
per unit solid angle can be expressed as

2
dP c e*(28). ei) jer cain

Since the process is most simply viewed asa scattering,it is convenient to intro-
duce a scattering cross section, as in Chapter 10 defined by

do _ Energy radiated/unit time/unit solid angle

dQ, Incident energy flux in energy/unit area/unit time
 (14.123)
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 Figure 14.17

The incident energy flux is just the time-averaged Poynting vector for the plane
wave, namely,c | Eo|?/87. Thus from (14.122) we obtain the differential scattering
cross section,

da e7 ;70 _ (=) Je* » €| (14.124)

The scattering geometry with a choice of polarization vectors for the outgoing

waveis shown in Fig. 14.17. The polarization vector e, is in the plane containing
n and ko; €) is perpendicular to it. In terms of unit vectors parallel to the coor-
dinate axes, €, and e€, are

€, = cos 6(e, cos + e, sind) — e, sin é

€ = —e, snd + e, cosd

For an incidentlinearly polarized wave with polarization parallel to the x axis,
the angular distribution summedoverfinal polarizationsis (cos*@cos*¢ + sin’),
while for polarization parallel to the y axis it is (cos*@ sin*@ + cos’). For un-
polarized incident radiation the scattering cross section is therefore

2
do e*
10 = (<<) $(1 + cos’@) (14.125)

This is called the Thomson formula for scattering of radiation by a free charge,
and is appropriate for the scattering of x-rays by electrons or gamma rays by

protons. The angular distribution is as shownin Fig. 14.18 by the solid curve. The
total scattering cross section, called the Thomsoncross section, is

Sa e? ;
Or == | (14.126)

3 mc?

The Thomsoncross section is equal to 0.665 X 10~** cm? for electrons. The unit
of length e*/mc* = 2.82 X 10713 cm,is called the classical electron radius, since a
classical distribution of charge totaling the electronic charge must havea radius
of this orderif its electrostatic self-energy is to equal the electron mass.

The classical Thomson formula is valid only at low frequencies where the
momentum of the incident photon can be ignored. When the photon’s momen-
tum fAw/c becomes comparable to or larger than mc, modifications occur. These
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1.0

   
 

Figure 14.18 Differential scattering cross section of unpolarized radiation by a point
charged particle initially at rest in the laboratory. The solid curve is the classical
Thomsonresult. The dashed curves are the quantum-mechanicalresults for a spinless
particle, with the numbers giving the values of Aw/mc?. For hw/mc? = 0.25, 1.0 the
dotted curves show theresults for spin 5 point particles (electrons).

can be called quantum-mechanicaleffects, since the concept of photons as mass-
less particles with momentum and energyis certainly quantum mechanical(pace,
Newton!), but granting that, most of the modifications are purely kinematical.
The most important changeis the one observed experimentally by Compton. The
energy or momentum of the scattered photon is less than the incident energy

because the charged particle recoils during the collision. Applying two-bodyrel-
ativistic kinematics to the process, we find that the ratio of the outgoing to the
incident wave numberis given by the Compton formula,

ki 1
k hw

1+—>(1-a2 ( cos @)

 

where @ is the scattering angle in the laboratory (the rest frame of the target). A
quantum-mechanical calculation of the scattering of photons by spinless point
particles of charge e and mass m yields the cross section,

da [(e\(k'\
ia (maa) () leh “—

to be compared with the classical expression (14.124). In the radiation gauge the
quantum-mechanical matrix elementis the same as the classical amplitude. The
factor (k'/k)* comesentirely from the phase space. Its presence causes the dif-
ferential cross section to decrease relative to the Thomsonresult at large angles,
as shown by the dashed curves in Fig. 14.18. Also shown in the figure by the
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dotted curves are the quantum-mechanicalresults for photon-electron scattering,

that is, the scattering by a point spin 5 particle described by the Dirac equation.
The curvesare generally similar to those for spinless particles, but are somewhat

larger at large angles because of scattering by the electron’s magnetic moment.*

The integral over angles of (14.127) is elementary butslightly involved. We quote
only the limiting forms for Aw << mc’ and hw >> mc’:

h1-2—S 4-55, hw K me?
o mc
— = 5 (14.128)
Or 3 mc 5

— —— ., hw >> mc
4 hw

For scattering by electrons the low-frequency limit is the same, but at high fre-
quencies there is an additional multiplicative factor, [j + 5 In(2h@/mc’)].

For protons the departures from the Thomson formula occur at photon en-
ergies above about 100 MeV.This is far below thecritical energy Aw ~ Mc* ~

1 GeV, which would be expected in analogy with the electron Comptoneffect.
The reason is that a protonis not a point particle like the electron with nothing
but electromagnetic interactions, but is a complex entity having a spread-out

charge distribution with a radius of the order of 0.8 X 107 '° cm caused by the
strong interactions. The departure (a rapid increasein cross section) from Thom-
son scattering occurs at photon energies of the order of the rest energy of the pi
meson (140 MeV).

References and Suggested Reading

The radiation by accelerated charges is at least touched onin all electrodynamics
textbooks, although the emphasis varies considerably. The relativistic aspects are treated
in more or less detail in

Iwanenko and Sokolow, Sections 39-43

Landau and Lifshitz, Classical Theory of Fields, Chapters 8 and 9
Panofsky and Phillips, Chapters 18 and 19
Sommerfeld, Electrodynamics, Sections 29 and 30

Extensive calculations of the radiation emitted by relativistic particles, anticipating
many results rederived in the period 1940-1950, are presented in the interesting mono-

graph by

Schott

Synchrotron radiation has applications in astrophysics, plasma physics, condensed
matter physics, material science, and biology. Synchrotronsand electron storage rings as
such are discussed in detail in a classic reference,

M.Sands, ‘‘The physics of electron storage rings,” in Proceedings of the Inter-
national School of Physics Enrico Fermi, Course No. 46, ed., B. Touschek,

Academic Press, New York (1971), pp. 257-411.

*For electrons the cross section equivalent to (14.127) has |e* - €,|* replaced by

(k — ky’
Ahk! [1 + (e* x €)+ (€) X €5)]|e* ° Eo | +

It is known as the Klein—Nishina formula for Comptonscattering.
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Astrophysical applications are treated in detail in
A. G. Pacholezyk, Radio Astrophysics, Freeman, San Francisco (1970); Radio
Galaxies, Pergamon Press, Oxford (1977).

Plasma physics applications are discussed by
Bekefi

The classic reference on the subject of wigglers and undulatorsis
H. Motz, J. Appl. Phys. 22, 527 (1951).

The production and characteristics of synchrotron radiation from bending magnets,un-
dulators, and wigglers and the many uses are covered exhaustively in the five-volume
work,

Handbookon Synchrotron Radiation, eds., E. E. Koch andothers, Vols. 1A, 1B,
2, 3, 4, North-Holland, Amsterdam (1983-1991).

In Volume 1A, Chapter 2, S. Krinsky, M. L. Perlman, and R. E. Watson coverall of the
theory and comparison with experiment.
An unpublished 1972 treatment of undulators and wigglers by E. M. Purcell, very like
that of Section 14.7, appears in

Proceedings, Wiggler Workshop, SSRP Report 70/05, eds., H. Winick and T,.
Knight, Stanford Linear Accelerator Center (1977), p. IV-18.

The scattering of radiation by charged particles is presented clearly by
Landau andLifshitz, Classical Theory ofFields, Sections 9.11—9.13, and Electro-
dynamics of Continuous Media, Chapters XIV and XV

Problems

14.1 Verify by explicit calculation that the Liénard—Wiechert expressions for all com-
ponents of E and B for a particle moving with constant velocity agree with the
ones obtainedin the text by meansof a Lorentz transformation. Follow the general
methodat the end of Section 14.1.

14.2. A particle of charge e is moving in nearly uniform nonrelativistic motion. For times
near f = f, its vectorial position can be expanded in a Taylor series with fixed
vector coefficients multiplying powers of (tf — {).

(a) Show that, in an inertial frame wherethe particle is instantaneously at rest
at the origin but has a small acceleration a, the Liénard—Wiechert electric
field, correct to order 1/c? inclusive, at that instant is E = E, + E,, where

the velocity and acceleration fields are

r e npn e nn
3 +53 la 3e(f-a)]; E, = -= [a — ?(®- a)E, =e

° r 2c7r Cor

and that the total electric field to this orderis

r=-E = —
- 2c’r

[a + F(F- a)]

The unit vector f points from the origin to the observation point andr is the
magnitude of the distance. Comment on the r dependencesof the velocity

and acceleration fields. Where is the expansion likely to be valid?

(b) What is the result for the instantaneous magnetic induction B to the same

order? Comment.

(c) Show that the 1/c* term in the electric field has zero divergence and that the
curl of the electric field is V x E = e(f x a)/c’*r*. From Faraday’s law,find
the magnetic induction B at times near t = 0. Compare with the familiar
elementary expression.



14.3

14.4

14.5

14.6
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The Heaviside-Feynman expression for the electric field of a particle of charge e
in arbitrary motion, an alternative to the Liénard—Wiechert expression (14.14), is

E=el— elk dja poem

R’ ret c ret dt R? ret C7 dt? =

wherethe time derivatives are with respect to the time at the observation point.

The magneticfield is given by (14.13).
Using the fact that the retarded timeis ¢’ = ¢ — R(¢’)/c and that, as a result,

dt
Fn = 1 BO) ae)

show that the form above yields (14.14) when the time differentiations are

performed.

Using the Liénard-Wiechertfields, discuss the time-averaged powerradiated per
unit solid angle in nonrelativistic motion of a particle with charge e, moving

(a) along the z axis with instantaneousposition z(t) = a Cos wof,

(b) inacircle of radius R in the x-y plane with constant angular frequency wo.

Sketch the angular distribution of the radiation and determinethe total power

radiated in each case.

A nonrelativistic particle of charge ze, mass m, and kinetic energy E makesa head-
on collision with a fixed central force field of finite range. The interactionis re-
pulsive and described by a potential V(r), which becomesgreater than F at close

distances.

(a) Show that the total energy radiatedis piven by

3 mc?= eI\¢

dr

VV(rin)— V(r)

where Frmin is the closest distance of approach in thecollision.

(b) If the interaction is a Coulomb potential V(r) = zZe’/r, show that the total

energy radiatedis

 Aw =22 

  

8 zmveAW = —
45 Zc
 

where Usis the velocity of the charge atinfinity.

(a) Generalize the circumstances of the collision of Problem 14.5 to nonzero

angular momentum (impact parameter) and show that the total energy

radiated is given by

4z*e? (m ue |* dv\" 2 \
A —_— —__ —_—

YS (5) rom Var) \E VO Fae]
where rj, is the closest distance of approach (root of E — V — L*/2mr’),
L = mbvo, where b is the impact parameter, and Ug is the incident speed

(E = mv3/2).

(b) Specialize to a repulsive Coulomb potential V(r) = zZe*/r. Show that AW

can be written in terms of impact parameteras

2zmuz _ _ t? _
AW = —Fa = 7+ (1 + 3} tan ‘t

 

 

where t = bmv3/zZe’is the ratio of twice the impact parameterto the distance

of closest approach in a head-oncollision.
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14.7

14.8

14.9

Show that in the limit of ¢ going to zero the result of Problem 14.5b is
recovered, while for t >> 1 one obtains the approximate result of Problem
14.7a.

(c) Using the relation betweenthe scattering angle 6 and ¢ (= cot 6/2), show that
AW can be expressed as

2zmv9 6}1 0 6
AW = 73 tan° 5 2 (7 — H(i + 3 tan? ‘) — tan 4

(d) What changes occur for an attractive Coulomb potential?

 

A nonrelativistic particle of charge ze, mass m, andinitial speed vg is incident on
a fixed charge Ze at an impact parameterb that is large enoughto ensure that the
particle’s deflection in the course of the collision is very small.

(a) Using the Larmor power formula and Newton’s second law,calculate the
total energy radiated, assuming (after you have computedthe acceleration)
that the particle’s trajectory is a straight line at constant speed:

472.6az Ze 1
AW = —

3m?CrvU_9 Db?
 

(b) ‘The expression foundin part a is an approximation thatfails at small enough
impact parameter. For a repulsive potential the closest distance of approach
at Zero impact parameter, r, = 2zZe*/mvé, serves as a length against which
to measure b. The approximation will be valid for b >> r.. Compare the
result of replacing b by r, in part a with the answer of Problem 14.5 for a
head-oncollision.

(c) A radiation cross section y (with dimensions of energy times area) can be
defined classically by multiplying AW(b) by 27b db andintegrating overall
impact parameters. Because of the divergence of the expression at small b,
one must cut off the integration at some b = Dyin. If, as in Chapter 13, the

uncertainty principle is used to specify the minimum impact parameter, one
may expect to obtain an approximation to the quantum-mechanical result.
Compute such a cross section with the expression from part a. Compare your

result with the Bethe—Heitler formula [N~' times (15.30)].

A swiftly moving particle of charge ze and mass m passesa fixed point charge Ze
in an approximately straight-line path at impact parameter b and nearly constant
speed v. Show that the total energy radiated in the encounteris

Tz'Z7e° 1\ 1
AW = yt b3 

— Amc4B 3

This is the relativistic generalization of the result of Problem 14.7.

A particle of mass m, charge g, moves in a plane perpendicular to a uniform,static,
magnetic induction B.

(a) Calculate the total energy radiated per unit time, expressing it in terms of
the constants already defined and the ratio y of the particles’s total energy
to its rest energy.

(b) If at time ¢ = 0 the particle has a total energy Ey = yomc?, show thatit will
have energy E = ymc* < E, at a time ¢, where

provided y >> 1.



14.10

14.11

14.12
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(c) If the particle is initially nonrelativistic and has a kinetic energy Ty at t = 0,
whatis its kinetic energy at time f?

(d) If the particle is actually trapped in the magnetic dipole field of the earth
and is spiraling back and forth along a line of force, does it radiate more
energy while near the equator, or while nearits turning points? Why? Make
quantitative statementsif you can.

A particle of charge e movesat constant velocity Bc for t < 0. During the short
time interval, 0 < t < At, its velocity remains in the samedirection, but its speed
decreaseslinearly in time to zero. For t > At, the particle remainsatrest.

(a) Show that the radiant energy emitted per unit solid angle is

dE _e’B’_ (2 — Bcos@) [1 + (1 — B cos 6)’sin’a
dQ, 167c At (1 — B cos 6)*
 

where @ is the polar angle relative to the direction of the initial velocity.

(b) In the limit of y > 1, show that the angular distribution can be expressed
as

dE epy é
dé c At (1 + &

where & = (y6)*. Show that (6°)? ~ \/2/y and that the expression for the
total energy radiated is in agreementwith the result from (14.43) in the same
limit.

 

A particle of charge ze and mass m movesin external electric and magneticfields
E and B.

(a) Showthat theclassical relativistic result for the instantaneous energy radiated
per unit time can be written

_ 2 ztet

3 mc
 YI(E + B x B)’ — (B+ E)’]

where E and B are evaluated at the position of the particle and y is the
particle’s instantaneous Lorentz factor.

(b) Show that the expression in part a can be put into the manifestly Lorentz-
invariant form,

_ 2z*r6

3m?c
 

" F“’p,pF,

where rp = e7/mc?is the classical charged particle radius.

As in Problem 14.4a a charge e moves in simple harmonic motion along the z axis,

z(t’) = a cos(wof’).

(a) Show that the instantaneous powerradiated per unit solid angle is

aP(t') _ e*cB* sin’@ cos*(wol')

dQ, 4na* (1 + B cos 6 sin wot’)
 

where B = aad/c.

(b) By performing a time averaging, show that the average powerperunit solid
angle is

 

dP _ ecB* 4 + B* cos’é 26

dQ, 32a? (1 — B’ cos*6)””
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14.13

14.14

14.15

14.16

(c) Make rough sketches of the angular distribution for nonrelativistic and rel-
ativistic motion.

Show explicitly by use of the Poisson sum formula or other meansthat, if the
motion of a radiating particle repeats itself with periodicity T, the continuous
frequency spectrum becomesa discrete spectrum containing frequencies that are
integral multiples of the fundamental. Show that a general expression for the time-
averaged powerradiated per unit solid angle in each multiple m of the fundamen-
tal frequency wo = 27/Tis:

dP,  e-wem? |eater n+ x(t)
WoO 7 (Qe |Jo v(t) X mexp| immo t — —_ dt

2

   

(a) Show that for the simple harmonic motion of a charge discussed in Problem
14.12 the average powerradiated per unit solid angle in the mth harmonicis

dP»,  e’cB’

dQ = -2a?
 m tan’6 J2,(mB cos 6)

(b) Show that in the nonrelativistic limit the total power radiated is all in the
fundamental and has the value

2
|
®

wea’
Oo

2
P=-

3c

where a? is the mean Square amplitudeof oscillation.

A particle of charge e movesin a circular path of radius R in the x-y plane with a
constant angular velocity wp.

(a) Show that the exact expression for the angulardistribution of power radiated
into the mth multiple of wo is

P 2,.4p2 . 2 2dP, _ e*woR repate sin 2| 1 cor’? (mB sin 0
 

dQ, 27° d(mB sin 0) B

where B = woR/c, and J,,(x) is the Bessel function of order m.

(b) Assume nonrelativistic motion and obtain an approximateresult for dP,,,/dQ.
Show that the results of Problem 14.4b are obtainedin this limit.

(c) Assume extremerelativistic motion and obtain the results found in the text
for a relativistic particle in instantaneously circular motion. [Watson (pp. 79,
249) may beofassistance to you.]

Exploiting the fact that kod*N/d°k, the numberof quanta perinvariant phase-space
element d°k/ko, is a Lorentz-invariant quantity, show that the energy radiated per
unit frequency interval per unit solid angle, (14.79), can be written in the invariant
and coordinate-free form

dN __4e? (pky  (d(e-p)) (p- ke: py= = Ks +=KF“Ek 37ne Fer ‘kid?’P

\

dr 236) 2[d?(p - k)/dr?] a(é)

where dr is the proper time interval of the particle of mass m, p” is the 4-momen-
tum of the particle, k” is the 4-wave vector of the radiation, and e,, €, are polar-
ization vectors parallel to the acceleration andin the direction e, x k, respectively.
The parameteris

_2V2 — (p- ky?
Sm |(ep bide)”
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This expression can be usedto obtain the results of Problem 14.17 in an alternative
manner. Hint: In proceeding with a solution,it is useful to expand k - r(t) around
t = 0 in termsof the velocity, acceleration, etc. and compare with (14.72). One
finds, for example, that wc’/p* = — k-+d’v(0)/dt*, and, because the energy is
constant,

> wk?

Pree |@B(p + Bid?
A particle of charge e and mass m movesrelativistically in a helical path in a
uniform magnetic field B. The pitch angle of the helix is a (a = 0 corresponds to
circular motion).

 

(a) By arguments similar to those of Section 14.4, show that an observer far from

the helix would detect radiation with a fundamental frequency

WB

cos’a@
 

Wo

and that the spectrum would extend upto frequenciesin the orderof

W. = 5 YWp COSA

where wz = eB/ymc. (Take care in determining the radius of curvature p of
the helical path.)

(b) From part a and the results of Section 14.6, show that the powerreceived by
the observer per unit solid angle and per unit circular frequency interval is

d’P 3e? B ° 2

dw dO ~ eo —s (2) (1 + 0) |Ka(6 + SaKi|

where w, and w, are defined above, é = (w/2w,)(1 + y’s’)*”, and w is the
angle of observation measuredrelative to the particle’s velocity vector, as in
Fig. 14.9.

(a) By comparison of (14.91) with (14.79), show that the frequency spectrum of
the received powerfor the situation in Problem 14.17is

dP [(V3eywx w
—_ — —_— G —__

dw 277C COS @ Ww.

where G(x) = x | K;,3(t) dt and the other symbols are as in Problem 14.17.

 

We

This expression showsthat the shape of the powerspectrum in units of w/w,
is unchanged bythespiraling.

(b) Show that the integral over frequenciesyields

— 2ewey
P

3c

Comparison with (14.31) showsthat the total received poweris independent
of the pitch angle of motion.

[In doing the integration oversolid angles in part a, note that % = 0 corresponds
to d= w/2 — a.|

Consider the angular and frequency spectrum of radiation produced by a magnetic
momentin nonrelativistic motion, using (14.70) and the fact that a magnetization
density J produces an effective current density Jere = cV X M.
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14.20

14.21

14.22

(a) Show that a magnetic moment p with magnetization, M = p(t) d[x — r(t)],
in nonrelativistic motion gives a radiation intensity (energy radiated per unit
solid angle per unit frequencyinterval),

2ATmag

dw dQ = Te3

2

—; ae n X p(teee—n-r(t)/c)
 

 

(b) The magnetic momentis located at the origin and is caused to precess by an
external torque such that pw, = fo SiN wot and pL, = Mp COS wot for the time
interval t = —7/2 to t = T/2, where woT/27 >> 1. Show that the frequency
distribution of the radiation is very strongly peaked at w = wo, that the an-
gular distribution of radiation is proportional to (1 + sin*@ sin?#), and that
for T — %, the total time-averaged powerradiatedis

2w4

(P) = 3.3 Ho

Comparethe result with the powercalculated by the method of Section 9.3.

Apply part a of Problem 14.19 to the radiation emitted by a magnetic momentat
the origin flipping from pointing downto pointing up, with components,

[Lz = Mo tanh(712), Lx = Bo Sech(71), by = 0

where v™* is characteristic of the time takentoflip.

(a) Find the angular distribution of radiation and showthatthe intensity perunit
frequencyintervalis

roe 4 (v , 6 {16(x/)*[cosech*x + sech?x]}dx 3\¢ Mo XI 7 OS Xx

where x = mw/2v is a dimensionless frequency variable and the quantity in
curly brackets is the normalized frequency distribution in x. Makea plot of
this distribution and find the mean value of w in units of v.

(b) Apply the method of Problem 9.7 to calculate the instantaneous powerand
total energy radiated by the flipping dipole. Compare with the answer in
part a.

Bohr’s correspondenceprinciple states that in the limit of large quantum numbers
the classical power radiated in the fundamental is equal to the product of the
quantum energy (fw,) and the reciprocal mean lifetime of the transition from
principal quantum numbern to (n — 1).

(a) Using nonrelativistic approximations, show that in a hydrogen-like atom the
transition probability (reciprocal mean lifetime) for a transition from cir-
cular orbit of principal quantum numbern to (n — 1) is given classically by

1 _ 2 (Ze*\' me? 1
tT 3hc he A Ww

(b) For hydrogen compare the classical value from part a with the correct
quantum-mechanical results for the mean lives of the transitions 2p —> 1s
(1.6 x 10s), 4f — 3d (7.3 X 1078s), 6h > 5g (6.1 X 1077s).

Periodic motion of charges givesrise to a discrete frequency spectrum in multiples
of the basic frequency of the motion. Appreciable radiation in multiples of the
fundamental can occur becauseof relativistic effects (Problems 14.14 and 14.15)
even though the componentsof velocity are truly sinusoidal, or it can occurif the
components of velocity are not sinusoidal, even though periodic. An example of
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14.24
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this latter motion is an electron undergoing nonrelativistic elliptic motion in a
hydrogen atom.

The orbit can be specified by the parametric equations

x = a(cosu — €)

y=avVi-esinu

where

Wot =u —- esinu

a is the semimajor axis, € is the eccentricity, wo is the orbital frequency, and
u is an angle related to the polar angle @ of the particle by tan (u/2) =
V(1 — ©/(1 + ©) tan(6/2). In termsof the binding energy B and the angular mo-
mentum L, the various constants are

e* _ 2BL* , _ 8B
a= e= /1 -——; Wo

2B’ me? ’ me*

 

(a) Show that the powerradiated in the kth multiple of wo is

4 —
2 yi(k0|

e 42} 1 2 1k= 5.3 (kwo)'a?) 5 |elke)? +

(b) Verify that for circular orbits the general result above agrees with part a of
Problem 14.21.

Instead of a single charge e moving with constant velocity w)R in a circular path
of radius R, as in Problem 14.15, N charges q; move with fixed relative positions
6; around the samecircle.

 

P

where J;(x) is a Bessel function of orderk.

(a) Show that the powerradiated into the mth multiple of wo is

dP,(N) _ aP,,(1)

dQ, dQ,

where dP,,,(1)/dQ. is the result of part a in Problem 14.15 with e > 1, and

N 2

> qe"
J=1

(b) Show that, if the charges are all equal in magnitude and uniformly spaced
aroundthe circle, energy is radiated only into multiples of Nwo, but with an
intensity N* times that for a single charge. Give a qualitative explanation of
these facts.

 Fin(N)

Fir(N) =

  

(c) For the situation of part b, without detailed calculations show that for non-
relativistic motion the dependence on

N

ofthe total powerradiated is dom-
inantly as B*”, so that in the limit N > © noradiation is emitted.

(d) By arguments like those of part c show that for N relativistic particles of
equal charge and symmetrically arrayed, the radiated power varies with N
mainly ase?‘for N >> y°,so that again in the limit N —> © no radiation
is emitted.

(e) What relevance have the results of parts c and

d

to the radiation properties
of a steady currentin a loop?

Asan idealization of steady-state currents flowing in a circuit, consider a system
of N identical charges g moving with constantspeed v (but subject to accelerations)
in an arbitrary closed path. Successive charges are separated by a constant small
interval A.
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14.25

14.26

Starting with the Liénard—Wiechert potentials for each particle, and making
no assumptions concerning the speedv relative to the velocity of light show that,
in the limit N > ~, g > 0, and A — 0, but Nq = constant and g/A = constant, no
radiation is emitted by the system and theelectric and magneticfields of the system
are the usual static values.

(Note that for a real circuit the stationary positive ions in the conductors
neutralize the bulk charge density of the moving charges.)

(a)

(b)

(c)

Within the framework of approximations of Section 14.6, show that, for a
relativistic particle moving in a path with instantaneous radius of curvature
p, the frequency-angle spectra of radiations with positive and negative helic-
ity are

d*I.. e* [wp °
—— = +@]} |K +

dwdQ 67°c (<2Cee)(2 2(é) 1
s+
y

From the formulas of Section 14.6 and part a above, discuss the polarization

of the total radiation emitted as a function of frequency and angle. In par-
ticular, determine the state of polarization at (1) high frequencies (w > W,)
for all angles, (2) intermediate and low frequencies (w < @,) for large angles,
(3) intermediate and low frequencies at very small angles.

  
1/2 Kin(€)

See the paper by P. Joos, Phys. Rev. Letters, 4, 558 (1960), for experimental
comparison. See also Handbook on Synchrotron Radiation, (op. cit.), Vol.
1A, p. 139.

Consider the synchrotron radiation from the Crab nebula. Electrons with energies
up to 10° eV movein a magneticfield of the order of 10~* gauss.

(a)

(b)

(c)

(d)

(e)

For E = 10’ eV, B = 3 X 1074 gauss, calculate the orbit radius p, the fun-
damental frequency wy = c/p, and thecritical frequency w,. Whatis the en-
ergy hw, in keV?

Showthat for a relativistic electron of energy E in a constant magneticfield
the power spectrum of synchrotron radiation can be written

P(E, w) = const( (2)

wheref(x) is a cutoff function having the value unity at x = 0 and vanishing
rapidly for x >> 1 [e.g., f = exp(—/@,)], and w, = (3/2)(eB/mc)(Elmc’)cos 8,
where 6 is the pitch angle of the helical path. Cf. Problem 14.17a.

If electrons are distributed in energy according to the spectrum NM(E) dE
o fy” dk, show that the synchrotron radiation has the power spectrum

(P(@)) dw < w* dw

where a = (n — 1)/2.

Observations on the radiofrequency and optical continuous spectrum from
the Crab nebula show that on the frequency interval from w ~ 10° s7! to
w ~ 6 X 10° s~* the constant a = 0.35. At frequencies above 10’ s~the
spectrum of radiation falls steeply with a = 1.5. Determine the index n for
the electron-energy spectrum, as well as an upper cutoff for that spectrum.
Is this cutoff consistent with the numbersof part a?

The half-life of a particle emitting synchrotron radiation is defined as the
time taken for it to lose one half of its initial energy. From the result of
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Problem 14.9b, find a formula for the half-life of an electron in years when
B is given in milligauss and FE in GeV. Whatis the half-life using the numbers
from part a? How doesthis compare with the knownlifetime of the Crab
nebula? Must the energetic electrons be continually replenished? From what

source?

14.27. Consider the radiation emitted at twice the fundamental frequencyin the average
rest frame of an electron in the sinusoidal undulator of Sections 14.7.C and 14.7.D.
The radiation is a coherent sum of F£1 radiation from the z’(¢') motion and £2

radiation from the x’(¢’) motion.

(a) Using the techniques and notation of Chapter 9, show that the radiation-zone
magnetic induction is given to sufficient accuracy by

 —iek'*a K
B= n X [zZ — 4X(n- x

8 V1+ K7/2 ( )|

where k’ = 2yko, mis a unit vector in the direction of k’, and a factor of

exp[ik'(r’ — ct’')|/r’ is understood.

(b) Show that the time-averaged radiated power in the average rest frame,
summedover outgoing polarizations, can be written

dP’ _ee KR @
dQ'’ 87 (1+ K?’/2) 64

t

where

So=kit+ ki" + 18k,7k;? + 17ki7k? + kirk? + Sk'ki?k!

(c) Using the invariance argumentsin the text in going from (14.111) to (14.118),
show that the laboratory frequency spectrum of the second harmonicis

dP, 3 Kk?
—= = — P, ——— - 2*(10 — 21y + 20v* — 6°iv 1G Kap” | v 20v" 6")

where v = k/27’k, and P, is the powerin the fundamental, (14.117). For the
angular range 7, < 7 < 7, the minimum and maximum valuesare Ypin =

2/(1 + mp) and vpax = 2/(1 + 7). What is the total power radiated in the

second harmonic?
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Bremsstrahlung, Method of Virtual
Quanta, Radiative Beta Processes

708

In Chapter 14 we discussed radiation by accelerated charges in a general way,
deriving formulas for frequency and angular distributions, and presenting ex-
amples of radiation by both nonrelativistic and relativistic charged particles in
external fields. This chapter is devoted to problems of emission of electromag-
netic radiation by charged particles in atomic and nuclear processes.

Particles passing through matter are scattered and lose energy by collisions,
as described in detail in Chapter 13. In these collisions the particles undergo
acceleration; hence they emit electromagnetic radiation. The radiation emitted
during atomiccollisions is customarily called bremsstrahlung (braking radiation)
becauseit wasfirst observed when high-energy electrons were stopped in a thick
metallic target. For nonrelativistic particles the loss of energy by radiation is
negligible compared with the collisional energy loss, but for ultrarelativistic par-
ticles radiation can be the dominant modeofenergyloss.

Our discussion begins with consideration of the radiation spectrum at very
low frequencies where a general expression can be derived, valid quantum me-
chanically as well as classically. The angular distribution, the polarization, and
the integrated intensity of radiation emitted in collisions of a general sort are
treated before turning to the specific phenomenon of bremsstrahlung in Coulomb
collisions. When appropriate, quantum-mechanical modifications are incorpo-
rated by treating the kinematics correctly (including the energy and momentum
of the photon). All important quantum effects are included in this way, some-

times leading to the exact quantum-mechanicalresult. Relativistic effects, which
can cause significant changesin the results, are discussed in detail.

The creation or annihilation of charged particles is another process in which
radiation is emitted. Such processes are purely quantum mechanicalin origin.
There can be no attemptat a classical explanation of the basic phenomena. But

given that the process does occur, we maylegitimately ask about the spectrum
and intensity of electromagnetic radiation accompanyingit. The sudden creation
of a fast electron in nuclear beta decay, for example, can be viewed for our
purposesas the violent acceleration of a charged particle initially at rest to some
final velocity in a very short timeinterval, or, alternatively, as the sudden switch-

ing on of the charge of the movingparticle in the same short interval. We discuss
nuclear beta decay and orbital-electron capture in these terms in Sections 15.6
and 15.7.

In someradiative processes like bremsstrahlungit is possible to account for
the major quantum-mechanical effects merely by treating the conservation of
energy and momentum properly in determining the maximum and minimum
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effective momentum transfers. In other processeslike radiative beta decay the
quantum effects are more serious. Phase-space modifications occur that have no
classical basis. Radiation is emitted in waysthat are obscure and noteasily related
to the acceleration of a charge. Generally, our results are limited to the region
of “soft” photons, that is, photons whose energies are small compared to the
total energy available. At the upper end of the frequency spectrum our semi-
classical expressions can be expected to have only qualitative validity.

15.1 Radiation Emitted During Collisions

If a charged particle makesa collision, it undergoes acceleration and emits ra-

diation.If its collision partneris also a chargedparticle, they both emit radiation,
and a coherent superposition of the radiation fields must be made. Since the
amplitude of the radiation fields depends on the chargetimes the acceleration,
the lighter particle will radiate more, provided the chargesare not too dissimilar.
In many applications the mass of one collision partner is much greater than the
massof the other. Then for the emission of radiation it is sufficient to treat the
collision as the interaction of the lighter of the two particles with a fixed field of
force. We will consider only this situation, leaving more involved cases to the
problemsat the end of the chapter.

A. Low-Frequency Limit

From (14.65) and (14.66) we see that the intensity of radiation emitted by a
particle of charge ze during the collision can be expressed as

d*I ze" [<4 k x (n x Bean dt

dwdQ 4n’c|J dt| 1—-n-B

2

(15.1)
  

Let us supposethat the collision has a duration 7 during which significant accel-
eration occurs andthat the collision changesthe particle’s velocity from an initial
value cB to a final value cB’. The spectrum of radiation at finite frequencieswill
depend on the details of the collision, but its form at low frequencies depends
only on the initial and final velocities. In the limit w — 0 the exponential factor
in (15.1) is equal to unity. Then the integrandis a perfect differential. The spec-
trum of radiation with polarization € is therefore

2 242 ’

lim qi _ ze e*- B — B
1-—-n-f’ 1-n-8w—->0 dw dQ Amc

Theresult (15.2) is very general and holds quantum mechanically as well as
classically. To establish the connection to the quantum-mechanical form,wefirst
convert (15.2) into a spectrum of photons. The energy of a photon of frequency
w is hw. By dividing (15.2) by h*w wetherefore obtain the differential number
spectrum per unit energy interval and per unit solid angle of “soft’’ photons
(Aw — 0) of polarization e:

x. pot eC
1-n- 8’ 1—n-8B

2

 
  (15.2)

  

d°N Za ;
lim
noo A(hw) dQ, 4ahw |*
  (15.3)
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Figure 15.1 Quantum-mechanical diagrams describing the scattering of a particle
without photon emission (top) and with the emission of a photon (bottom).

where a = e*/hc = 1/137is the fine structure constantif e is the proton’s charge.
The subscript y on the solid-angle element serves to remind usthatit is the solid
angle into which the photon goes. The spectrum (15.3) is to be interpreted as
follows. Suppose that the collision is caused by an external potential or other
interaction. Let the cross section for scattering that causes a changein velocity
cB — cB’ be denoted by do/dQ,,, where p stands for particle. Then the cross

section for scattering and at the same time for producing a soft photon of energy
iw, per unit energy interval and per unit solid angle,is

dea | tim d*N . do

dQ, d(hw) dQ, noo A(hw) dQ, dQ,
 (15.4)

The expression (15.3) can be made to appear morerelativistically covariant by

introducing the energy-momentum 4-vectors of the photon, k* = (h/c)(@, on),
and ofthe particle, p” = Mc(y, yB).It is also valuable to makeuse of the Lorentz-
invariant phase space d°k/ky to write a manifestly invariant expression,*

 

 

GN _c @N ce ai 45.5)
(d*k/ky) hwd(hw) dQ, h(hw)* dw dQ,

Then we find from (15.3),

d°N za le*-p’  &-p °
lim ——— = —,; —~—+ 15.6
ro0 (@KIky) 4n2|k-p’ k-p (15.6)  

where the variousscalar products are 4-vector scalar products [in the radiation
gauge, e* = (0, €)|. That (15.6) emerges from a quantum-mechanical calculation
can be madeplausible by considering Fig. 15.1. The upper diagram indicates the
scattering process without emission of radiation. The lower three diagrams have

scattering and also photon emission. Their contributions add coherently. The two

diagramson the left have the photon emitted by the external lines, that is, before

*The fact that w” times d7I/dw dQ is a Lorentz invariant is not restricted to the limit of w — 0. We

find this result useful in some of our later discussions.
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or after the collision; both involve propagatorsfor the particle between the scat-
tering vertex and the photon vertex of the form

1 1

(p+kyP—M* +2p-k

In the limit w — O these propagators make the contributions from these two
diagramssingular and provide the (Aw) 7" in (15.3). On the other hand,the dia-
gram on the right has the photon emitted from theinterior of the scattering
vertex. Its contribution is finite as w — O and so is negligible compared to the
first two. The explicit calculation yields (15.4) with (15.6) in the limit that the
energy and the momentum of the photon can be neglected in the kinematics.
Soft photon emission occurs only from the external lines in any process andis
given by theclassical result.

B. Polarization and Spectrum Integrated over Angles

Some limiting forms of (15.2) are of interest. If the particle moves non-
relativistically before andafter the collision, then the factors in the denominators

can be put equal to unity. The radiated intensity becomes

lim d*Ivr = zie |
wo-0 dwdQ 47°c
 e*- AB? (15.7)

where AB = BP’ — Bis the changein velocity in the collision. This is just a dipole
radiation pattern and gives, when summedover polarizations, and integrated
over angles, the total energy radiated per unit frequency interval per nonrelativ-
istic collision,

_ lye —22z7e7
lim —— = —— |AB/?* 15.8
0 dw 37c AB (15.8)

For relativistic motion in which the change in velocity AB is small, (15.2) can be
approximated to lowest order in AB as

. al ze" AB +n xX (B x AB) °
l ~ *

1 .

»-o dw dQ 4nc |* ( (1—n- Bp) (15:9)
 

 
where cfis the initial (or average) velocity.

Wenowconsiderthe explicit forms of the angular distribution of radiation
emitted with a definite state of polarization. In collision problemsit is usual that
the direction of the incident particle is known andthe direction of the radiation
is known, but the deflected particle’s direction, and consequently that of AB,are
not known. Consequently the plane containing the incident beam direction and
the direction of the radiation is a natural one with respect to which onespecifies
the state of polarization of the radiation.

For simplicity we consider a small angle deflection so that AB is approxi-
mately perpendicular to the incident direction. Figure 15.2 shows the vectorial

relationships. Without loss of generality n, the observation direction, is chosen
in the x-z plane, making an angle 6 with the incident beam.The changein velocity
AB lies in the x-y plane, making an angle @¢ with the x axis. Since the direction
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Bh

 
 

 

Figure 15.2

of the scattered particle is not observed, we will average over ¢. The unit vectors
€, and €, are polarization vectors parallel and perpendicular to the plane con-
taining B and n.

Weleave to Problem 15.6 the demonstration that (15.9) gives the expressions

(averaged over ¢)

  

  

d*I ze — cos 6)?li | 2

tm iw dQ. 8n2c (ABI if— B cos 6)" 45.10)
kn la. 2? Ape 1 :
»0 dw dQ 81°c (1 — B cos 6)’

for the low-frequency limits for the two states of linear polarization. These an-
gular distributions are valid for small-angle collisions of all types. The polariza-

tion P(6), defined as (d*I, — d*I))/(d*I, + d*1,), vanishes at 6 = 0, has amaximum
value of +1 at cos 6 = £B, and decreases monotonically for larger angles. For

y >> 1, it has the form, P(@) ~ 2y767/(1 + y‘6*). This qualitative behavioris
observed experimentally,* but departures from the w — 0 limit are significant
even for w/@,,x = 0.1.

The sum of the two terms in (15.10) gives the angular distribution of soft
radiation emitted in an arbitrary small-angle collision (AB small in magnitude
and perpendicular to the incident direction). For relativistic motion the distri-
bution is strongly peaked in the forward direction in the by-now familiar fashion,
with a mean angle of emission of the order of y~' = Mc’/E. Explicitly, in the

limit y >> 1 we have

fim tt 2 2ey IABP+ y*6")
oo0dod. we (1 + 76)
  (15.11)

The total intensity per unit frequency interval for arbitrary velocity is found by
elementary integration from (15.10) to be

dl 2 ze?lim — == y |ABP
a0 dw 37

*Some data for electron bremsstrahlung are given by W. Lichtenberg, A. Przybylski, and M. Scheer,
Phys. Rev. A 11, 480 (1975).
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For nonrelativistic motion this reduces to (15.8). Since the particle’s momentum

is p = yMcf,this result can be written as

dl 2 ze
lim — = —
au) dw 3a M*c3

 Q? (15.12)

where Q = |p’ — p| is the magnitude of the momentum transferin thecollision.
Equations (15.10) and (15.12) are valid relativistically, as well as nonrelativ-

istically, provided the changein velocity is not too large. For relativistic motion
the criterion 1s

|AB| < 2 or O<2Mc (15.13)
Y

This can be seen from (15.2). If the two velocities B and B’ have an angle
|AB|/B between them of more than 2/y, the two terms in the amplitude will not
interfere. When the direction of emission n is such that one of them is large, the
other is negligible. The angular distribution will be two searchlight beams, one
centered along B and the other along B’, each given by the absolute square of
one term. The radiated intensity integrated over angles is then approximately

2 52

tim =2 tn (G/M) (15.14)
w>0 AW aC
O>2Mc

 

For Q > 2Mctheradiated intensity of soft photons is logarithmically dependent
on Q*, in contrast to the linear increase with Q? shown by (15.12) for smaller
momentum transfers. For nonrelativistic motion the momentum transfers are

always less than the limit of (15.13). The intensity is therefore given by (15.12)
for all momentum transfers.

C. Qualitative Behavior at Finite Frequencies

So far we have concentrated on the very-low-frequency limit of (15.1). It is

time to consider the qualitative behavior of the spectrum at finite frequencies.
Thephasefactorin (15.1) controls the behaviorat finite frequencies. Appreciable
radiation occurs only whenthe phase changesrelatively little during the collision.
If the coordinate r(t) of the particle is written as

r(t) = r(O) + [ cB(t') dt’

then, apart from a constant, the phase of the integrand in (15.1) is

P(t) = of —n- [ B(t’) i’

If we imagine that the collision occurs during a time 7 and that B changesrela-

tively smoothly from its initial to final value, the criterion for appreciable radi-
ation 1s

ot(1 —n-(B)) <1 (15.15)
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where (B) = (1/r) | B(t) dt is the average value of B during thecollision. For
)

nonrelativistic collisions this reduces to

wT<1

At low frequencies the radiated intensity is given by (15.7), but for wr > 1 the
oscillating phase factor will cause the integral to be much smaller than when
w = 0. The intensity will thus fall rapidly to zero for w > 1/r. Forrelativistic
motion the situation is more complex. For small | AB| but with y >> 1 the criterion
(15.15) is approximately

> (1+ 6) <1 (15.16)

Nowthere is angular dependence. For wr < 1, thereis significant radiationatall
angles that matter. For w7 on the range, 1 < wr < y’, there is appreciable radi-
ation only out to angles of the order of 6,,,,, where 6%,,, = 1/w7. For wr > Y’,

(15.16) is not satisfied at any angle. Hence the spectrum ofradiationin relativistic
collisions is given approximately by (15.11) and (15.12) provided wr << y’, but
modifications occur in the angular distribution as wr approaches y’, and thein-
tensity at all angles decreases rapidly for w = y’/r.

15.2. Bremsstrahlung in Coulomb Collisions

The most commonsituation in which a continuum of radiation is emitted is in
the collision of a fast particle with an atom. Because ofits greater charge, the
nucleus is more effective at producing deflections of the incident particle than
the electrons. Consequently we ignore the effects of the electrons for the present

and consider the radiation emitted in the collision of a particle of charge ze, mass
M,andinitial velocity cB with the Coulombfield of a fixed point charge Ze.

The elastic scattering of a charged particle by a static Coulombfield is given
by the Rutherford formula (see Section 13.1):

do- 2zZe?\" 1
= + 15.17

dQ’ ( pu (2 sin 6'/2)* (
 

 

where @’ is the scattering angle of the particle. This cross section is correct non-
relativistically at all angles, and is true quantum mechanically for therelativistic
small-angle scattering of any particle. It is convenient to express (15.17) as a cross

section for scattering per unit interval in momentum transfer Q. Forelastic

scattering,

Q* = 4p’sin?(6'/2) = 2p*(1 — cos6’) (15.18)

With dQ’ = dd' d cos 6’ = —Q dd’ dQ/p’, integration over azimuth of (15.17)

gives

  

2 2

ie = pa22 . ra (15.19)



Sect. 15.2 Bremsstrahlung in Coulomb Collisions 715

In a Coulombcollision with momentum transfer Q the incidentparticle is
accelerated and emits radiation. From Section 15.1 we know that the angular
distribution is given by (15.10), at least for small deflections, and the integrated
intensity by (15.12). Since the angular distributions have already been discussed,
we focus on the frequency spectrum, integrated over angles. In analogy with
(15.4) we define the differential radiation cross section,

d*y — dI(w, Q) . do,

dw dQ dw dQ

where d/(w, Q)/dw is the energy radiated per unit frequencyintervalin a collision
with momentum transfer Q. The differential radiation cross section has dimen-
sions of (area X energy/frequency X momentum). Thecross section for photon
emission per unit energy interval is obtained by dividing by hw.

The low-frequency radiation spectrum is given by (15.12), provided Q is not
too large. Inserting both (15.12) and (15.19) into (15.20) we obtain

dy _ 16 Ze? (ze?\" 1 1
dwdQ 3 ¢ B* O

This result is valid at frequencies and momentum transfers low enoughto ensure
that the criteria of Section 15.1 are satisfied. The radiation cross section inte-

grated over momentum transfersis

dx _ 16 Z2¢2 [7262 2 | 1 Omax dQ

dw 7 3 C Mc’ B° Qmin Q

or (15.22)

dy 16 Ze? (=<) 3 7(Ges
dw 3 c \Mc?) B \Oun

In summing over momentum transfers we have incorporated the limitations on
the range of validity of (15.21) by means of maximum and minimum values of
Q. At any given frequency (15.21) describes approximately the differential ra-
diation cross section for only a limited range of Q. Outside that range the cross
section falls below the estimate (15.21) because oneor the other of the factors
in (15.20) is much smaller than (15.12) or (15.19) (or zero). This effectively limits
the range of Q and leads to (15.22). Determination of the values of Q,,,, and
Qynin for different physical circumstances is our next task.

 (Q) (15.20)

  (15.21)

 

 

A. Classical Bremsstrahlung

In our discussion of energy loss in Chapter 13 we saw thatclassical consid-
erations were applicable provided

zZe*
= > 1

q hu

For particles of modest charges this means B << 1. In this nonrelativistic limit
the maximum effective momentum transferis not restricted by failure of (15.12).
The only limit is kinematic. From (15.18) we see that

Omax =~ 2p == 2Mv (15.23)
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The lowerlimit on Q is determinedclassically by the relation between frequency
and collision time that must besatisfied if there is to be significant radiation.
From Section 11.10 and Problem 13.1 we have

 

1 _vU _ 2zZe*

tT db’ bu

so that the condition w < 1/r can be written in terms of QO as

2zZe*
Q> WG, = I= (15.24)

The classical radiation cross section is therefore

252 [»252\* 3

aXe _ Ze (=) pon (AE) (15.25)
dw 3. c \Me B zZe~w

where A is a numberof order unity that takes into account our ignorance of
exactly how the intensity falls to zero around wr = 1. This cross section is mean-
ingful only provided the argumentof the logarithm is greater than unity. There
is thus an upper limit wo), on the frequency spectrum. Phrased in terms of a
photon energyit is

2A Mv?
ho= (~) (15.26)

nN

Since 7 is large compared tounity in this classical situation, we find that the range
of photon energiesis limited to very soft quanta whose energiesareall very small
compared to the kinetic energy of the incident particle. For n = 10 theclassical
spectrum is shownin Fig. 15.3, with A = 2 (chosen so that for 7 = 1 and w = 0
the classical and quantum-mechanicalcross sections agree).

 
 

 

d
w

 A
X

 Classical    
 

Figure 15.3. Radiation cross section (energy X area/unit frequency) for nonrelativistic
Coulombcollisions as a function of frequency in units of the maximum frequency (E/h).
The classical spectrum is confined to very low frequencies. The curve marked ‘‘Bethe-
Heitler’’ is the quantum-mechanical Born approximationresult, i.e., (15.29) with A’ = 1.
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B. Nonrelativistic Bremsstrahlung

In the classical limit the energy and the momentum of the photon were not
considered. A posteriori such neglect wasjustified because (15.26) showsthat the
spectrum is confined to very low-energy photons. But for fast, thoughstill non-
relativistic, particles with 7 < 1, it is necessary to consider conservation of energy
and momentum including the photon.Forscattering by a fixed (or massive) cen-
ter of force, the conservation requirementsare

E=E' + hw (15.27)

O° = (p ~ p’ — k)’ = (p— p’’
where E = p*/2M and E' = p'*/2M arethe kinetic energies of the particle before
and after the collision, Aw and k = han/c are the energy and momentum of the
photon, and Q is the momentum transfered to the scattering center, as before.
The readercan verify that the neglect of the photon’s momentum in the second
expression for Q* is justified independently of the directions of the momenta
provided the particles are nonrelativistic.

The maximum momentum transfer effective for radiation is again that al-
lowed by the kinematics. Similarly the minimum effective Q is determined by
the kinematics and not by the collision time.* From the second equation in
(15.27) we obtain

Omox  pt+p! (VE + VE ~ hoy (15.28)
Orin p— p’ ho

The second form is obtained by using conservation of energy. Theradiation cross
section (15.22) is therefore

dywe _ 16 Ze (z%e\" 1 | [A(VE + VE — hoy
Mc? B° " hw

where again A’ is a number expected to be of order unity. Actually, with A’ = 1,
(15.29) is exactly the quantum-mechanical result in the Born approximation,first
calculated by Bethe and Heitler (1934). The shape of the radiation cross section
as a function of frequency is shown in Fig. 15.3.

The fact that we have obtained the correct quantum-mechanical Born ap-
proximation cross section by semiclassical arguments in which the quantum as-
pects were included only in the kinematics can be understood from the consid-
erations of Section 15.1, especially Fig. 15.1. In the Born approximation the
scattering vertex, drawn as a blob there to indicate complicated things going on,
reduces to a point vertex like the photon-particle vertices. The third diagram at
the bottom is absent. Only the external lines radiate; the amplitude is given by
(15.6); the exact kinematics and phase space conspireto yield (15.29).

The radiation cross section dy/dw dependson the properties of the particles
involved in the collision as Z*z*/M’, showing that the emission of radiation is
most important for electrons in materials of high atomic number.Thetotal energy

  

  Re | (15.29)

*For soft photons Onin = p — p’ can be approximated by Onin = 2hw/v, while the classical expression

(15.24) is O©, = 2nholv. With y < 1, the quantum-mechanical Q,,,, is larger than the classical and
so governs the lower cutoff in Q. For more energetic photons (p — p’) is even larger. In relativistic
collisions Q&), is y~? timesits nonrelativistic value and so is much smaller than the quantum minimum

mim

[see (15.33)].
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lost in radiation by a particle traversing unit thickness of matter containing N
fixed charges Ze (atomic nuclei) per unit volumeis

dEead _ {~ dy(w)

dx N 0 dw dw

Using (15.29) for dy/dw and converting to the variable of integration x = (hw/E),
we can write the radiative energy loss as

dErq _ 16 y,,( Ze” ef peNts)
7 Ac Mc Jo \/x *dx 3

The dimensionless integral has the value unity. For comparison wewrite the ratio
of radiative energyloss to collision energy loss (13.14):

waa 4 2 4m v)1 (15.31
dE... 37° 137M\c) mB, 31)

For nonrelativistic particles (v < c) the radiative loss is completely negligible
comparedto the collision loss. The fine structure constant (e*/fAic = 1/137) enters

characteristically whenever there is emission of radiation as an additional step
beyond the basic process (here the deflection of the particle in the nuclear
Coulombfield). The factor m/M appears because the radiative loss involves the
acceleration of the incident particle, while the collision loss involves the accel-
eration of an electron.

 (15.30)

C. Relativistic Bremsstrahlung

Forrelativistic particles the limits obtained from conservation of energy must
be modified. The changesare of twosorts. Thefirst is that the maximumeffective
Q value is no longer determined by kinematics. It was shown in Section 15.1 that
(15.12) is valid only for Q < 2Mc.Forlarger Q the radiated intensity is logarith-
mic in Q and given by (15.14). Because of the O° behavior of (15.19) this means
that O,n4x In (15.22) is

Omax =~ 2Mc (15.32)

The second modificationis that the photon’s momentum can no longer be ignored
in determining the minimum momentum transfer from (15.27). The minimum
clearly occurs when all three momentaareparallel:

Orin = p— p’ a k

Forrelativistic motion of the particle both initially and finally (even though the
photon may carry off appreciable energy), we can approximate cp = E —
M’c*/2E, cp' = E' — M’*c*/2E', where now E and E’arethe total energies. Then
we obtain

M’*c*hw

2EE'

With (15.32) and (15.33), the radiation cross section (15.22) becomes

d 16 he 2 2,2 2 "EE!

AROT (=5) In (2 (15.34)

 Onin ~ (15.33)

Mc? Mc*hw
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with the customary A” of order unity. This result is the sameas is obtained quan-
tum mechanically in the relativistic limit, provided the photon energysatisfies
ho << E. In the limit of E, E’ >> Mc’, the quantum formulais

d 16 Ze? (z2e?\"( hw 370? 2EE’\ 1okey PSE (fe) (yA Vin (= - =] 535)
Aw |gorn 3 ¢ Mc E 4E Mc*how 2

Wenotein passing that since Qmax =~ 2Mc, the small change in velocity AB
always lies in the plane perpendicular to the incident direction in a relativistic
collision. The angular distribution of the radiation is thus given by (15.11). The
doubly differential radiation cross section for energy radiated per unit frequency
interval and per unit solid angle for hw << E£ is then

d? 3 1+ yo) d
dQ, 27 dw

    

dw dQ, |2r’? (+ 6)

where @ is the angle of emission of the photon and dyz/dw is given by (15.34).
The smallness of Qmax/p justifies the use of the relativistic Rutherford formula

(15.19) without quantum-mechanical correctionsfor spin.

D. Relativistic Bremsstrahlung by a Lorentz Transformation

It is instructive to considerthe calculation of relativistic bremsstrahlung from
a somewhatdifferent point of view. Suppose that instead of using the laboratory
frame wherethe force center is at rest we view the process as taking place in the
rest frame K’ofthe initial particle. The emission processas it appears in the two
frames is indicated schematically in Fig. 15.4. A small-angle deflection in the
laboratory correspondsto nonrelativistic motion during the whole collision in the
frame K’. The differential radiated intensity in K’ is thus given by the sum of
the two terms in (15.10) with B = 0:

d?I' - ze"

dw’ dQ' 87°’c
 |Ap’|? (1 + cos’@’)

where primes denote quantities evaluated in the frame K’. The changein velocity
can be written for nonrelativistic motion as AB’ = Ap’/Mc, where Ap’ is the
change of momentum in K’. For a small deflection in the laboratory, Ap’is per-
pendicular to the direction of motion andso is the samein the laboratory as in

Ze

ze

 

Vv

Laboratory Coordinate
frame frame K'

Figure 15.4 Radiation emitted during relativistic collisions viewed from the laboratory
(nucleus at rest) and the frame K’(incident particle essentially at rest).
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K'. Its magnitude is the momentum transfer Q. The radiated energy spectrum

can therefore be written as

d?I' ze QO 2 )

dw! dQ’ 8m (2) (1 + cos")
 

Mc

The triply differential radiation cross section for emission of radiation per unit
frequencyinterval, per unit solid angle, and per unit interval in momentum trans-
fer is, in analogy to (15.20),

dy’ - ze Q 2 | do,

dw' dQ'dQ- 81’*c\Mc} dO

This is the cross section in frame K’. No primes appear on do,/dQ or on Q?
because to the extent that Q is transverse, these quantities are obviously invariant
under Lorentz transformations.*

The emission of radiation in the frame K' appears as simple dipole radiation
in (15.37). To obtain the cross section in the laboratory we must make a Lorentz
transformation. In Section 15.1 we saw that (15.5) is a Lorentz-invariant quantity.
With what has just been said about do,/dQ,it is clear that the equation relating
the differential cross sections in the two framesis

  - (1 + cos’6’) (15.37)

1 d°y - 1 d°y'

w?dwdQdQ- w’ dw’ dQ’ dQ
 (15.38)

Thus the triply differential cross section in the laboratory is

dy 2 fe (Q) do, [3
Mc dQ 167dwdQdQ 37 c

The quantities in the square brackets must, of course, be expressed in terms of
(unprimed) laboratory quantities. The relativistic Doppler shift formulas are

 (=) (1+ cos) | (15.39)

w yw'(1 + B cos 6’)

and

w' = yw(1 — B cos 6)

Combining the two equations we obtain

Oo 1 _ 2Y

wo! y(1 - Bcosé) 1+ 6?
and (15.40)

cosé—-B 1- y6

1-—Bcosd@ 1+ 76

 

 cos @’ =

*Actually, we can use the manifestly invariant 4-momentum transfer whose square is given by
QO? = —(p, — p2)* = (pi — po)’ — (EZ, — E,)’/c’. Forelastic scattering by a massive center of force,
E, = E,, and for small angles and very high energies, the energy difference term can be neglected

even for inelastic collisions.
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The approximations on the right are appropriate for small angles around the
incident direction in the laboratory. With these approximate forms, the square-
bracketed quantity in (15.39) becomes

3 (w\ von [37 A + y*64)
és (5) (TF eos ” Ee (1 + wad

which is exactly the normalized expression in (15.36). [Use of the exact forms
from (15.40) leads to the sum of the two terms in (15.10).] With the Rutherford
cross section (15.19), or some othercollision cross section for do,/dQ, if appro-
priate, we obtain from (15.39) the relativistic bremsstrahlung results as before.

The Doppler shift formulasillustrate an important point. Photonsof energies
iw’ in K', emitted at essentially any angle in that frame, appearin the laboratory

within the forward cone and with energies of the order of hw ~ yhw’. Thus

energetic photons in the laboratory energy range Mc* << hw < yMc’* come
from soft quanta with iw’ << Mc’in the rest frame of the incidentparticle.

15.3 Screening Effects; Relativistic Radiative Energy Loss

In the treatment of bremsstrahlung so far we have ignored the effects of the

atomic electrons. As direct contributors to the acceleration of the incident par-
ticle they can be safely ignored, since their contribution per atom is of the order
of Z~' times the nuclear one. But they have an indirect effect through their
screening of the nuclear charge. The potential energy of the incident particle
in the field of the atom can be approximated by the Yukawa form, V(r) =
(zZe’/r) exp(—r/a), with a = 1.4a)Z~'”. Instead of (15.17) the scattering cross
section is (13.53) with Oni, given by (13.55). In terms of momentum transfer
(15.19) is replaced by

  

2

do, zZe* OQ
= § /_— 15.41

dQ “( Be (Q? + OQ?) (4)
where

h, Zi3

Qs = POmin = — = To5 mc (15.42)

is the momentumtransfer associated with the screening radius a. Note that m is

the electronic mass.
The calculation of bremsstrahlung proceeds as at the beginning of Section

15.2, but with the replacementin (15.22),

{~ dQ _ Omax OQ? dQ

Qin O QOmin (Q° + Os)’

With the assumption that Q,,,x is very large compared with both Q,,;, and Q,,

wefind that the logarithm in (15.22) is replaced by

 Omax Ormax QO?

In

(

=®

|

S In

|

———_

}

- 15.4

(C2) (eee) me 8
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For Qmin >> Q, the effects of screening are unimportant and the results of the

preceding section are unaffected. But for Q,;, S Q,;, important modifications

occur.
From (15.23), (15.28), and (15.32) we see that Q,,., can be written in all]

circumstances as

Omax = 2Mv (15.44)

while from (15.28) and (15.33) we find Q,,i, values,

 

2hw
Onin’ = p — p! = ——

. (15.45)
oO”) ~ ho ~ ho |

mn 2yy'c Ye

The approximationson the right are applicable for soft photons. (Note that, up

to factors of 2 in the logarithms, a universal formula for Q,,, for soft photonsis

Omin = hw/y’v.) Since both values of O,,in are proportional to w for soft photons,

it is clear that there will always be a frequency below which screening effects are

important. With Q, given by (15.42), the ratio of O,i, to QO, for nonrelativistic

bremsstrahlungis

384. hw — 192MB- hw
—_—_————— +

QO, Z'8 mvc mzZ'% (RO)max
  

where (h)max = Mv’/2. Except for extremely slow speeds, the frequencyat
which O“*) < Q,is a tiny fraction of the maximum. For example, with 100 keV
electrons on a gold target (Z = 79), only for @/@max < 0.04 is screening important.
Forparticles heavier than electrons the factor M/m makesscreening totally in-
significant in nonrelativistic bremsstrahlung.

Forrelativistic bremsstrahlung, however, screening effects can be important.

The ratio of Oni, to O, is nNOW

O® 06hw 96M hw
QO,  yym2?Z'2— ymZ" (ho)max
  

where (AW)max = yMc’. The presenceof the factor y’ in the denominator implies

that at sufficiently high energies O“can be less than Q,for essentially the whole

range of frequencies[if w/w,,,, = x, then y’ = (1 — x)y|. Then the screeningis
said to be complete. The incident energies for complete screening are defined as
E >> E,, wherethecritical energy E,is

192M
E, = (een)Me’ (15.46)

mZ'?

For energies large compared to E,, Onin can be neglected compared to Q, in

(15.43) at all frequencies except the very tip of the spectrum. Theradiation cross
section in the complete screeninglimit is thus the constant value,

dy 16 Ze? (ze2\_ (233Mdx _ 16 Z'e (Z5) In fea (15.47) 
do 3 c \Mc* mZ*?
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1.00

\ . 0.75
dx Bethe-Heitler Figure 15.5 Radiation cross section in
dw the complete screening limit. The

constant value is the semiclassical
result. The curve marked “‘Bethe—

0 Wmax Heitler’’ is the quantum-mechanical
 ——> Born approximation.

The numerical coefficient in the logarithm is subject to some uncertainty, of
course. Bethe and Heitler found a result with 183 instead of 233 in the logarithm
and with the polynomial (1 — hw/E + 3h?w7/4E’) of (15.35) multiplyingit.

For electrons, EF, ~ 42 MeV in aluminum (Z = 13) and 23 MeVin lead
(Z = 82). The corresponding values for mu mesons are 2 X 10° MeV and 10°
MeV.Becauseof the factor M/m,screeningis important only for electrons. When

FE > E,, the radiation cross section is given by the constant value (15.47) for all
frequencies. Figure 15.5 shows the radiation cross section (15.47) in the limit of
complete screening, as well as the corresponding Bethe—Heitler result. Their
proper quantum treatment involves the slowly varying polynomial, which

changes from unity at w = 0 to 0.75 at @ = @pax. For cosmic-ray electrons and

for electrons from most high-energy electron accelerators, the bremsstrahlungis

in the complete screening limit. Thus the photon spectrum showsa typical (hw) ~'
behavior.

The radiative energy loss was consideredin the nonrelativistic limit in Section
15.2.B and was foundto be negligible compared to the energyloss by collisions.
For ultrarelativistic particles, especially electrons, this is no longer true. The ra-
diative energy loss is given approximately in the limit y >> 1 by

dEead _ 16 Ze" (=<)

 
yMc7/h

~ ~ | In Qmax dw

dx 3 c \Mc*} Jo VO? in + OF

For negligible screening we find approximately

dE 16. Ze? [262\"
Git BNE (Z| In (Ay) yMc? 

dx 3 Ac Mc?

For higher energies where complete screening occursthis is modified to

dE Ze? (2e?\" (233Mrad 2 < (: . In ( ) free (15.48)  
dx 3 he \Mc? Z'°m

showing that eventually the radiative loss is proportional to the particle’s energy.*
The comparison of radiative loss to collision loss now becomes

AEcoi 7 3 TT 137) M Y

.4

dE. 4 (Z22\m_  \Z'°m
M In B,

*With the Bethe—Heitler energy dependence shownin Fig. 15.5, the coefficient 16/3 is replaced by4;
if atomic electrons are counted, the factor of Z? is replaced by Z(Z + 1).
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The value of y for which this ratio is unity depends on the particle and on Z. For
electronsit is y ~ 200 for air and y ~ 20 for lead. At higher energies, the radiative
energylossis larger than the collision loss and for ultrarelativistic particlesis the
dominant loss mechanism.

At energies where the radiative energy loss is dominant, the complete screen-
ing result (15.48) holds. Thenit is useful to introduce a unit of length Xo, called
the radiation length, which is the distance a particle travels while its energyfalls
to e~* ofits initial value. By conservation of energy, we may rewrite (15.48) as

dE _ EE
dx Xo

with solution

E(x) = E,e~*!*0

where the radiation length X, (including quantum corrections,loc.cit.) is

X= fay

22

De(5) In (a)| (15.49)
 

hc Mc? Z'3m

For electrons, some representative values of Xp are 37 g/cm’ (310 m)in air at
NTP,24 g/cm? (8.9 cm) in aluminum,and5.8 g/cm? (0.51 cm)in lead. In studying
the passage of cosmic-ray or man-madehigh-energyparticles through matter, the

radiation length Xis a convenient unit to employ, since not only the radiative
energy loss is governedbyit, but also the production of electron-positron pairs
by the radiated photons, and so the whole developmentof the electronic cascade
shower.

15.4 Weizsdcker-Williams Method of Virtual Quanta

The emission of bremsstrahlung and other processes involving the electromag-

netic interaction ofrelativistic particles can be viewedin a waythatis very helpful
in providing physical insight into the processes. This point of view is called the
methodof virtual quanta. It exploits the similarity between thefields of a rapidly
moving charged particle and thefields of a pulse of radiation (see Section 11.10)

and correlates the effects of the collision of the relativistic charged particle with

some system with the corresponding effects produced by the interaction ofra-
diation (the virtual quanta) with the same system. The method was developed
independently by C. F. Weizsacker and E.J. Williams in 1934. Ten years earlier
Enrico Fermi had used essentially the same idea to relate the energy loss by

ionization to the absorption of x-rays by atoms (see Problem 15.12).
In any given collision we define an “incident particle” and a “‘struck system.”’

The perturbing fields of the incident particle are replaced by an equivalent pulse
of radiation that is analyzed into a frequency spectrum of virtual quanta. Then
the effects of the quanta (either scattering or absorption) on the struck system
are calculated. In this way the charged-particle interaction is correlated with the
photon interaction. Table 15.1 lists a few typical correspondences and specifies
the incident particle and struck system. From the table we see that the struck

system is not always the target in the laboratory. For bremsstrahlung the struck
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Table 15.1 Correspondences Between Charged Particle Interactions
and Photon Interactions
 

 

Incident Struck
Particle Process Particle System Radiative Process Banin

Bremsstrahlung in Nucleus Electron Scattering of virtual h/2Mv
electron (light (light photons of nuclear
particle)-nucleus particle Coulombfield by
collision mass M) the electron (light

particle)

Collisional ionization Incident Atom Photoejection of a
of atoms(in distant particle atomic electrons by
collisions) virtual quanta

Electron disintegration Electron Nucleus Photodisintegrationof|
of nuclei (mass m) nuclei by virtual Larger

quanta of

Production of pionsin Electron Nucleus Photoproduction of ¢ h/ymvu
electron-nuclear (mass m) pions byvirtual and R
collisions quanta interactions

with nucleus  
 

system is the lighter of the two collision partners, since its radiation scattering
poweris greater. For bremsstrahlung in electron-electron collision it is necessary

from symmetryto take the sum of two contributions where eachelectron in turn

is the struck systematrest initially in some reference frame.

The chief assumption in the method of virtual quantais that the effects of
the various frequency components of equivalent radiation add incoherently. This

will be true provided the perturbing effect of the fields is small, and is consistent
with our assumption in Section 15.2.D that the motion of the particle in the frame
K’ was nonrelativistic throughout the collision.

It is convenient in the discussion of the Weizs4cker—Williams methodto use
the language of impact parameters rather than momentum transfers in order to

make use of results on the Fourier transforms of fields obtained in previous
chapters. The connection between the two approachesis via the uncertainty-
principle relation,

, tt
Q

With the expression (15.44) for Q,,,, in bremsstrahlung, we see that the minimum

impact parametereffective in producing radiationis

ft _
~— Omax  2Mv
 Din (15.50)

as listed in Table 15.1. The maximum impact parameters corresponding to the

QOmnin Values of (15.45) do not need to be itemized. The spectrum ofvirtual quanta
automatically incorporates the cutoff equivalent to Qyin.

The spectrum of equivalent radiation for an independentparticle of charge
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q, velocity v = c, passing a struck system S at impact parameter b, can be found
from the fields of Section 11.10:

yb
q (b? + yur)?

B(t) = BE,Q(t)

E,(t) = —

 

E(t) =

yul
q (b + yur)?
 

For B = 1 the fields E,(t) and B,(t) are completely equivalentto a pulse of plane-
polarized radiation P; incident on S in the x, direction, as shown in Fig. 15.6.

There is no magnetic field to accompany E(t) and so form a proper pulse of

radiation P, incidentalong the x, direction, as shown. Nevertheless,if the motion

of the charged particles in S is nonrelativistic in this coordinate frame, we can
add the necessary magnetic field to create the pulse P, without affecting the
physical problem because the particles in § respond only to electric forces. Even
if the particles in S are influenced by magnetic forces, the additional magnetic
field implied by replacing E,(t) by the radiation pulse P, is not important, since
the pulse P will be seen to be of minor importance anyway.

From the discussion Section 14.5, especially equations (14.51), (14.52), and
(14.60), it is evident that the equivalent pulse P; has a frequency spectrum (en-

ergy per unit area per unit frequencyinterval) d/,(, b)/dw given by

dl, _ Cc 2
do (w, b) = 7 | E2(@)| (15.51a)

where E>(w) is the Fourier transform (14.54) of E,(t). Similarly the pulse P, has
the frequency spectrum

dl.— (w, b) = — |E,(a)?? (15.51b)
dw 27

The Fourier integrals, calculated in Chapter 13, are given by (13.80). The two
frequency spectra are

 

 

 
     

dI,(w, b) (22)(2)ah(@, ; wv wp
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Figure 15.6 Relativistic charged particle passing the struck system S and the
equivalent pulses of radiation.
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Wenote that the intensity of the pulse P, involves a factor y* andsoisoflittle
importance for ultrarelativistic particles. The shapes of these spectra are shown

in Fig. 15.7. The behavior is easily understood if one recalls that the fields of
pulse P, are bell-shaped in time with a width At ~ b/yv. Thus the frequency
spectrum will contain all frequencies up to a maximum of order w,,, ~ 1/At. On

the other hand,the fields of pulse P, are similar to one cycle of a sine wave of

frequency w ~ yu/b. Consequently its spectrum will contain only a modest range

of frequencies centered around u/b.
In collision problems we must sum the frequency spectra (15.52) over the

various possible impact parameters. This gives the energy per unit frequency

interval present in the equivalent radiation field. As always in such problems we
must specify a minimum impact parameter b,;,. The method of virtual quanta

will be useful only if bin can be so chosen that for impact parameters greater
than b,,;,, the effects of the incident particle’s fields can be represented accurately

by the effects of equivalent pulses of radiation, while for small impact parameters
the effects of the particle’s fields can be neglected or taken into account by other

means. Setting aside for the moment how wechoosethe propervalue of Dyin 10

general [(15.50) is valid for bremsstrahlung], we can write down the frequency
spectrum integrated over possible impact parameters,

dl _ i
To (w) = 27 ,

min

dl, dl
= $e .= (w, b) =(a, 6) db (15.53)

where we have combined the contributions of pulses P, and P. Theresultis

2

* (0) ==4 (<) {xKot0)R00 — 55 °[Ki(x) - Kico)} (15.54)

 

 

    

dw T

where

wb»;
y= —™ (15.55)
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Figure 15.7 Frequencyspectra of the two equivalent pulses of radiation.
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For low frequencies (@ < yu/b,,i,) the energy per unit frequency interval re-

 

duces to

MI) 22 g (c\ (1123) 0” (15:56)
— =——|[- n — > ,
dw . awe \u WDwin 2c?

whereasfor high frequencies (w >> yu/byin) the spectrum falls off exponentially
as

2
dl q’ (c Uy" 20Dmin
— =—{-](1-= ——— 15.57oynt(J(\-B)ea( 2) oan

Figure 15.8 shows an accurate plot of I(w) (15.54) for v = c, as well as the low-
frequency approximation (15.56). We see that the energy spectrum consists pre-
dominantly of low-frequency quanta with a tail extending up to frequencies of
the order of 2yv/b,,in.

The number spectrum of virtual quanta N(fw) is obtained by using the
relation

= (w) dw = hwN(ha) d(ha)

Thus the numberof virtual quanta per unit energy interval in the low-frequency
limit is

2
2/(q*\(c\ 1 1.123 yu u*

hw) =—|—]i-]}] = - => 15.
N(nw) TT (“| (<) how in ( WDpin = (15.58)

| | | I
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do Low-frequency
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Figure 15.8 Frequency spectrum of virtual quanta for a relativistic particle, with the
energy per unit frequency d/(w)/dw in units of q*/ac and the frequencyin units of
Yv/Bin. The numberofvirtual quanta per unit energy interval is obtained by dividing
by fi7.
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The choice of minimum impact parameter5,,;, must be considered. In brems-

strahlung, bwin = h/2Mv, where M is the mass ofthe lighter particle, as already

discussed. For collisional ionization of atoms, 5,,;, = a, the atomic radius, with

closer impacts treated as collisions between the incident particle and free elec-
trons. In electron disintegration of nuclei or electron production of mesons from
nuclei, the wave nature of the particle whose fields provide the virtual quanta
sets the effective minimum impact parameter. In these circumstances, Dyi, =

h/yMu or Dyin = R, the nuclear radius, whicheveris larger. The values are sum-

marized in Table 15.1.
The quantum-mechanical version* of the Weizsacker—Williams method of

virtual quanta for ultrarelativistic spin 5 electrons (8 — 1) replaces the square-
bracketed quantity in (15.58)—‘“‘the logarithm’’—by

E? + E? 2EE'\ (E+E? (E+E'\ E'L=(--—>})1 -“Vw | - 15.( 2E? . (2a) 4E> ho ap (15-99)
where FE and E' = E — ho are theinitial and final energies of the electron. In

the limit tw < FE, “‘the logarithm’’ reducesto

hw)? w)* °
= (1 — holE) In (Elmc’) — 5+ 0|Goh o m (|

whichis consistent with (15.58) with Dyin ~ c/w = X, the wavelength (divided by

27r) of the virtual photon. The quantum-mechanical version finds extensive ap-
plication in the so-called two-photon processesin electron-positron collisions.’

   

 

15.5 Bremsstrahlung as the Scattering of Virtual Quanta

The emission of bremsstrahlung in a collision between an incidentrelativistic
particle of charge ze and mass M and an atomic nucleus of charge Ze can be
viewed as the scattering of the virtual quanta in the nuclear Coulombfield by
the incident particle in the coordinate system K’, where the incidentparticle is
at rest. The spectrum of virtual quanta dI'(w’)/da’is given by (15.54) with q = Ze.
The minimum impact parameter is #/2Mvu,so that the frequency spectrum ex-

tends up to w’ ~ yMc*/h.
The virtual quanta are scattered by the incident particle (the struck system

in K’) according to the Thomsoncross section (14.125) at low frequencies. Thus,
in the frame K’ and for frequencies small compared to Mc*/h, the differential
radiation cross section is approximately

2
dy’ ze? a

aedo (=). (1 + cos6’)-

Since the spectrum of virtual quanta extends up to cin the approximation
(15.56) can be usedfor d/’(w')/do’ in the region w' << Mc*/h. Thusthe radiation
cross section in K’ becomes

dy’ 1 Ze? (ze?\" | AyMc?
da’da ~> Gi (T+ c08°6) «In C500)

 

   

*R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1957).

"H. Terazawa, Rev. Mod. Phys. 45, 615 (1973).
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The cross section in the laboratory can be obtained in the same fashion as in
Section 15.2.D. Using (15.38) and the Doppler formulas (15.40) we find

dy _ 16 Ze" ze" 2 In 2Ay*Mc? | 3y°(1 4 y* 0")

dod) 3 c \Mc? hw(1 + y*6?) 27(1 + y*6*)4

This is essentially the samecross section as (15.36). Upon integration over angles
of emission, it yields an expression equal to the soft-photon limit of (15.34).

Equations (15.60) and (15.61) are based on the Thomsonscattering cross
section and so are restricted to w’ < Mc*/h in the rest frame K’. Of course, as
observed in Section 15.2.D, such soft photons transform into energetic photons
in the laboratory. But the spectrum of virtual quanta contains frequencies up to
w' = yMc’*/h. For such frequencies the scattering of radiation is not given by the
Thomson crosssection, but rather by (14.127) for spinless struck particles or the
Klein—Nishina formula for particles of spin 5. The angular distribution of scat-
tering of such photonsis altered from the dipole form of (15.60), as is shown in
Fig. 14.18. More important, the total cross section for scattering decreases rapidly
for frequencies larger than Mc’/h, as can be seen from (14.128). This shows that
in the frame K’ the bremsstrahlung quanta are confined to a frequency range
0 < w’ = Mc’/h, even though the spectrum of virtual quanta in the nuclear
Coulomb field extends to much higher frequencies. The restricted spectrum in
K"is required physically by conservation of energy,since in the laboratory system
where w = yw’ the frequency spectrumis limited to 0 < w < (yMc’/h). A detailed
treatment using the angular distribution of scattering from the Klein—Nishina
formula yields a bremsstrahlung cross section in complete agreement with the
Bethe—Heitler formulas (Weizsacker, 1934).

The effects of screening on the bremsstrahlung spectrum can be discussedin
terms of the Weizsdcker—Williams method. For a screened Coulomb potential
the spectrum of virtual quanta is modified from (15.56). The argument of the
logarithm is changed to a constant, as discussed in Section 15.3.

Further applications of the method of virtual quanta to such problemsas
collisional ionization of atoms andelectron disintegration of nuclei are deferred
to the problemsat the end of the chapter.

  | (15.61)

15.6 Radiation Emitted During Beta Decay

In the process of beta decay an unstable nucleus with atomic number Z trans-
forms spontaneously into another nucleus of atomic number (Z + 1) while emit-
ting an electron (+e) and a neutrino. The process is written symbolically as

Z>(Z+1)+e +p (15.62)

The energy released in the decay is shared almost entirely by the electron and
the neutrino, with the recoiling nucleus getting a completely negligible share
because ofits very large mass. Even without knowledge of whyor how beta decay
takes place, we can anticipate that the sudden creation of a rapidly moving
chargedparticle will be accompanied by the emission of radiation. As mentioned
in the introduction, either we can think of the electron initially at rest and being
accelerated violently during a short time intervalto its final velocity, or we can
imaginethatits charge is suddenly turned on in the sameshorttime interval. The
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heavy nucleus receives a negligible acceleration and so does not contribute to

the radiation.
For purposes of calculation we can assumethat at t = 0 an electron is created

at the origin with a constant velocity v = cB. Then from (15.1) or (15.2) the
intensity distribution of radiation is given by

dl e* e*-B

dw dQ) 4mcl1—n-B

2

  (15.63)
  

This is the low-frequencylimit of the energy spectrum.Theintensity will decrease
from this value at frequencies that violate the condition (15.15). Althoughit is
difficult to be precise about the value of (B) that appearsthere,if the formation
process is imagined to involve a velocity-versus-time curve, such as is sketched
in Fig. 15.9, the value of (8) should not be greaterthan 5. In that case, the criterion

(15.15) is equivalent to wr < 1. The formation time 7 can be estimated from the
uncertainty principle to be

hooR
~~ (15.64)

since in the act of beta decay an electron of total energy E is suddenly created.
This estimate of 7 implies the frequencies for appreciable radiation are limited

to wa < E/h. Thisis just the limit imposed by conservation of energy. The radiation
is seen from (15.63) to be linearly polarized in the plane containing the velocity
vector of the electron and the direction of observation. The differential distri-
bution in spherical coordinatesis

aI e& sin?

dwdQ 4’c° (1 — Bcos 6)
  (15.65)

while the total intensity per unit frequency intervalis

dl —e }1, /1+B\ |
76 6) = = in (+8) 2 (15.66)

For B << 1, (15.66) reduces to dl/dw ~ 2e7B7/37c, showing that for low-energy
beta particles the radiated intensity is negligible.

The intensity distribution (15.66) is a typical bremsstrahlung spectrum with
number of photonsper unit energy range given by

—e@ f1\ii 1+ B\N(fie) = — (A) In (— e) 2 (15.67)

 

  

 

  t—> Figure 15.9
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It sometimes bears the name inner bremsstrahlung to distinguish it from brems-
strahlung emitted by the samebeta particle in passing through matter.

The total energy radiated is approximately

Omax J e> |1 1+ Bp
Fad = [ dw (w) dw = athe 2 In ( — 2 (15.68) 

B \1l-B

Forvery fast beta particles, the ratio of energy going into radiationto the particle
energy IS

Frag 2 2E
—— =—-—/In|—>] - 1 ,
E- whe " (24) (15.69)

This shows that the radiated energy is a very small fraction of the total energy
released in beta decay, even for the most energetic beta processes (E,.. ~
30mc*). Nevertheless, the radiation can be observed and provides useful infor-
mation for nuclear physicists.

In the actual beta process the energy release is shared by the electron and

the neutrino so that the electron has a whole spectrum of energies up to some
maximum. Thenthe radiation spectrum (15.66) must be averaged overthe energy
distribution of the beta particles. Furthermore, a quantum-mechanical treatment
leads to modifications near the upper end of the photon spectrum. These are
important details for quantitative comparison with experiment. But the origins
of the radiation and its semiquantitative description are given adequately by our
classical calculation.

I5.7 Radiation Emitted During Orbital-Electron Capture:
Disappearance of Charge and Magnetic Moment

In beta emission the suddencreation ofa fast electron givesrise to radiation. In
orbital-electron capture the sudden disappearance of an electron doeslikewise.
Orbital-electron capture is the process whereby an orbital electron around an

unstable nucleus of atomic number Z is captured by the nucleus, whichis trans-
formed into anothernucleus with atomic number (Z — 1), with the simultaneous
emission of a neutrino that carries off the excess energy. The process can be
written symbolically as

Zt+e 3(Z-1)t+» (15.70)

Since a virtually undetectable neutrino carries away the decay energyif thereis
no radiation, the spectrum of photons accompanying orbital-electron capture is
of great importance in yielding information about the energyrelease.

Asa simplified model we consider an electron moving in a circular atomic
orbit of radius a with a constant angular velocity wo. The orbit lies in the x-y

plane, as shown in Fig. 15.10, with the nucleus at the center. The observation
direction n is defined by the polar angle 6 andlies in the x-z plane. The velocity
of the electronis

v(t) = —~E,Wo SIN(Wot + a) + E,W COS(Wot + a) (15.71)
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x Figure 15.10

where ais an arbitrary phase angle. If the electron vanishesat t = 0, the frequency

spectrum of emitted radiation (14.67) is approximately*

d’] e*w"

dw dQ 47c3

2

[ n X [n X vw(t)le’”dt (15.72) 

 

where we have assumed that (wa/c) < 1 (dipole approximation) and put the
retardation factor equal to unity. The integral in (15.72) can be written

0

| dt = —waeJ, + €| COs OL) (15.73)

where

0

i, = | COS(Wot + aje’dt

O (15.74)
I, = | Sin( wot + ae" dt

and €,, €) are unit polarization vectors perpendicular and parallel to the plane
containing n and the z axis. The integrals are elementary andlead to an intensity
distribution,

 
 

d*I e7w" wea— [(w* cos*a + w6 sin?a)dw dQ 4m(w — wy ° (15.75)
+ cos*6(w* sin’a + w% cos*a)]

Since the electron can be captured from any position around the orbit, we av-
erage over the phase angle a. Then the intensity distributionis

  
d*I e* [wa ° w*(w? + w) 1

= — —>—— : = (1+ cos’@ 15.76
dw dQ 4n’c ( C (w* — wo) 5 cos’6) ( )

The total energy radiated per unit frequency intervalis

2

do) 2& (ara) o(oo+o') (15.77)
dw 37 ec Cc (w~ — wo)

*To conform to the admonition following (14.67), we should multiply the velocity (15.71) by a factor
such as (1 — e”")@(—2) in order to bring the velocity to zero continuously in a short time 7 near
t = 0. The reader mayverify that in the limit wt < 1 and wr < theresults given below emerge.
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while the numberof photonsper unit energy intervalis

2 [e7\faa ° w*(w5 + w*)| 1

N(ho) 37 (<)( C (w* — wo)’ how (15.78)

For w >> a) the square-bracketed quantity approaches unity. Then the spectrum
is a typical bremsstrahlung spectrum. But for w ~ wp the intensity is very large
(infinite in our approximation). The behavior of the photon spectrum is shown
in Fig. 15.11. The singularity at w = wy may seem alarming,butit is really quite
natural and expected.If the electron were to keep orbiting forever, the radiation
spectrum would be a sharp line at w = wy. The sudden termination of the periodic
motion produces a broadeningof the spectrum in the neighborhoodof the char-
acteristic frequency.

Quantum mechanically, the radiation arises when an / = 1 electron (mainly
from the 2p orbit) makesa virtual radiative transition to an / = 0 state, from
which it can be absorbed by the nucleus. Thus the frequency w) mustbe identified
with the frequency of the characteristic 2p > 1s x-ray, hwy = (3Z7e7/8aq). Simi-
larly the orbit radiusis actually a transitional dipole moment. With the estimate
a = ao/Z, where dp is the Bohrradius, the photon spectrum (15.78) is

N(hw) = go 2() ! 2) (15.79)
Ac} hw (w* — wo)’

The essential characteristics of this spectrum are its strong peaking at the x-ray
energy and its dependence on atomic numberas Z”.

So far we have consideredthe radiation that accompanies the disappearance

of the charge of an orbital electron in the electron-capture process. An electron

possesses a magnetic moment as well as a charge. The disappearance of the
magnetic momentalso givesrise to radiation, but with a spectrum of quite dif-
ferent character. The intensity distribution in angle and frequency for a point
magnetic momentin nonrelativistic motion is given in Problem 14.19a. Theelec-
tronic magnetic moment can betreated as a constant vector in space until its

 

 
 Nifiw)

  0 | | |
 

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

0 hor
hu —_——>

Figure 15.11 Spectrum of photons emitted in orbital-electron capture because of
disappearance of the charge of the electron.
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disappearance at ¢t = 0. Then, in the dipole approximation, the appropriate in-
tensity distribution is

 

  

 

d*I w' ° , ;
Jo dO = Age [_ n X we”dt (15.80)

which gives

d*I Ww”

Jo dQ 4ats (15.81)
where © is the angle between wp and the observation direction n.

In a semiclassical sense the electronic magnetic moment can be thought of

as having a magnitude uw = V3(eh/2mc), but being observed only through its
projection w, = +(eh/2mc) on an arbitrary axis. The moment can be thoughtof
as precessing aroundthe axis at an angle a = tan”! V2,so that on the average

only the component of the momentalong the axis survives. It is easy to show
that on averaging over this precession sin*® in (15.81) becomes equalto its av-
erage value of 3, independent of observation direction. Thus the angular and
frequency spectrum becomes

d*I e? (hw\
—— = —~— |— 15.82
dwdQ 87°c (2) (

The total energy radiated per unit frequency intervalis

dl e2 (ho\
do Duc 2") (15.83)

while the corresponding numberof photonsper unit energy intervalis

e* hw

= 2ahc (mc) (15.84)

These spectra are very different in their frequency dependence from a brems-

strahlung spectrum. They increase with increasing frequency, apparently without
limit. Of course, we have been forewarnedthatourclassical results are valid only
in the low-frequency limit. We can imagine that some sort of uncertainty-

principle argument such as wasused in Section 15.6 for radiative beta decay holds
here and that conservation of energy, at least, is guaranteed. Actually, modifi-
cations arise because a neutrino is always emitted in the electron-capture process.
The probability of emission of the neutrino can be shown to dependon the square
of its energy E,. When no photon is emitted, the neutrino has the full decay
energy EL, = E>. But when a photon of energy Aw accompaniesit, the neutrino’s

energy is reduced to EF, = Ey — hw. Then the probability of neutrino emissionis
reduced by a factor,

EI\” hw\@
—)} ={1-— 15.85
(F) ( |

This means that our classical spectra (15.83) and (15.84) must be corrected by
multiplication with (15.85) to take into account the kinematics of the neutrino

emission. The modified classical photon spectrum is

e ho ho\”
hw) = >— 1 - = 15.86

N(ho) 2ahe (mc*)? ( i) (

 N(ho
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Figure 15.12) Spectrum of photons emitted in orbital-electron capture because of
disappearance of the magnetic momentof the electron.

This is essentially the correct quantum-mechanical result. A comparison of the
corrected distribution (15.86) and the classical one (15.84) is shown in Fig. 15.12.
Evidently the neutrino-emission probability is crucial in obtaining the proper
behaviorof the photon energy spectrum.For the customary bremsstrahlungspec-

tra such correction factors are less important because the bulk of the radiation
is emitted in photons with energies much smaller than the maximum allowable
value.

The total radiation emitted in orbital-electron capture is the sum of the con-
tributions from the disappearance of the electric charge and of the magnetic
moment. From the different behaviors of (15.79) and (15.86) we see that the
upper end of the spectrum will be dominated by the magnetic-momentcontri-

 

N(hw)  
 

      Eo

Figure 15.13 Typical photon spectrum for radiative orbital-electron capture with
energy release Eo, showing the contributions from the disappearance of the electronic

charge and magnetic moment.
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bution unless the energy release is very small, whereas the lower end of the
spectrum will be dominated by the electric-charge term, especially for high Z.
Figure 15.13 shows a typical combined spectrum for Z ~ 20-30. Observations
on a number of nuclei confirm the general features of the spectra and allow
determination of the energy release Eo.
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Problems

15.1. In radiative collision problems it is useful to have the radiation amplitude ex-
pressed explicitly as an integral involving the accelerations of the particles, as in
(14.65), for example. In the nonrelativistic limit, particles do not move rapidly or
far during the period of acceleration; only the lowest ordervelocity and retardation
effects need be kept in an approximate description.



738 Chapter 15 Bremsstrahlung, Method of Virtual Quanta, Radiative Beta Processes—G

15.2

15.3

(a) Show that the integral (times e) in (14.65), whichis, apart from an inessential
phase, cR times the Fourier transform of the Liénard—Wiechertelectric field
at distance R, can be expandedin inverse powers of c (rememberingthat
B = vic and k = a/c) as follows:

J=e | dt e(B, + BB. + BiB. — ikr,B, ++)

Or

ff. d _
J —e | dt en6, + dt (B\B,) ~~ ikr) B, +-:: )

where By= B-n,7) = ren, and B, = (n X B) X n. Neglected terms are of
order 1/c’ and higher.

(b) Show that the first term in part a correspondsto the electric dipole approx-
imation, while the next terms are the magnetic dipole and the electric quad-
rupole contributions. [Some integrations by parts are required, with a con-
vergence factor e~‘'"! to give meaning to the integrals, as discussed following
(14.67).] For a group of charges, show that the generalization of part a can
be written as

"fa omTOO Am) yp LEQ gy 4 -) 

dt* 6c dt

and the radiated intensity per unit solid angle and per unit frequency as

2

 
 

 

 

d?] 1 | d’*p,(t) d*m(t) d°Q
- dt e'"| —— + x —>- tdw dQ 47°c3 ( dt? ae 5 a ap (Ot

where

r; Xx-
p= > qiXjs =D q7 3. Qap = 2d, U(BXjaXjp — 17 Sap)

J J J

and the vector Q(n) has components, Q, = 2,Q.,ng. Relate to the treatment

of multipole radiation in Sections 9.2 and 9.3 and Problem 9.7.

A nonrelativistic particle of charge e and mass m collides with a fixed, smooth,
hard sphere of radius R. Assuming that the collision is elastic, show that in the
dipole approximation (neglecting retardation effects) the classical differential
cross section for the emission of photons per unit solid angle per unit energy
intervalis

do  —_ R* “(%) 4

dQ. d(hw) 127 fic :) ha (2 sim)

where @ is measuredrelative to the incident direction. Sketch the angular distri-
bution. Integrate over angles to get the total bremsstrahlung cross section. Qual-

itatively, what factor (or factors) govern the upper limit to the frequency
spectrum?

Treat Problem 15.2 without the assumption of nonrelativistic motion, using (15.2)

and assuming the elastic impactis of negligible duration. Show that the cross sec-
tion for photon emission is now

HoRew) sino 1) (i+B) 2
dO d(hw) 4rhchw|(1— Bcosoe B \1—B) BP
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A group of charged particles with charges e; and coordinatesr,(t) undergointer-
actions andare accelerated only during a time —7/2 < t < 7/2, during whichtheir
velocities change from cB; to cB,.

(a) Show that for wr <1 the intensity of radiation emitted with polarization e

per unit solid angle and unit frequency intervalis

aI 1

dwdQ 47’c

E = S e( B; B; Jecrmmnin

J l—-n-fi 1—-n-B

(b) An w meson of mass 784 MeV decays into 7‘and e*e” with branching
ratios of 1.3 X 10°* and 8 X 107°, respectively. Show that for both decay
modes the frequency spectrum of radiated energy at low frequenciesis

aH €|(LEE) yy (18) | ~ Tin (Ms) 3]
dw Tc B 1—- Bp TC m 2

where M., is the mass of the w’ meson and m is the massof one of the decay
products. Evaluate approximately the total energy radiatea in each decay by
integrating the spectrum up to the maximum frequency allowed kinemati-
cally. What fraction of the rest energy of the w”is it in each decay?

 e* - EP

where

 

A situation closely related to that of Problem 15.4b is the emission of radiation
caused bythe disappearance of charges and magnetic momentsin the annihilation
of electrons and positrons to form hadrons in high-energy storage ring experi-
ments. If the differential cross section for the process e*e~ — hadrons is dog,
without the emission of photons, calculate the cross section for the same process
accompanied by a soft photon (Aw — 0) in the energyinterval d(fw) around ho.
Compare your results with the quantum-mechanical expressions:

 

hw
le sin’?@ + ————,, (1 — p* cos|

do _ a dos’) 5/2 __ 4m?2s' | Soo+ 2m

dQ d(ho) ww hw s* — 4m’s (1 — B* cos’@)*

   

da _ 4adop(s') |s'* — 4m*s' J1 1 + B 1+ B\ 1

d(ha) aT hw s*— 4m*s |2 28 1-8

1 Me [En (78) - 1]|

s' + 2m* B 1- Bp

where s = (p, + p2)*, s’ = (p, + po — k)*, B = electron v/c in c.m. frame. Neglect
the emission of radiation by any of the hadrons,all assumed to be much heavier
than the electrons.

The factors proportional to w* in the numerators of these expressions can be
attributed to the disappearance of the magnetic moments. If you have not included
such contributions in your semiclassical calculation, you may consider doing so.

 

For the soft-photon limit of radiation emitted when there is a small change AB of
velocity, (15.9) applies, with convenient polarization vectors shownin Fig. 15.2.

(a) Show that

e,- [AB + n x (B X AB)] = |AB/(B — cos 4) cos d

e«,- [AB + n xX (B X AB)] = |ABI(1 — Boos 8) sing

leading to (15.10) after averaging over ¢.
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15.7

15.8

(b) Show that in the limit y >> 1 and 6@< 1

d2I _ 267y' |AB? | ore _ 1) 1
li
im (1 4 v0) (1 4 y0")
w—>0 dw dQ, 27°C

wherethefirst (second) term in square brackets correspondsto the parallel
(perpendicular) polarization. This expression leads immediately to (15.11).

(c) Show that the result of part b gives the expression for P(@) given following

(15.10).

(d) Show that the angular integral of (15.11) or the answer in part b can be
written

_ al vey’ |ABP [* dy 2 z*e*y* |ABPlim —- =~ —————- - —(2 -—2y + y’) ==
oo de TC 1 ys ( y+y) 3 TC

Consider the radiation emitted in nuclear fission by the sudden creation of two
fragments of charge and mass (Z,e, A,m) and (Z,e, Aym) recoiling in opposite
directions with total c.m.s. kinetic energy E. Treat the nuclei as point charges and
their motion after the very short initial period of acceleration is nonrelativistic,
but keep termsupto secondorderin 1/c, as in Problem 15.1. For simplicity, assume

that the fragments move with constant speeds in opposite directions away from
the origin for t > 0. The relative speedis cf.

(a) Using the appropriate generalization of Problem 15.1a, show that the inten-
sity of radiation per unit solid angle and per unit photon energyin the c.m.
system 1s

d*I ab” sin?
= + 2

d(hw) dO im |P GB cos 8)
 

where 6@ is the angle between the line of recoil and the direction of obser-
vation, and

_ eo _ 2,A> ~~ ZA, . _ Z,A3 + ZA;

ic’ PP  A,+A, ’? 4 (A, + APa

Show that the radiated energy per unit photon energyis

dl _ 2ap* 2, Ba

d(ha) 327 \P 5
 

wherethe first term is the electric dipole and the second the quadrupole
radiation.

(b) As an example of the asymmetric fission of *°U by thermal neutrons, take
Z, = 36, A; = 95 (krypton), Z, = 56, Az = 138 (barium) (three neutronsare
emitted during fission), with E = 170 MeV and mc* = 931.5 MeV. Whatare
the values of p* and q*? Determine the total amount of energy (in MeV)
radiated bythis “inner bremsstrahlung” process, with the substitution, B* >

B°(1 — fa@/E), as a crude way to incorporate conservation of energy. What
are the relative amounts of energy radiated in the dipole and quadrupole
modes? In actual fission, roughly 7 MeV of electromagnetic energyis radi-
ated within 107° s. How does your estimate compare?If it is much smaller
or larger, attempt to explain.

Two identical point particles of charge g and mass m interact by meansofa short-
range repulsive interaction that is equivalent to a hard sphere of radius R in their
relative separation. Neglecting the electromagnetic interaction between the two
particles, determine the radiation cross section in the center-of-mass system for a
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15.10
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collision between these identical particles to the lowest nonvanishing approxima-
tion. Showthat the differential cross section for emission of photonsperunit solid
angle per unit energy intervalis

oe  _(¢\ BR 11, woR\(. 3 ..,
om - (£): Ra ho Ge— + 3 sin?6 cos*@ 7 1 g sin’6

where @is measuredrelative to the incident direction and cf is the relative speed.
By integration over the angles of emission, show that the total cross section for
radiation per unit photon energy hw is

do _ (f) ee1 5 + (28)

d(iw) \fic} 15 ho Pr

Compare these results with that of Problem 15.2 as to frequency dependence,
relative magnitude,etc.

 

  

A particle of charge ze, mass m, and nonrelativistic velocity uv is deflected in a
screened Coulombfield, V(r) = Zze*e~“/r, and consequently emits radiation. Dis-
cuss the radiation with the approximation that the particle moves in an almost
straight-line trajectory past the force center.

(a) Show that, if the impact parameter is b, the energy radiated per unit fre-
quency intervalis

8 Pe2 (7202\" (e\’
= (w b) = an (Es)(<) a’K7{(ab)

for w < v/b, and negligible for w >> v/b.

(b) Show that the radiation cross section is

dx(w) _ _ 16 Zee* (ze? “Le\ x oy pe 2Ko(x)K,(x) |)?

dw 3. Cc (25 (<) {% R300 Kix) + x Ih

where xX, = QDmin, X2 = QDmax:

(c) With bain = h/mv, bax = V/w, and a' = 1.4a,Z~'°, determinethe radiation
cross section in the two limits, x. < 1 and x, >> 1. Compare yourresults

with the “‘screening”’ and ‘‘no screening” limits of the text.

 

A particle of charge ze, mass m, and velocity v is deflected in a hyperbolic path

by a fixed repulsive Coulomb potential, V(r) = Zze’/r. Assumethe nonrelativistic
dipole approximation (but no further approximations).

(a) Show that the energy radiated per unit frequency interval by the particle
wheninitially incident at impact parameter b is

2 2
: (zeaw)* on (mele We e —1 Wwe

ilo) = 3gge et RilSS)+S [Kl]
(b) Show that the radiation cross section is

= Zeav _(mel,) © w w
7, xw) =~~ (zeavy’Ye (7709/00) Kava ))- al )|

C Wo Wo Wo

(c) Prove that the radiation cross section reducesto that obtained in the text for

classical bremsstrahlung for w << a,. What is the limiting form for w >> wp?

 

(d) What modifications occur for an attractive Coulombinteraction?

The hyperbolic path may be described by

x = a(e + cosh é), y = —b sinh é, Wot = (€ + € sinh é)

where a = Zze?/mv’, € = V1 + (b/a)’, @ = v/a.
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15.11 Using the method of virtual quanta, discuss the relationship between the cross
section for photodisintegration of a nucleus and electrodisintegration of a nucleus.

(a) Show that, for electrons of energy E = ymc* >> mc’, the electron disinte-
gration cross section is approximately:

206 (" ky’mc?\ dw
O.(E) = — io | Tpnoto(@) In - —

@

 

where fw is the threshold energy for the process andk is a constant of order
unity.

(b) Assuming that o,ho10(@) has the resonance shape:

Ag r
2a Mc (w — wo)? + (1/2)*
 

Opnotol@) =

where the width [ is small compared to (w) — wr), sketch the behavior of
0.(E) as a function of E and showthat for E >> hap,

2 {e*\ Ae* 1 KE?

val) = T (= Mc aw, In (|

(c) In the limit of a very narrow resonance, the photonuclear cross section can
be written aS Oppoto(@) = (Ae*/Mc) 6(@ — wo). Then the result of part b would

represent the electrodisintegration cross section for E > ha. The corre-
sponding bremsstrahlung-inducedcross section is given in the same approx-
imation by (15.47), multiplied by (Ae*/Mchw,), where Z is the atomic number
of the radiator. Comparisons of the electron- and bremsstrahlung-induced
disintegration cross sections of a numberof nuclei are given by E. Wolynec

et al. Phys. Rev. C 11, 1083 (1975). Calculate the quantity called F as a func-
tion of F (with a giant dipole resonance energy fiw) ~ 20 MeV) and compare
its magnitude and energy dependence(at the high energy end) with the data
in Figures 1-5 of Wolynecet al. The comparison is only qualitative at E ~
iw, because of the breadth of the dipole resonance.[F is the ratio of the
bremsstrahlung-inducedcross section in units of Z*ré to the electrodisinte-
gration crosssection.|

 

15.12 A fast particle of charge ze, mass M,and velocity v, collides with a hydrogen-like
atom with one electron of charge —e, mass m, bound to a nuclear center of charge
Ze. The collisions can be divided into two kinds:close collisions wherethe particle
passes through the atom (b < d), and distant collisions where the particle passes
by outside the atom (b > d). The atomic “‘radius”’ d can be taken as a)/Z. For the
close collisions the interaction of the incident particle and the electron can be
treated as a two-bodycollision and the energy transfer calculated from the Ruth-
erford cross section. For the distant collisions the excitation and ionization of the
atom can be considered the result of the photoelectric effect by the virtual quanta
of the incident particle’s fields.

For simplicity assume that for photon energies Q greater than the ionization
potential / the photoelectric cross section is

822 (a\ (1\

vo = 75 (2) (5)
(This obeys the empirical Z*A° law for x-ray absorption and hasa coefficient ad-
justed to satisfy the dipole sum rule, f o,(Q) dQ = 27’e*h/mc.)
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(a) Calculate the differential cross sections do/dQ for energy transfer Q for close

and distant collisions (write them as functions of Q// as far as possible and
in units of 27z*e*/mvu’I*). Plot the two distributions for Q/I > 1 for non-
relativistic motion of the incident particle and $mv? = 10°I.

(b) Show that the numberof distant collisions measured by the integrated cross
section is muchlarger than the numberofclose collisions, but that the energy
transfer per collision is much smaller. Show that the energy loss is divided
approximately equally between the two kindsof collisions, and verify that
your total energy loss is in essential agreement with Bethe’s result (13.14).

In the decay of a pi meson at rest a mu meson and a neutrino are created. The
total kinetic energy available is (m, — m,)c* = 34 MeV. The mu mesonhas a
kinetic energy of 4.1 MeV. Determine the number of quanta emitted per unit
energy interval because of the suddencreation of the moving mu meson. Assuming

that the photons are emitted perpendicular to the direction of motion of the mu
meson(actually it is a sin’*@ distribution), show that the maximum photon energy
is 17 MeV. Find how many quanta are emitted with energies greater than one-
tenth of the maximum, and compare yourresult with the observedratio of radi-
ative pi-mu decays. [1.24 + 0.25 X 10~* for muons with kinetic energy less than
3.4 MeV.See also H. Primakoff, Phys. Rev., 84, 1255 (1951).]

In internal conversion, the nucleus makes a transition from one state to another

and an orbital electron is ejected. The electron has a kinetic energy equal to the
transition energy minusits binding energy. For a conversion line of 1 MeV deter-
mine the numberof quanta emitted per unit energy because of the sudden ejection
of the electron. Whatfraction of the electrons will have energies less than 99% of
the total energy? Will this low-energytail on the conversionline be experimentally
observable?

One of the decay modes of a K* mesonis the three-pion decay, K* > w*a'a.
The energy release is 75 MeV, small enough that the pions can be treated non-
relativistically in rough approximation.

(a) Show that the differential spectrum of radiated intensity at low frequencies

in the K meson rest frame is approximately

d?*I 2e7

dwdQ 7c m,c?
 

where 7_ is the kinetic energy of the negative pion and @ is the angle of
emission of the photon relative to the momentum of the negative pion.

(b) Estimate the branching ratio for emission of a photon of energy greater than
A relative to the nonradiative three-pion decay. Whatis its numerical value
for A = 1 MeV? 10 MeV? Comparewith experiment (~2 X 107° for A = 11
MeV).

One of the decay modes of the charged K meson (Myx = 493.7 MeV) is K* —
a7° (M+ = 139.6 MeV, M,,o = 135.0 MeV). Inner bremsstrahlungis emitted by
the creation of the positive pion. A study of this radiative decay mode was made
by Edwardsetal. [Phys. Rev. D5, 2720 (1972)].

(a) Calculate the classical distribution in angle and frequency of soft photons
and compare with the data of Fig. 6 of Edwards et al. Computethe classical
distribution also for B = 0.71, corresponding to a charged pion of kinetic
energy 58 MeV, and compare.
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(b) Estimate the numberof radiative decays for charged pion kinetic energies
on the interval, 55 MeV = T,, = 90 MeV,as fraction of all K* decays (the
a*m° decay mode is 21% of all decays). You can treat the kinematics, in-
cluding the photon, correctly, or you can approximate reality with an ideal-
ization that has the neutral pion always with the same momentum andthe
photon and the charged pion with parallel momenta (see part a for justifi-
cation of this assumption). This idealization permits you to correlate directly
the limits on the charged pion’s kinetic energy with that of the photon. Com-
pare your estimate with the experimental value for the branchingratio for
ar* 7°y (with the limited range of * energies) of (2.75 + 0.15) x 1074.



CHAPTER16

Radiation Damping, Classical Models
of Charged Particles

16.1 Introductory Considerations

In the preceding chapters the problems of electrodynamics have been divided

into twoclasses: one in which the sourcesof charge and current are specified and

the resulting electromagnetic fields are calculated, and the other in which the

external electromagnetic fields are specified and the motionsof chargedparticles

or currents are calculated. Waveguides, cavities, and radiation from prescribed
multipole sources are examples of the first type of problem, while motion of

chargesin electric and magnetic fields and energy-loss phenomena are examples

of the second type. Occasionally, as in the discussion of bremsstrahlung, the two

problems are combined. But the treatmentis a stepwise one—first the motion of

the charged particle in an external field is determined, neglecting the emission

of radiation; then the radiation is calculated from the trajectory as a given source

distribution.
It is evident that this manner of handling problems in electrodynamics can

be of only approximatevalidity. The motion of charged particles in external force

fields necessarily involves the emission of radiation whenever the charges are

accelerated. The emitted radiation carries off energy, momentum, and angular

momentum andso mustinfluence the subsequent motion of the charged particles.

Consequently the motion of the sources of radiation is determined, in part, by

the manner of emission of the radiation. A correct treatment must include the
reaction of the radiation on the motion of the sources.

Whyis it that we have taken so long in our discussion of electrodynamicsto

face this fact? Whyis it that many answerscalculated in an apparently erroneous

way agree so well with experiment? A partial answerto the first question lies in

the second. There are very many problems in electrodynamics that can be put

with negligible error into one of the two categories described in the first para-

graph. Henceit is worthwhile discussing them without the added and unnecessary
complication of including reaction effects. The remaining answerto thefirst ques-
tion is that a completely satisfactory classical treatment of the reactive effects of
radiation does notexist. The difficulties presented by this problem touch one of

the most fundamental aspects of physics, the nature of an elementary particle.

Although partial solutions, workable within limited areas, can be given, the basic
problem remains unsolved.

In quantum mechanics, the situation at first appeared worse, but develop-

ment of the renormalization program of quantum field theory in the 1950s led to
a consistent theoretical description of electrodynamics (called quantum electro-

745
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dynamics or QED,the interaction of electrons and positrons with electromag-
netic fields) in terms of observed quantities such as mass andstatic charge. A

weak-coupling theory (@ ~ 1/137), QED has proven remarkably successful in
explaining to amazing accuracy the tiny radiative corrections observed in preci-
sion atomic experiments (Lamb shift, anomalous magnetic moments, etc.) by
calculating to higher and higher orders in perturbation theory. Morerecently,

the success has been extended to weak andstronginteractions as well within the

standard model, sketchedbriefly at the beginning of the Introduction. Unfortu-
nately, the strong interactions are not really amenable to accurate calculations
via perturbation theory.

In this chapter we address only someof the classical aspects of radiation

reaction.

The question of why many problems can apparently be handled neglecting
reactive effects of the radiation has the obvious answerthat such effects must be
of negligible importance. To see qualitatively when this is so, and to obtain
semiquantitative estimates of the ranges of parameters where radiative effects
are or are not important, we need a simple criterion. One such criterion can be

obtained from energy considerations. If an external force field causes a particle

of charge e to have an acceleration of typical magnitude a for a period of time

T, the energy radiatedis of the order of

2e7a°T
Erad

30

(16.1)

from the Larmor formula (14.22). If this energy lost in radiation is negligible
compared to the relevant energy Ey of the problem, we can expect that radiative

effects will be unimportant. But If E,,g = Eo, the effects of radiation reaction will

be appreciable. The criterion for the regime whereradiative effects are unim-
portant can thus be expressed by

Evaa << Ep (16.2)

The specification of the relevant energy Ey demandsa little care. Wedistin-
guish two apparently different situations, one in which the particle is initially at
rest and is acted on by the applied force only for the finite interval 7, and one

wherethe particle undergoes continualacceleration,e.g., in quasiperiodic motion

at some characteristic frequency w. For the particle at rest initially, a typical

energy is evidently its kinetic energy after the period of acceleration. Thus

 

Ey ~ m(aTY

Thecriterion (16.2) for the unimportance of radiative effects then becomes

2 eaT
5S ma’T?

or

2 e
T > -—

3 mc

It is useful to define the characteristic time in this relation as

2 &
== 16.3

3 mc? ( )
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Then the conclusionis that for time T long compared to 7 radiative effects are
unimportant. Only when the force is applied so suddenly and for such a short
time that T ~ 7 will radiative effects modify the motion appreciably.It is useful
to note that the longest characteristic time 7 for charged particles is for electrons
and that its value is 7 = 6.26 X 10°** s. Thisis of the order of the time taken for
light to travel 10~'? m. Only for phenomena involving such distances or times
will we expect radiative effects to play a crucial role.

If the motion of the chargedparticle is quasiperiodic with a typical amplitude
d and characteristic frequency wp», the mechanical energy of motion can be iden-
tified with E, andis of the order of

Eo ~ mwed*

The accelerations are typically a ~ wd, and the time interval T ~ (1/a)). Con-
sequently criterion (16.2)is

2e7*wid?

3c?wo

or (16.4)

WoT << 1

K< mud?

where 7 is given by (16.3). Since wo' is a time appropriate to the mechanical
motion, again wesee that, if the relevant mechanical time intervalis long com-
pared to the characteristic time 7 (16.3), radiative reaction effects on the motion
will be unimportant.

The examples of the last two paragraphs show that the reactive effects of
radiation on the motion of a charged particle can be expected to be importantif
the external forces are such that the motion changes appreciably in times of the
order of 7 or over distances of the order of cr. This is a general criterion within
the frameworkof classical electrodynamics. For motionsless violent, the reactive
effects are small enough to have a negligible effect on the short-term motion.
Their long-term, cumulative effects can be taken into accountin an approximate
way, aS we see immediately.

16.2 Radiative Reaction Forcefrom Conservation ofEnergy

The question nowarises as to how to include the reactive effects of radiation in
the equations of motion for a chargedparticle. We begin with a simple plausibility
argument based on conservation of energy for a nonrelativistic charged particle.
A more fundamental derivation and the incorporation of relativistic effects are
deferred to later sections.

If the emission of radiation is neglected, a charged particle of mass m and
charge e acted on by an external force F.,, moves according to the Newton equa-
tion of motion:

mV = Fox (16.5)
Since the particle is accelerated, it emits radiation at a rate given by the Larmor
power formula (14.22),

e-

3P(t) =

G
W
1
h

(v)° (16.6)
Cc
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To account for this radiative energy loss and its effect on the motion of the
particle we modify the Newton equation (16.5) by adding a radiative reaction
force Fyaa:

mv = | + Fad (16.7)

While F,.4 1s not determined at this stage, we can see some of the requirements

it ‘“‘must”’ satisfy:

F,.q “must” (1) vanish if Vv = 0, since then thereis no radiation:

(2) be proportional to e’, since (a) the radiated poweris pro-
portional to e*, and (b) the sign of the charge cannotenter

in radiative effects;

(3) in fact involve the characteristic time 7 (16.3), since that is
apparently the only parameter of significance available.

We determine the form of F,,4 by demanding that the work donebythis

force on the particle in the time interval t, < t < t, be equalto the negative of

the energy radiated in that time. Then energy will be conserved, at least over the

interval (t;, tf). With the Larmorresult (16.6), this requirementis

Lt Lt2 2 2 e-

J F..g° V dt = -| gov val

The secondintegral can be integrated byparts to yield

2
Lt L2 zefy e-

J Fea svar= 25 _ vival 3 a WY)
ty

 ty

If the motionis periodic or such that (V- v) = 0 att = ¢, and t = b, we may write

ty 2
Ze. _

J [Fas 259) -var=0

Then it is permissible to identify the radiative reaction force as

2 2

< ¥ = mri (16.8)Frad =
o 3¢

The modified equation of motion then reads

mv — TV) = Foy (16.9)

Equation (16.9) is sometimes called the Abraham—Lorentz equation of mo-
tion. It can be considered as an equation that includes in some approximate and

time-averaged waythe reactive effects of the emission of radiation. The equation

can becriticized on the groundsthatit is second orderin time,rather thanfirst,

and therefore runs counter to the well-known requirements for a dynamical equa-
tion of motion. This difficulty manifests itself immediately in ‘“runaway’’ solu-

tions. If the external force is zero, it is obvious that (16.9) has two possible
solutions,

V(t) = {0

where a is the acceleration at ¢ = 0. Only the first solution is reasonable.

The method of derivation showsthat the second solution is unacceptable, since
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(v-v) # 0 at ¢, and 4,It is clear that the equation is useful only in the domain
wherethe reactive term is a small correction. Then the radiative reaction can be

treated as a perturbation producing slow or small changesin the state of motion

of the particle.

An alternative to (16.9) can be obtained by using the zeroth-order equation
of motion, mv = F.,,, to evaluate the radiation reaction term. The resulting

equation,

AFox¢

dt
 mv =F. + 7

aF
= F.,, + |ee + (v- Ve (16.10)

is a valid equation of motion without runaway solutions or acausal behavior.It

is a sensible alternative to the Abraham—Lorentz equation for the classical re-
gime of small radiative effects. It also emerges from a different starting point—
see G. W. Ford and R. F. O’Connell [Phys. Lett. A, 157, 217 (1991)]. Relativistic
generalizations of (16.9) and (16.10) can be constructed—see Problems 16.7 and
16.9.

To illustrate the use of (16.10) to account for small radiative effects, we
consider a particle moving in an attractive, conservative, central force field. In
the absence of radiation reaction, the particle’s energy and angular momentum

are conserved and determine the motion. The emission of radiation causes
changes in these quantities. Provided the accelerations are not too violent, the

energy and angular momentum will change appreciably only in a time interval
that is long comparedto the characteristic period of the motion. Thus the motion

will instantaneously be essentially the same as in the absence of radiative reac-

tion. The long-term changes can be described by averages over the particle’s

unperturbed orbit.
If the conservative central force field is described by a potential V(r), the

acceleration, neglecting reactive effects,1s

—1/dV\r
y= — |— ]- 16.11
. m (=) r ( )

By conservation of energy, the rate of change of the particle’s total energy is

given by the negative of the Larmor power:

dE -2e.., 2e2 (dv\PaO = yes (Gdt 30 3m°c° dr

With the definition of 7 (16.3) this can be written

2
dE tT (dVa om (=) (16.12)

Since the change in energy is assumedto be small in one cycle of the orbit, the

right-hand side may be replaced by its time-averaged value in terms of the
Newtonian orbit. Then we obtain

dE + /(dv\

(Gi) ~ in (S) C619)
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The secular change in angular momentum can be found by considering the

vector product of (16.10) with the radius vector r. Since the angular momentum

is L = mr X vy,wefind

L dF...
—— rX F.., + tr xX a =r X (v- VDF (16.14)

wherethe second form results because the force is central and time independent.

With (16.11), the right-handside of (16.14) is found to be

dV dV
mr X (v- V)F.., = Tr X (-*),=| (16.15)

r dr

With the average of this torque over the slowly changing orbit, the secular rate

of change of angular momentum can bewritten as

dL tT /1 dV
—) =-—(-—)L 16.16
(4) m ( ~) ( )

Note that this result for the decay of the particle’s angular momentumis exactly
the negative of the rate one calculates for the angular momentum radiated in
electric dipole radiation (Problem 9.9).

Equations (16.13) and (16.16) determine how theparticle orbit changesas a
function of time because of radiative reaction. Although the detailed behavior
depends on the specific law of force, some qualitative statements can be made.
If the characteristic frequency of motion is wp, the average value in (16.16) can

be written

T ( * T 5 5
—_ {7 ~ — INWo = WoT

m \r dr m

with some dimensionless numerical coefficient of the order of unity. This shows
that the characteristic time over which the angular momentum changesis of the
order of 1/(woT)wo. This time is very long compared to the orbital period 27/9,
provided wor << 1. Similar arguments can be made with the energy equations.

These equations including radiative effects can be used to discuss practical

problems such as the moderation time of a muor pi meson in cascading from an
orbit of very large quantum number around a nucleus down to the low-lying

orbits. Over most of the time interval the quantum numbersaresufficiently large
that the classical description of continuous motion is an adequate approximation.
Discussion of examplesofthis kindis left to the problems.

16.3 Abraham-Lorentz Evaluation of the Self-Force

The derivation of the radiation reaction force in Section 16.2, while plausible, is
certainly not rigorous or fundamental. The problem is to give a satisfactory ac-

count of the reaction back on the charged particle of its own radiation fields.
Thus any systematic discussion must consider the charge structure of the particle

and its self-fields. Abraham (1903) and Lorentz (1904) madethefirst attempt at
such a treatment by trying to make a purely electromagnetic modelof a charged

particle. In the beginning, our discussion is patterned after that given by Lorentz
in his book, Theory of Electrons (note 18, p. 252).



Sect. 16.3 Abraham—Lorentz Evaluation of the Self-Force 751

Let us consider a single charged particle of total charge e with a sharply
localized charge density p(x) in the particle’s rest frame. The particle is in external
electromagnetic fields, Eex:(x, ), Bexi(x, 2). We have seen in Sections 6.7 and 12.10

that the rate of change of mechanical momentum pluselectromagnetic momen-

tum in a given volume vanishes, provided there is no flow of momentum out
of or into the volume. Abraham and Lorentz proposed that the apparently

mechanical momentum of a charged particle is totally electromagnetic in

origin. Here we take the more conservative position that the particle’s momen-
tum is partly mechanical, but with an electromagnetic contribution. Then,if G is
the total electromagnetic momentum, the conservation of momentum reads,

dp) dG _
at }mech dt

or equivalently in terms of the Lorentz force density (12.121),

1
(2) = | (ve +-Jx B) d3x (16.17)
dt mech C

In this equation the fields are the total fields, and the integration is over the

volumeof the particle.

In order that (16.17) take on the form of the Newton equation of motion

dp dp dp“Fa {2 4 {[— — F- 16.18
dt ( dt ). ( dt ). ext ( )

we decomposethe total fields into the external fields and the self-fields E,, B,

due to the particle’s own charge and currentdensities, p and J:

E — Fext + E,

B = B.,, + B,

Then (16.17) can be written as the Newton equations of motion, with the external

force as

1
F., = | (r +=Jx Ba) d3x (16.19)

C

and the electromagnetic contribution to the rate of change of momentum ofthe

particle as

d 1
(2) =-| (ve. tox B.) dx (16.20)

Provided the external fields vary only slightly over the extent of the particle, the

external force (16.19) becomes just the ordinary Lorentz force on a particle of

charge e and velocity v.

To calculate the self-force [the integral on the right-handside of (16.20)] it
is necessary to have a modelof the charged particle. We will assumefor simplicity

that:

the particle is instantaneously at rest;

the charge distribution is rigid and spherically symmetric.

Our results will then necessarily be restricted to nonrelativistic motions and will
lack some Lorentz transformation properties.
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For a particle instantaneously at rest (16.20) becomes

Theself-field can be expressed in termsof the self-potentials, A and ®,so that

(2B) - | p(x, A) VG. t) + _ (x, 0) dx (16.22)

The potentials are given by A® = (®, A):

1 J® , t’Arta, 1) = fMsgy A629
with J* = (cp, J) and R = x — x’.

In (16.23) the 4-current must be evaluated at the retarded time tr’. This differs
from the time ¢ by a time of the order of At ~ (a/c), where a is the dimension of
the particle. For a highly localized charge distribution this time interval is ex-
tremely short. During such a short time the motion of the particle can be assumed
to change only slightly. Consequently it is natural to make a Taylorseries
expansion in (16.23) around the time t’ = ¢. Since [---],., means evaluated at
t' = t — (Ric), any retarded quantity has the expansion

Fe= yy (“) © dee, (16.24)

With this expansion for the retarded 4-current in (16.23), expression (16.22)
becomes

dp = = 3 | 3 q” 4 R"! od(x’, t)
— = —— fd d°x' — ’t) VRC + —-*
(a ). » n! c” * XP1) at” P(x, #) C? ot

Consider the n = 0 and = termsin the scalar potential part (the first term in

the square bracket) of the right-hand side. For n = 0 the term is proportional to

| d°x | dx’ p(x, t)p(x’, t) v(;)

This is just the electrostatic self-force. For spherically symmetric charge distri-
butions it vanishes. The n = 1 term is identically zero, since it involves VR"*.
Thus the first nonvanishing contribution from the scalar potential part comes
from n = 2. This means that we can change the summation indices so that the
sum now reads

dp - (—1)"
, 1 gntt

(2) = x, nl c@t2 | d?x | d°x ee t)R 1 nr f .

where (16.25)

“er Pe, VR"
CTS IO+90Dat DR

  

 

With the continuity equation for charge and current densities, the curly

bracket in (16.25) can be written

{- . } = I(x’, t) _ —— Vv’: J(x’, t)
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In the integral over d*x’ we can integrate the second term by parts. We then

have

 
R 13 1 RI Vv’. _ [a ' -V’ R"™7 1

| d-x > J=+ > Xx (J ) R

_— tf ate RO —

n+ 2

This meansthat the curly bracket in (16.25) is effectively equal to

{.--} = (" + 5) t) — (" : ) J— (16.26)

          

  
n+ 2

For a rigid charge distribution the currentis

J(x’, t) = p(x’, t)v(t)

If the charge distribution is spherically symmetric, the only relevant direction in
the problem is that of v(t). Consequently in the integration over d°x and d°x’
only the componentof (16.26) along the direction of v(t) survives. Hence (16.26)
is equivalent to

2
+1 n-1/R-v

oT = pe, avo] + 2 - 223 (Re) |

Furthermoreall directions of R are equally probable. This meansthat the second
term above can be replaced by its average value of 4. This leads to the final
simple form of our curly bracket in (16.25):

[---} = 25(x’, t)v(t) (16.27)

With (16.27) in (16.25) the self-force becomes, apart from neglected nonlinear
terms in time derivatives of v (which appear for n = 4),

(=) -y CU? aya d>x' | d°x p(x')R"'p(x) (16.28)
dt Jom Hy CP? Bn! att!

To proceed further it is convenient to introduce Fourier transforms in time
for the external force, the velocity, and the self-force.* The Fourier transform of
the velocity v(w) is defined by

   

  

v(t) = =| v(w)e*” daw

andits inverse, and similarly for the others.If (dp/dt)mech = Mo(dv/dt), the Fourier
transform of the force equation (16.18) is

—iwM(o)v(@) = F.x:(@) (16.29)

wherethe “‘effective mass’? Mue is

sy Voy"M(w) = mo +35 rc dx | d°x' p(x)R”'p(x’)
x nh.

*Here we parallel quantum-mechanical discussions of radiation reaction in the correspondencelimit:
Nonrelativistic theory, E. J. Moniz and D. E. Sharp, Phys. Rev. D 10, 1133-1136 (1974); fully rela-
tivistic quantum theory (QED)ofelectrons and positrons, F. E. Low, Ann Phy. (N.Y.). 265, No. 2
(1998).



754 Chapter 16 Radiation Damping, Classical Models of Charged Particles—G

The sum over n can be recognized as e’’*"/R, the outgoing wave Green function.
Hence M(w) can be written

iwRi/c

M(w) = mo + a | d°x | d°x' p(x) R p(x’) (16.30) 

The spherically symmetric average of e’°*’/R is

eieRic _@ , fore wr.

Cc C Cc

For somespecific spherically symmetric charge distributions, the spatial integrals
in (16.30) may be performedto give an explicit closed form for M(w). [See Prob-
lem 16.4.]

Alternatively, we can introduce the spatial Fourier transform (form factor)
of the charge density to obtain a different expression for M(w), a ‘“‘spectral rep-
resentation” familiar in quantum mechanics. We define the form factor f(k)
through the three-dimensional transform

 

€ 3 ik-xp(x) = ony | d?k f(k)e (16.31) 

where e is the total charge. For a point charge, f(k) = 1. By straightforward
substitution and integration, (16.30) is transformed to

eas, 1FG?M(w) mo + 3q3c | d°k 2 — (wiley (16.32)

where w has a small positive imaginary part.
Equations (16.29) and (16.32) are an almost complete solution for the clas-

sical nonrelativistic motion of an extended chargedparticle, including radiation
reaction. [‘‘Almost,”’ because we neglected small nonlinear terms in higher pow-
ers of the velocity and we assumed spherical symmetry.] In the limit w — 0,
(16.32) is M(O) = m, the physical massofthe particle, including the contribution
of the self-fields:

 

e FC) Fm= Mo + 372 | d°k 2 (16.33)

In terms of m, the effective mass M(w) can be written

ew | | F(K) |M(w) =m +> 574 dvk 16.34(w) =m 3ar2c4 Kk2 = (wc ( )

We now commenton the solution we have obtained for the motion of an

extended charged particle, including radiation reaction:

1. Theself-field contribution to the massin (16.33) diverges linearly at large k
without the form factor, reflecting the fact that the self-fields have an elec-

trostatic energy of the orderof e’/a, where a is a scale parameter determining

the size of the charge distribution.

2. The frequency-dependentintegral in (16.34) is more convergent by a factor
of k* than the integral in (16.33) and converges atlarge k, even if f(k) = 1
(point charge).
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3. Fora point charge, the integral in (16.34) can be performedeasily by contour
integration to yield

[M(o)|poine = (1 + iwr) (16.35)

Insertion of this expression into (16.29), followed by an inverse Fouriertrans-
form, leads back to the Abraham—Lorentz equation, (16.9). The zero in the
upper half-complex-w plane at w7 = i in (16.35) signals the runawaysolutions
of that equation.

4. Fora sufficiently convergent form factor, the integrals in (16.33) and (16.34)
are well behaved, with zeros of M(@), if any, only in the lowerhalf-w-plane.
[See Problem 16.4.] The particle’s response to external forces is causal and
without peculiar behavior such as runawaysolutions. The particle’s extent
must be of the order of cr or greater, corresponding roughly to the classical
charged particle (electron) radius, ro = e*/mc’.

5. While the nonrelativistic approximation causes conceptual difficulttes—the
self-force contribution in (16.33) is actually 4/3c* times the electrostatic
self-energy, rather than 1/c” times it—these are removable by morecareful

arguments. [An early relativistic treatment was given by Fermi*; a covariant
description of the electromagnetic parts of the self-energy and momentum is
presentedin Section 16.5.]

6. A quantum-mechanical treatment of a nonrelativistic extended charged par-
ticle in interaction with electromagnetic fields gives essentially the same re-
sults, (16.29) and (16.32), for the expectation value of the appropriate op-
erator (Moniz and Sharp, op. cit.). The particle’s Compton wavelength,
himc ~ 137rg plays the formal role of the scale parameter a. Theself-field

contribution to the massis then small (or zero, depending on howlimits are
taken); the particle’s motion is causal; no preacceleration or runaway solu-

tions occur. Moniz and Sharp endorse (16.10) as the most sensible form of a
classical equation of motion with radiation reaction, to be considered ap-
proximately valid when the reactive effects are small.

16.4 Relativistic Covariance; Stability and Poincaré Stresses

So far our discussion of the Abraham—Lorentz modelof a classical charged par-

ticle has been nonrelativistic, with apologies for the paradox ofdifferent electro-
magnetic ‘‘masses’’ from electrostatic and Lorentz force (dynamic) consider-
ations—the infamous 4/3 problem,first noted by J. J. Thomson (1881). The root
of the difficulty lies in the nonvanishing of the 4-divergence of the electromag-
netic stress tensor (12.113). In contrast to source-free fields, the stress tensor 0°?
of any charged particle model has the divergence (12.118),

9,0°° = —FJ,/lc = —fP (16.36)

where f® is the Lorentz force density (12.121). As stated in Problem 12.18, only
if the 4-divergence of a stress tensor vanishes everywheredothe spatial integrals

*E, Fermi, Z. Phy. 24, 340 (1922), or Atti. Accad. Nazl. Lincei Rend. 31, 184, 306 (1922).
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of O° transform as a 4-vector. Thus the usual spatial integrals at a fixed time of
the energy and momentum densities,

1 1
= — (E* + B’ = — (EX B 16.3

may be used to discuss conservation of electromagnetic energy or momentum in
a given inertial frame, but they do not transform as components of a 4-vector
unless the fields are source-free.

AsPoincaré observed in 1905—1906,* a deficiency of the purely electromag-
netic classical models is their lack of stability. Nonelectromagnetic forces are
necessary to hold the electric charge in place. Poincaré therefore proposed such
forces, described by a stress tensor P** to be added to the electromagnetic 0°

to give a total stress tensor S$“,

SeP = OF + Pr

The particle’s total 4-momentum is then defined to be

cP* = | S°° dx (16.38)

wherethe integralis overall 3-spaceata fixed time. The right-handside of (16.38)
transforms as a 4-vector provided

a5 = 0 (16.39)

or equivalently, provided

| SOT ByO = 0 (16.40)

with 7, 7 = 1, 2, 3, and the superscript (0) denoting the rest frame (P = 0).
Condition (16.40) is just the statement that the total self-stress (in the three-
dimensional sense) must vanish—the condition for mechanical stability.

Poincaré’s solution provides stability and also, because of the generality of
the postulates of special relativity, guarantees the proper Lorentz transformation
properties for the now stable chargedparticle. A criticism might be that Poincaré
stresses are not knowna priori in the way that ©°8 is known forthefields. If we
think, however, of macroscopic charged objects, for example a dielectric sphere
with charge on its surface, we know that there are ‘‘nonelectromagnetic”
forces—polarization and quantum-mechanical exchangeforces(actually electro-
magnetic at the fundamental level)—that bind the charge and give the whole
system stability. It is not unreasonable then to include Poincaréstresses in our
classical models of charged particles, or at least to remember that care must be
taken in discussion of the purely electromagnetic aspects of such models.

It is of interest to note that for strongly interacting elementary particles one
has a concrete realization of the Poincaré stresses through the gluon field. Con-

*H. Poincaré, Comptes Rendue 140, 1504 (1905); Rendiconti del Circolo Matematico di Palermo 21,
129 (1906). The second reference is translated, with modern notation, in H. M. Schwartz, Am. J.
Phys. 39, 1287 (1971), 40, 862, 1282 (1972).
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sider the proton, for example. Its three charged quarks are bound together by

the gluon field in a stable entity with an extended charge distribution. Setting

aside the internal structure and stability of the quarks themselves, the electro-

magnetic stress tensor @°° must be combined with the “Poincare stress’’ tensor

02° of the gluonfield to give a divergence-free total stress tensor. The main part

ofthe mass of the proton comes from the strong interactions, not from the elec-

tromagnetic contribution to the self-energy—the neutron and proton have the

sameinternal strong interactions, but different electromagnetic; their massesdif-

fer by only 0.14%(andin the opposite from expected sense).

In the next section we examine covariant definitions of the total energy and

momentum of electromagnetic fields, even in the presence of sources. These

definitions have some advantages when purely electromagnetic issues are con-

sidered, but in general the nonelectromagnetic forces or stresses must not be

forgotten.

16.5  Covariant Definitions ofElectromagnetic Energy

and Momentum

As emphasized by Rohrlich, even if the electromagnetic stress tensor ©°* is not

divergenceless,it is possible to give covariant definitionsof the total electromag-

netic energy and momentum ofa system offields. The expressions

1
EO == | (E”” + B’”) d?x'

S77
(16.41)

P? = E’ x B’ d°x’
4ac

can be considered to define the energy and momentumata fixed time fr’ in some

particular inertial frame K’, to be specified shortly. The integrands in (16.41) are

elements of the second-rank tensor 0°°. Evidently we must contract one of the

tensor indices with a 4-vector, and the 4-vector must be such asto reduce to d3x!

in the inertial frame K’. We define the timelike 4-vector,

do® = n® d?a

where d°o is an invariant element of three-dimensional ‘‘area’”’ on a spacelike

hyperplane in four dimensions. The normalto the hyperplane n® has components

(1, 0, 0, 0) in K’. The invariant d°o is evidently d’°a = ng do® = d°x’. If the

inertial frame K’ moveswith velocity cB with respect to an inertial frame K, then

in K the 4-vector n*is

n® = (y, YB) (16.42)

A general definition of the electromagnetic 4-momentum in any frame1s

therefore

cP? = | QF doz = | Ong d?a (16.43)
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In K’, ng has only a time component. With d*°o = d*x', this covariant expression
reducesto (16.41). But in the frame K, ng = (y, — yB) and the covariantdefinition
has time and space components,

cP° y| w—veg) do

(16.44)

cPi = y| (cg + TY?B') Bo

where T{”is the 3 X 3 Maxwell stress tensor (6.120). If desired, the invariant
volume element d*o = d°x' can be suppressed in favor of the volume element
d°x in the frame K by meansof d°x' = y d°x (integrationat fixed time 1).

The definitions (16.43) or (16.44) of the electromagnetic 4-momentumafford
a covariant definition starting from the naive expressions (16.41) in any frame
K’. Different choices of the frame K’ lead to different 4-vectors, of course, but

that is no cause for alarm.* There is a natural choice of the frame K’ if the
electromagnetic mass of the fields is nonvanishing, namely, the rest frame in
which

1 |po x BO g3x= 0
4ac

We denote this frame where the total electromagnetic momentum P* is zero as
K®and attach superscripts zero on quantities in that frame to makeit clear that
it is a special choice of the frame K’. According to (16.41) the electromagnetic
rest energy 1s then

ES) = m.c? = = | [EO? + BO?) dx© (16.45)
7

In the frame K the electromagnetic energy and momentum are given by (16.44)

where nowv is the velocity of the rest frame K™in K.
For electromagnetic configurations in whichall the chargesare at rest in some

frame (the Abraham—Lorentz model of a charged particle is one example), the

general formulas can be reduced to more attractive and transparent forms.
Clearly the frame where all the charges are at rest is K, since there all is
electrostatic and the magnetic field vanishes everywhere in 3-space. For such
electrostatic configurations, the magneticfield is given without approximation in

the frame K by (11.150):

B=BxE

The integrandin the first equation of (16.44) is thus

1 1
(u—v+g) = 2 (E+ B’) — 7B: (Ex B)

1 2 2 J. .
= 9 (E + B*) 7, (Bx E) B

1 2 2= 9 (BE — B’)

*One possible choice for K’ is the “laboratory” where the observeris at rest. The discussion of the
conservation laws in Chapter 6 may beinterpreted in this way.
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a Lorentz invariant. Thus the energy in K is given by

F2 __ B2 F2 __ B2

cP? = y|eda= vy |-d°x (16.46)
S41 S41

Similarly, the second equation in (16.44) becomes

E’ — B’ E? —- Bw= p(EPaee- yp f[ELPMae asa
S77 S77

With the invariant integrand (E* — B’) it is clear that we have a 4-vector
P& = (ym.c, ym.v), where the electromagnetic mass1s

 = fe - yado= 4, | Bmae”Me = 3 (E BY) do= E“”* d-x (16.48)
817

in agreementwith (16.45).
The equation (16.46) for the energy has been used by Butler* to discuss the

Trouton—Noble experiment, a test of special relativity involving the question of
a torque on a charged suspended capacitor moving with respect to the ether.
Pauli (Section 44) gives a clear discussion of the Trouton—Noble paradox with
emphasis onthe early analyses of Lorentz (1904) and von Laue (1911). Ina paper

that includes as a preamble the proof of the assertion of Problem 12.18,

Teukolsky‘ has revisited the explanation of the Trouton—Noble experiment. He
stresses that the removal of the paradox requires consideration of the nonelec-
tromagnetic forces for stability, but that it is a matter of choice whether the
balancing of electromagnetic and nonelectromagnetic forces is done in a mani-
festly covariant way or not. All that matters is that the total stress tensor S“P be

divergenceless.

16.6 Covariant Stable Charged Particle

A. The Model

Anilluminating example of the considerations of Sections 16.4 and 16.5 is
provided by a model of Schwinger’ for a classical stable spinless chargedparticle.
With its consideration of the Poincaré stresses needed for stability, it may also

be viewed as a prototype for the discussion of macroscopic charged mechanical
systems. The modelis, in fact, a modern generalization of Poincaré’s work 77
years earlier [see the middle paper of Schwartz’s translation (op.cit.)|. In the rest
frame K’ of the particle, the 4-vector potential is defined as

D’ = ef(r’), A’ =0

with f(r?) an arbitrary well-behaved function but with the limiting form f(r?) >

1/r to define the total charge of the particle as e. We now consider a laboratory
frame K in which the particle moves with velocity v and define the 4-velocity

*J. W. Butler, Am. J. Phys. 36, 936 (1968).

'S. A. Teukolsky, Am. J. Phys. 64, 1104 (1996).
*J. Schwinger, Found. Phys. 13, 373 (1983).
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(divided by c), v* = (y, yB) = U%c (11.36), with v°v, = 1. Weintroduce a
4-vector coordinate €* perpendicular to v%,

é° = ~* — (v°x,)v", vD°: E = v&, = (0) (16.49)

Then we define the invariant coordinate variable z by

z=-@ = -€-€&=—-x-xt+(v-xy (16.50)

In the rest frame K’, €° = 0, € = x, and z becomesz = r’.
The covariant generalization of the rest-frame potentialsis

A“ = ev"f(z) (16.51)

To evaluate the fields we need

aM(z) = d(—§- €) = —2€&"
Then we have “A? = —2eé*v*f’, where f’ = df(z)/dz. [Parenthetically, we note
that with a = 6 (and summed) weobtain the Lorenz condition on the potentials
because €-v = 0.| The field-strength tensoris

Fe? = —2e(é*y8 — éFy)f' (16.52)

The current density is obtained from the Maxwell equations,

je = rc dF = 5 I3f’ + 2zf"Iv? (16.53)

B. The Electromagnetic and Poincaré Stress Tensors; Arbitrariness

The symmetric stress-energy-momentum tensor (12.113) is easily found to
be

2

a =< (peg + curve — 5 (16.54)
TT

and its divergence (16.36)is

1 2

d.0°° = —— FP, = —— gALf'(3f" + 22h") (16.55)
TT

The Lorentz force density [negative of the right-hand side of (16.55)] must
be balanced by Poincaré stresses for stability. Schwinger, noting the derivative
relation 0°G(z) = —2€°G’, defines a function t(z) whose derivativeis

dt(z) CP ares 1 pnt'(z) = = ——— [3(f’)? + 2zf'f’] (16.56)
dz 277

He then defines the Poincaré stress tensor to be

PoP = g® f(z) (16.57)

with its divergence, d,P°° = d,g°°t(z) = —2€*t'. But this is just the negative of
the right-hand side of (16.55)! We thus have

a(O°? + P*?)= 0

Thetotal stress tensor S*° = ©°° + P** is divergenceless; the spatial integrals of
S°° transform as a 4-vector. The modelis covariant andstable.
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Before proceeding, we note an arbitrariness in the Poincaré stresses. Any
nonelectromagnetic stress tensor with a vanishing divergence may be added to

P°*, Because vu « € = 0, it follows that 0,[v°v® s(z)] = 0. This means that we may
add AP*? = v°v8 s(z), with s(z) arbitrary, without changing the stability or co-
variance of the model. Wewill, of course, change the energy and momentum of
the particle, as is illustrated below for our special choice of the additional term,

P8 —> TI? = (g%8 + huv*) t(z) (16.58)

with h constant. Schwinger discusses the two cases, h = 0 and h = —1. The
componentsof thetotal stress tensor S* are explicitly

5° = @° + (1+ hy’)t
S20 _— e” 4 hy’Bit

showing that when h = 0, S°° = (0° + 2) and S” = ©”in all frames. When
h = —1, S°° = ©°° in the particle’s rest frame. Schwinger’s original choice of
Poincaré stresses (16.57) is in some sense the minimal and natural choice, tied
directly to the electromagnegicfield configuration. Note that the terms propor-
tional to v°v® contribute to the energy in the rest frame, but notto the stabilizing
forces (from the space parts of II**). Poincaré had a spherical shell of charge
with an arbitrary “pressure” inside, equivalent to our arbitrary s(z) above.

C. The Poincaré Function t(z) and Contributions to the Mass

From the first-order differential equation (16.56) and the physical require-
ment that ¢(z) vanish at infinity, an integration by parts leads to

a e*y=] (rye ae’ - Lay (16.59)
T Jz 277

For specific forms of the potential function f(z) it is a straightforward matter of
integration to find f(z). It is left as an exercise to show for a spherical shell of
charge of radius a and a uniform volumedistribution of charge of the same radius

that

e @(a° — z) shell of charge
(z) = 87a‘ |so — z)(1 — z/la’) for uniform density

The shell of charge provides the most dramatic illustration of the stabilizing effect
of the Poincaré stresses. They exist only inside the sphere. Because there are no
fields inside the sphere, the electromagnetic stress exists only outside the sphere
and gives a destabilizing outward force per unit area at r = a* equal to e*/87a*
in the rest frame. At r = a, the Pioncaré stress provides the stabilizing inward
force—the surface layer of charge feels no net force. Continuity across an inter-
face of the total stress tensor contracted with the unit normalis the more general
criterion for no net force at the interface.

The electromagnetic contribution to the mass of the particle can be found
from (16.48) directly or from either the rest-frame integral of @°° or J°A°/2c. In
the first way, we need E©” = 4e? - z(f’)*. Then wefind

mC? = e7 | z7(f') dz (16.60)
0
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The contribution to the rest mass from the Poincaré stresses is

mpc’ = (1 + h) | t(z) d°x’

Integration over angles, then substitution of (16.59) for ¢(z) and an integration
by parts leads to the result,

mc? = 3(1 + h)m.c? (16.61)

The total mass is therefore

M=m, + m, = 3(4 + h)m. (16.62)

Note that when h = 0 the massis 4m,/3, the ‘“‘dynamic”’ result, while if h = —1,
M = m,, the electrostatic result. On the other hand, if h >> 1, most of the mass
is of nonelectromagnetic origin. Neither the 4/3 nor the unity proves anything
about the covariance of the energy and momentumofthe particle. This property
is guaranteed by the divergence-free S°*, as we now demonstrate.

D. Demonstration of the Covarianceof the Particle’s Energy
and Momentum

The evaluation of the spatial integrals of @°°, 0” and I1°°, ITand their sums
at fixed time x° in the laboratory frameillustrates the conspiracy between the

electromagnetic and Poincaré stresses to assure the proper Lorentz transforma-

tion properties. We begin with ©°°:

| -(e"7 + °Z— iepy
e-

@° —~ _

TT

Since we are to integrate 0°" over 3-space at fixed time in K, we need (é°) and
z evaluated explicitly in K. If we take the 3-axis parallel to B, from the definition
(16.49) and v - € = 0, we find €° = Bé&* and & = y?(x? — Bx®). With (é')? + (é?)
= (x')* + (x’)? = p*, we have

z= p° 4 y(x? _ Bx°)?

If we define x3 = y(x* — Bx°), whichis just the 3-coordinate in K’, the volume

element d°x can be written d*x = d*x'/y. Putting the pieces together, we have
the electromagnetic part of the energy as

B= < J ay (FO)POBo)+
Averaging over angles introducesa factor of [(3)y*B* + 5]r’? instead ofthe square
bracket. With the definition of m, through (16.60), we obtain

4 1
Ebo=\rzy- = ° 16.63e (: Y Emacs (16.63)

A corresponding computation of the integral of ©°° gives the electromagnetic
momentum

4
cP. = | @°? dex = 5 yBm.c? (16.64)

Clearly the electromagnetic contributions alone do not transform properly.
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The nonelectromagnetic contributions to the energy and momentum are

 

 

E [ ne d°x (1+ hy’) | t( ae I ( + hm c*= = Z = — — c

: ” y 3\ly’ (16.65)

30 43 2 dx! 2cP, = II dx = hy ®B tz) = 3 hyBm.c
Y

Neither do the Poincaré contributions transform properly. The total stress tensor

contributions, the sumsof the separate contributions, do, however, yield a proper

relativistic energy and momentum:

E = yMc’, cP = yBMc? with M = 3(4 + h)m. (16.66)

the same rest mass as found above. Schwinger’s choices of h = 0 and h = —1

were madetoillustrate that either the electrostatic mass or the “dynamic” mass
can serve as ‘“‘the mass” whenthe charge is stabilized by the Poincaré stresses.

Otherchoices of h are possible and, as noted, above, other totally arbitrary con-

tributions to the mass can be introduced without affecting the question of the

covariance of the model.
Although weestablished the 4-vector nature of energy and momentum using

the conventional definitions of the total energy and momentumbytaking 3-space
integrals at fixed time x° in the laboratory frame K,it is of interest to see how
the derivation changes if we use the definitions of Section 16.5, which yield co-
variant expressions for the separate contributions. The appropriate quantities,

according to (16.43), 16.54) and (16.58), are

2

cP% = | @*y, Boa = = y" | z(f'y? do (16.67)
TT

cPS = | 1, d’a = (1 + h)v* | t(z) d’o (16.68)

Since the integrandsandintegration are Lorentz invariants, we may evaluate the
integrals in the rest frame. From (16.60) and below, wesee that

cP% = (m,c’*)v" and cP& = 3(1 + h)(m.c’)v*

are separately 4-vectors by construction, with a sum equal to (16.66). The sim-
plicity and elegance of the use of the manifestly covariant (16.43) is apparent.
The results are, of course, the same either way.

The Poincaré—Schwinger model of a stable charged particle addresses the
issue of the Lorentz transformation properties of the particle’s energy and mo-
mentum, but doesnot attack the question of radiation reaction. For the spherical
shell model, this problem has beentreated in detail by Yaghjian* whoalsotreats
the Poincaré stresses andstability. See also Rohrlich.'

16.7 Line Breadth and LevelShift of a Radiating Oscillator

The effects of radiative reaction are of great importance in the detailed behavior
of atomic systems. Although a complete discussion involves the rather elaborate

*A_D. Yaghjian, Relativistic Dynamics ofa Charged Sphere, Lecture Notes in Physics m11, Springer-

Verlag, Berlin, New York (1992).

"PF. Rohrlich, Am. J. Phys. 65, 1051-1057 (1997).
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formalism of quantum electrodynamics, the qualitative features are apparent
from a classical treatment. As a typical example we consider a chargedparticle
boundby a one-dimensionallinear restoring force with force constant k = Mos.
In the absence of radiation damping, the particle oscillates with constant ampli-
tude at the characteristic frequency w. When the reactive effects are included,
the amplitude of oscillation gradually decreases, since energy of motion is being
converted into radiant energy. This is the classical analog of spontaneous emis-
sion in which an atom makesa transition from an excited state to a state of lower
energy by emission of a photon.

If the displacement of the charged particle from equilibrium is x(t) and
Fx = —ma@ox, (16.10) becomes

MX = —Mwox — mworx (16.69)

Because of the expected decay of the amplitude, we assume a solution of the
form

x(t) = Xe (16.70)

where @ should havea positive real part and an imaginary partclose to wyif the
radiative damping effects are small. The ansatz leads to a quadratic equation
for a,

a — Twa + wo = 0

with roots

a = tat + iaV1 — (wo7/2)? = Swat + (wy — T°)

In the last form we have expandedto order 7* in the real part. The real part of
a is 1/2, where I’ is known as the decay constant and the change Aw in the
imaginary part from w, is known asthe level shift*:

T = wor, Aw ~ —Zap7 (16.71a)

The alert reader will rightly question the legitimacy of keeping terms of order 7”
in the solution of an equationthat is an approximation valid only for small 7 (see
Problem 16.10b). In fact, if the Abraham—Lorentz equation (16.9) is used instead
of (16.10), the resulting cubic equation in a yields, to order 7’, the same I, but

[Awla, ~ —Zap7? (16.71b)

The important messagehereis that the classical level shift Aw is one powerhigher

order in wp7 than the decay constant I.

The energy of the oscillator decays exponentially as e~'’ because of radiation
damping. This meansthat the emitted radiation appears as a wavetrain with
effective length of the order of c/I’. Such finite pulse of radiation is not exactly

monochromatic but has a frequency spectrum covering an interval of orderI.
The exact shape of the frequency spectrum is given by the square of the Fourier

*The reader is invited to pause at this point and consider the decay constant I from various points
of view. One is to use the Larmor powerformula (16.6) and conservation of energy directly to relate
the time-averaged radiated power P(t) to the total energy ofthe oscillator E(t). Anotheris to ask for
the initial energy and amplitudex, of the oscillator such that [ = P/hw», correspondingto the emission
of a single photon of energy fiw. These can then be comparedto the values for a quantum-mechanical
oscillator in its nth quantum state.
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transform of the electric field or the acceleration. Neglecting an initial transient

(of duration 7), the amplitude of the spectrum is thus proportional to

1

a— 1w@

 E(@) « | eMe’dt =
0

The energy radiated per unit frequency intervalis therefore

dw) _ VU 1

dw ° 2a (@ — w — Aw)? + (1/2)
 (16.72)

where J, is the total energy radiated. This spectral distribution1s called a resonant
line shape. The width ofthe distribution at half-maximum intensity is called the

half-width or line breadth andis equal to [. Shown in Fig. 16.1 is such a spectral
line. Because of the reactive effects of radiation the line is broadened andshifted

in frequency.

The classical line breadth for electronic oscillators 1s a universal constant

when expressed in terms of wavelength:

C °
AA = 2a —T =2ace7T=12X107A

Wo

Quantum mechanically the natural widths of spectral lines vary. To establish a
connection with the classical treatment, the quantum-mechanical line width is
sometimes written as

q

where f;; is the ‘‘oscillator strength” of the transition (i — /). Oscillator strengths
vary considerably, sometimes being nearly unity for strong single-electron tran-
sitions and sometimes much smaller. For optical transitions, A ~ 4-8 X 10° A.
Thus AA/A S 3.5-1.5 X 10°° and wot = O(10~°).

The classical level shift Aw is smaller than the line width IT by a factor

@yT << 1. Quantum mechanically (and experimentally) this is not so. The reason

is that in the quantum theory there is a different mechanism for the level shift,
althoughstill involving the electromagnetic field. Even in the absence of photons,
the quantized radiation field has nonvanishing expectation values of the squares
of the electromagnetic field strengths (vacuum fluctuations). These fluctuating

  
 

 

Figure 16.1. Broadening and shifting of spectral line because of radiative reaction. The
resonantline shape has width I’. Thelevel shift is Aw.
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fields (along with vacuum fluctuations in the electron-positron field) act on the
charged particle to cause a shift in its energy. The quantum-mechanicallevelshift
for an oscillator is of the order of

Aw, (7)

~ WoT log ——
Wo hwo

as comparedto the classical shift due to emission of radiation,

 

ed
~ (@oTy

The quantum-mechanicallevel shift is seen to be comparableto,or greater than,
the line width. The small radiative shift of energy levels of atoms wasfirst ob-
served by Lamb in 1947* andis called the Lamb shift in his honor.

16.8 Scattering and Absorption ofRadiation by an Oscillator

The scattering of radiation by free charged particles is discussed in Section 14.8.
Wenow consider the scattering and absorption of radiation by bound charges,
in particular the scattering of radiation of frequency w by a single nonrelativistic
particle of mass m and charge e boundby a spherically symmetric linear restoring
force mwox. The total force acting onthe particleis (neglecting the magneticfield
term because of the assumption of nonrelativistic motion)

F = —mwx + e€eE pe’*0 0

where Eo is the magnitude and € the polarization vector of the incidentelectric
field. We introducea resistive term mI’’y in the equation of motion to allow for
other dissipative processes, corresponding quantum mechanically to other modes
of decay besides photon re-emission. With this addition, substitution into (16.10)
leads in the electric dipole approximation to the equation of motion,

E |K+ (V4 1)K + w2x = 2 (1 — iwne (16.73)
m

Here we haveneglected the (v- V) term for the incidentfield becauseit leads to
a v/c correction. The steady-state solution is

ef, (1 — iwt)e
— €">. 2. > Tr
 (16.74)

where I’, = I’ + [’ is the total decay constantor total width at resonance.
The accelerated motion givesrise to radiation fields given by (14.18),

e

Evad — 5- [mn X (nm X KX] ict

“~
|
R
O

*W.E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947).
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The scattering amplitude for scattered radiation of polarization e€’ 1s

r ‘kr—iwt4
f — E (e*” ile y% . |

or

2 2 1 _ ¢

pa O07) erg (16.75) 
Mc? wo — w* — iol,

The differential scattering cross section is the absolute squareoff:

do e? \" wo
— =|-35 me. €|? 16.76dQ (<) a — wy + a Jes | (6.70)

Wehave omitted the factor of (1 + w*r*) ~ 1 in the numerator becausethecross
section is already proportional to (ct)*. The total scattering cross section can be
written

 

 
AT2/ 2

oN | (16.77)
(w) — w°) + wT?

_— 2
Oscatt ~ oa]

Here X = c/wis the wavelength divided by 27 at resonance and I = wr is the
resonant scattering width or radiative decay constant.

The scattering cross section exhibits a resonance at w = w, with a peak value
of oR2% = 6rXQ(L/T,)’. It is proportional to w* at very low frequencies—Ray-
leigh’s law of scattering, discussed in Chapter 10. At very high frequencies
(w >> wo, I), it approaches the Thomson scattering cross section for a free
particle. Figure 16.2 shows the scattering cross section over the whole classical
range of frequencies.

The sharply resonantscattering at w = wy 1s called resonance fluorescence.
Quantum mechanically it corresponds to the absorption of radiation by an atom,
molecule, or nucleus in a transition from its ground state to an excited state with
the subsequent re-emission of the radiation in other directions in the process of
de-excitation. The factor 67X in the peak cross section is replaced quantum
mechanically by the statistical factor,

   

2J.. +1
6 7X5 4 ark ——>——-mo 8 227, + 2)

2

-————— ~~~ ~éntd (F)
|

= |

:
° |

Yr;

|
On|et —~—_—__ —__=

|

% WO a -———>

Figure 16.2 Total cross section for the scattering of radiation by an oscillator as a
function of frequency. oy is the Thomsonfree-particle scattering cross section.
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where J, and J/,, are the angular momenta of the ground and excited states, and
47X5 is the maximum allowable scattering for any single quantum state. The
remaining factors represent a sum overall final magnetic substates and an av-

erage Over initial ones, the factor 2 being the statistical weight associated with
the incident radiation’s polarizations. The classical result corresponds to J, = 0
and J,, = 1.

The total cross section, scattering plus absorption, is obtained from thescat-

tering amplitude (16.75), including the numerator factor (1 — iw) neglected in
(16.76), by meansof the optical theorem (10.139):

 

At wT(T’ + w/a
=Im|f(e’ = e, k’ = k)] = oan] C oP + ee (16.78)

The structure of the numerators in the scattering and total cross sections has a
simple interpretation. In (16.78) there is one factor of I corresponding to the
incident radiation being absorbed. This is multiplied by the sum of widthsforall

possibilities in the final state—the elastic scattering and the absorptive pro-
cesses—becauseit is the total cross section. For the elastic scattering cross section

(16.77) there are two factors of I, one for the initial and one for thefinal state.
Notethat, while the elastic scattering andtotal cross sections approach the Thom-
son limiting form at high energies, the inelastic or absorptive cross section has
only the resonant shape,vanishing as 1/w* at high energies provided I’ is energy
independent.

Just as was done in Section 7.5 in the discussion of the atomic contributions
to the polarization anddielectric constant, we can generalize the one-oscillator
model to something closer to reality by assuming that there are a number of
oscillators with resonant frequencies w,, radiative decay constants T’; = f;w;7 and
absorptive widths I’;. Then the total cross section, for example, becomes

> bn y 2 oT(T + wT7/a)

total 7 (w* —~w) + wT;,
 

With the appropriate definitions of f;, T;, and w,, this result is almost the correct

quantum-mechanical expression. Lacking are the interference terms from over-
lapping resonances. The quantum-mechanical scattering amplitude is a coherent
superposition of the contributions of all the intermediate states allowed by the
selection rules. Usually the states are narrow and separated by energy differences

large compared to their widths. Then the interference terms can be ignored.In

special situations they must be included, however.
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The mostdetailed and explicit discussion of radiation reaction for a charged spherical

Shell is that of

Problems

16.1

16.2

Yaghjian (op.cit.)

A nonrelativistic particle of charge e and mass m is bound bya linear, isotropic,

restoring force with force constant ma9.
Using (16.13) and (16.16) of Section 16.2, show that the energy and angular

momentumof the particle both decrease exponentially from their initial values as
e'’ where [ = wr. Quantum mechanically, the mean excitation energy of an
oscillator decays in exactly the same way because the total radiative transition
probability for a state with quantum numbersno, Jp is (Mo, Io) = Nol’. The decay

of the angular momentum approachestheclassical law only for /) >> 1.

A nonrelativistic electron of charge —e and mass m bound in an attractive
Coulomb potential (— Ze*/r) movesin a circular orbit in the absence of radiation

reaction.

(a) Show that both the energy and angular-momentum equations (16.13) and
(16.16) lead to the solution for the slowly changing orbit radius,

t
P(t) = r6 — 9Z(ct)’ -7

where rg is the value of r(t) at t = 0.

(b) For circular orbits in a Bohr atom the orbit radius and the principal quantum
number7 are related by r = n’a)/Z. If the transition probability for transi-
tions from n — (n — 1) is defined as —dn/dt, show that the result of part a
agrees with that found in Problem 14.21.

(c) From part calculate the numerical value of the times taken for a mu meson
of mass m = 207m,to fall from a circular orbit with principal quantum num-
ber n, = 10 to one with n. = 4, and n, = 1. These are reasonable estimates

of the time taken for a mu meson to cascade downto its lowest orbit after
capture by an isolated atom.
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16.3

16.4

16.5

Anelectron moving in an attractive Coulomb field (— Ze’/r) with binding energy
e and angular momentum L hasanelliptic orbit,

1 Ze* 2eL*
+2h 1 ~ FE cos(@ = 4)
r L? Z°e'm

The eccentricity of the ellipse is given by the square root multiplying the cosine.

(a) By performing the appropriate time averages over the orbit, show that the
secular changes in energy and angular momentum are

de 93/2 7e2&m)2 @2 %eL

d@ 3 oc DD ( - A.)
dL 93/2 Ze e!2

dt 3 m''2¢3 L?

(b) If the initial values of « and L are e, and Lo, show that

Z’e'm LY Eo
L) = 1-{(— +—L1) op (*) | Lo

Calculate the eccentricity of the ellipse, and show that it decreases from its
initial value as (L/L)*”, showing that the orbit tends to becomecircular as
time goes on.

 

(c) Compare your results here to the special case of a circular orbit of Problem

16.2.

Hint: In performingthe time averages makeuse of Kepler’s law of equal areas
(dt = mr’ d6/L) to convert time integrals to angularintegrals.

A classical modelof an electron is a spherical shell of charge of radius a andtotal
charge e.

(a) Using (16.30) for the ‘mass’ M(w) and the angular average of e’®*"/R, show
that

where € = 2wa/c, and m = mg + 2e7/3ac* is the physical massof the electron.

(b) Expand in powersof the frequency (é) and showthat, to lowest nontrivial
order, M(w) has a zero in the upperhalf-plane at wr = i, where tT = 2e7/3mc’.
Whatis the physical significance of such a zero?

(c) For the exact result of part a, show that the zeros of wM(a), if any, are defined

by the two simultaneous equations, proportional to the real and imaginary
parts of iwM(w),

e*cosx — 1+ y(1 —- alct) = 0

e~*~ sinx — x(1 — a/cr) = 0

where x = Re and y = Im &Find the condition on the radius a such that
wM(w) has no zerosin the upper half-w-plane. Express the condition also in
terms of the mechanical mass mg for fixed physical mass. What about zeros
and/or singularities in the lower half-plane?

The particle of Problem 16.4is initially at rest in a spatially uniform, but time-
varying electric field E(t) = E,Q(t).
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16.7

16.8

16.9
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(a) Show that its speed in the direction of the field is given by the integral

_ _eEoa [~ eite

Me) = re J. “eM®
  

where T = ct/2a.

(b) From the analytic properties of M(&) established in part c of Problem 16.4,
show that v(t) = 0 for t S$ 0 (no preacceleration).

A particle of bare mass my and charge e has a charge density, p(x) = e e~"“/47a’r.

(a) Showthat the charge form factoris f(k) = (1 + k*a*)™.

(b) Show that the mass, (16.33), is

MCT
m= m+ ——

2a

(c) Show that the zeros of M(w), (16.34), in the complex w plane, are given by

wt = —i(ct/a)[1 + (1 — 2aler)~7]

(d) Find the trajectories of the roots in the complex w plane for m) > 0 and

my, < 0. Find the limiting form for the roots when a/ct < 1 and a/ct >1.

Discuss.

The Dirac (1938) relativistic theory of classical point electrons hasas its equation

of motion,

AP —_— x radTo+ Fe

wherep,, is the particle’s 4-momentum,7 is the particle’s proper time, and F72°is
the covariant generalization of the radiative reaction force (16.8).

Using the requirement that any force mustsatisfy F,p" = 0, show that

pd = 2e* UP y Pu dp, dp”

" 3mc dt? mc? dt dt

(a) Showthat for relativistic motion in one dimension the equation of motion of

Problem 16.7 can be written in the form,

p-= (? =P.) - 1+ fa

 

  
3mc p? + mc? mc?

where p is the momentum in the direction of motion, a dot means differen-

tiation with respect to proper time, and f(7) is the ordinary Newtonian force

as a function of propertime.

(b) Show that the substitution of p = mc sinh y reducestherelativistic equation

to the Abraham-—Lorentz form (16.9) in y and 7. Write down the general
solution for p(7), with the initial condition that

P(T) = Po at T=0

(a) Show that the radiation reaction force in the Lorentz—Dirac equation of

Problem 16.7 can be expressed alternatively as

Fr _ 2e* (« _ babs) in

e 3mc Be mc? dr?
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16.10

16.11

16.12

(b) The relativistic generalization of (16.10) can be obtained by replacing
d*p’ldr* by g”dF<“/dr in the expression for F'24, Show that the spatial
part of the generalization of (16.10) becomes

dp dF yydv
—_=F+t —->+>— x(vxF
dt ‘Jy dt c dt (v }

whereF is the spatial part of F4,,/y. For a charged particle in externalelectric
and magnetic fields F is the Lorentz force.

Reference: G. W. Ford and R.F. O’Connell, Phys. Lett. A 174, 182 (1993).

The Abraham—Lorentz equation of motion (16.9) can be replaced by an integro-
differential equation if the external force is considered a function of time.

(a) Show thata first integral of (16.9) that eliminates the possibility of “runaway”
solutionsis

mv(t) = [ e“F(t + ts) ds

(b) Show that a Taylor series expansion of the force for small 7 leads to

mv(t) = S r”—
n=0

 

The approximate equation (16.10) contains the first two terms of the infinite
series.

(c) For a step-function force in one dimension, F(t) = Fo@(t), solve the
integro-differential equation of part a for the acceleration and velocity for
t <0 and? > 0 for a particle at rest at t = —°. Plot ma/Fy and mvu/Fo7 in

units of t/t. Compare with the solution from (16.10). Comment.

A nonrelativistic particle of charge e and mass m is accelerated in one-dimensional
motion across a gap of width d by a constantelectric field. The mathematical
idealization is that the particle has applied to it an external force ma while its
coordinate lies in the interval (0, d). Without radiation dampingthe particle, hav-
ing initial velocity vo, is accelerated uniformly for a time T = (—vo/a) +

V(volar) + (2d/a), emerging at x = d with a final velocity v, = Vv2 + 2ad.
With radiation damping the motionis altered so that the particle takes a time

T” to cross the gap and emergeswith a velocity v}.

 

(a) Solve the integro-differential equation of motion, including damping, assum-
ing T and T” large compared to 7. Sketch a velocity-versus-time diagram for
the motion with and without damping.

(b) Show that to lowest orderin 7,

r= r- {1-2
Ui

!
VU; = v0, — — T

(c) Verify that the sum of the energy radiated and the changein the particle’s
kinetic energy is equal to the work done bythe appliedfield.

A classical model for the description of collision broadening of spectral lines is
that the oscillator is interrupted by a collision after oscillating for a time T so that
the coherence of the wavetrain is lost.

(a) ‘Taking the oscillator used in Section 16.7 and assuming that the probability
that a collision will occur between time T and (T + dT) is (ve~”’ dT), where
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vis the meancollision frequency, show that the averaged spectral distribution

1S

dw) — Ih [+ 2p

dw 27 r °
(w — wo)? + 5 + yp

so that the breadth of the line is (2v + I’).

(b) For the sodium doublet at 5893 A the oscillator strength is f = 0.975,so that

the natural width is essentially the classical value, AA = 1.2 x 107* A.Esti-
mate the Doppler width of the line, assuming the sodium atomsarein ther-
mal equilibrium at a temperature of 500K, and compareit with the natural
width. Assuming a collision cross section of 107 *® cm’, determinethe collision
breadth of the sodium doublet as a function of the pressure of the sodium
vapor. For what pressure is the collision breadth equal to the natural

breadth? The Doppler breadth?

16.13 A single particle oscillator under the action of an applied electric field Eye“ has

a dipole moment given by

 

iwtp = a(@)Eoe—

(a) Show that the total dipole cross section can be written as

2
a(@) = = [—iwa(w) + c.c.]

(b) Using only the facts that all the normal modesof oscillation must have some

damping and that the polarizability a(w) must approach the free-particle
value (—e?/mw”) at high frequencies, show that the cross section satisfies the
dipole sum rule,

21e? | aw) dw =

(The discussion of Kramers—Kronig dispersion relations in Chapter 7 1s

clearly relevant.)





Appendix on Units and Dimensions

The question of units and dimensionsin electricity and magnetism has exercised

a great number of physicists and engineers over the years. This situation is in

markedcontrast with the almost universal agreement on the basic units of length
(centimeter or meter), mass (gram or kilogram), and time (meansolar second).
The reason perhapsis that the mechanical units were defined whenthe idea of
“absolute” standards was a novel concept (just before 1800), and they were urged
on the professional and commercial world by a group ofscientific giants (Borda,

Laplace, and others). By the time the problem of electromagnetic units arose
there were (andstill are) many experts. The purpose of this appendix is to add
as little heat and as muchlight as possible without belaboring theissue.

I Units and Dimensions; Basic Units and Derived Units

The arbitrariness in the number of fundamental units and in the dimensions of
any physical quantity in terms of those units has been emphasized by Abraham,
Planck, Bridgman,* Birge,' and others. The readerinterested in units as such will

do well to become familiar with the excellent series of articles by Birge.
The desirable features of a system of units in any field are convenience and

clarity. For example, theoretical physicists active in relativistic quantum field

theory and the theory of elementary particles find it convenient to choose the

universal constants such as Planck’s quantum of action and the velocity of light
in vacuum to be dimensionless and of unit magnitude. The resulting system of
units (called “‘natural’’ units) has only one basic unit, customarily chosen to be

mass. All quantities, whether length or timeor force or energy,etc., are expressed

in terms of this one unit and have dimensions that are powersof its dimension.
There is nothing contrived or less fundamental about such a system than one
involving the meter, the kilogram, and the second as basic units. It is merely a

matter of convenience.*
A word needsto be said about basic units or standards, considered as inde-

pendent quantities, and derived units or standards, which are defined in both
magnitude and dimension through theory and experiment in terms of the basic

units. Tradition requires that mass (m), length (/), and time (¢) be treated as
basic. But for electrical quantities there has been no compelling tradition. Con-
sider, for example, the unit of current. The “international” ampere (for a long

*P, W. Bridgman, Dimensional Analysis, Yale University Press, New Haven, CT (1931).

'R. T. Birge, Am. Phys. Teacher (now Am. J. Phys.), 2, 41 (1934); 3, 102, 171 (1935).

‘In quantum field theory, powers of the coupling constant play the role of other basic units in doing

dimensionalanalysis.

T7135
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period the accepted practical unit of current) is defined in terms of the mass of
silver deposited per unit time by electrolysis in a standard silver voltameter. Such

a unit of current is properly considered a basic unit, independent of the mass,

length, and time units, since the amount of current serving as the unit is found

from a supposedly reproducible experimentin electrolysis.
On the other hand, the presently accepted standard of current, the “‘abso-

lute’? ampere “‘is that constant current which, if maintained in twostraight par-
allel conductors of infinite length, of negligible circular cross section, and placed
one metre apart in vacuum, would produce between these conductors a force
equal to 2-107’ newton per metre of length.” This means that the ‘‘absolute”’

ampere is a derived unit, since its definition is in terms of the mechanical force
between two wires through equation (A.4) below.* The “‘absolute’’ ampereis,
by this definition, exactly one-tenth of the em unit of current, the abampere.

Since 1948 the internationally accepted system of electromagnetic standards

has been based on the meter, the kilogram, the second, and the above definition

of the absolute ampere plus other derived units for resistance, voltage, etc. This

seems to be a desirable state of affairs. It avoids such difficulties as arose when,

in 1894, by act of Congress (based on recommendationsof an international com-
mission of engineers andscientists), independentbasic units of current, voltage,
and resistance were defined in terms of three independent experiments (silver

voltameter, Clark standard cell, specified column of mercury).’ Soon afterward,

because of systematic errors in the experiments outside the claimed accuracy,
Ohm’s law was no longervalid, by act of Congress!

The Systéme International d’Unités (SI) has the unit of mass defined since
1889 by a platinum-iridium kilogram prototype kept in Sevres, France. In 1967
the SI second was defined to be “‘the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two hyperfine levels of the
ground state of the cesium-133 atom.”’ The General Conference on Weights and
Measures in 1983 adopted a definition of the meter based on the speed oflight,
namely, the meteris ‘‘the length of the distance traveled in vacuum bylight during

a time 1/299 792 458 of a second.” The speedof light is therefore no longer an
experimental number;it is, by definition of the meter, exactly c = 299 792 458

m/s. For electricity and magnetism, the Systeme International adds the absolute

ampere as an additional unit, as already noted. In practice, metrology laborato-
ries around the world define the ampere throughthe units of electromotiveforce,
the volt, and resistance, the ohm, as determined experimentally from the
Josephson effect (2e/h) and the quantum Hall effect (h/e*), respectively.’

*The proportionality constant k, in (A.4) is thereby given the magnitude k, = 10~’ in the SI system.
The dimensions of the ‘“‘absolute”’ ampere,as distinct from its magnitude, depend on the dimensions

assigned k. In the conventional SI system of electromagnetic units, electric current (/) is arbitrarily
chosen as a fourth basic dimension. Consequently charge has dimensions /t, and k, has dimensions
of mlI~*t~?. If kz is taken to be dimensionless, then current has the dimensions m'/'1-!. The ques-
tion of whethera fourth basic dimensionlike currentis introduced or whether electromagnetic quan-
tities have dimensions given by powers (sometimesfractional) of the three basic mechanical dimen-

sions is a purely subjective matter and has no fundamental significance.

*See, for example, F. A. Laws, Electrical Measurements, McGraw-Hill, New York (1917), pp. 705-706.

*For a general discussion of SI units in electricity and magnetism and the use of quantum phenomena
to define standards, see B. W. Petley, in Metrology at the Frontiers of Physics and Technology, eds.
L. Corvini and T. J. Quinn, Proceedingsof the International Schoolof Physics ‘Enrico Fermi,’’ Course

CX, 27 June—7 July 1989, North-Holland, Amsterdam (1992), pp. 33-61.
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2 Electromagnetic Units and Equations

In discussing the units and dimensionsof electromagnetism wetake as ourstart-

ing point the traditional choice of length (/), mass (m), and time(f) as indepen-
dent, basic dimensions. Furthermore, we make the commonly accepted definition
of current as the time rate of change of charge (J = dq/dt). This meansthat the

dimension of the ratio of charge and current is that of time.* The continuity
equation for charge and current densities then takes the form:

visi 2a 0 (A.1)
ot

To simplify matters weinitially consider only electromagnetic phenomenain free
space, apart from the presence of charges and currents.

The basic physical law governing electrostatics is Coulomb’s law on the force
between two point charges g and q’, separated by a distance r. In symbols this
law 1s

F,=k, #4 (A.2) 

The constant k, is a proportionality constant whose magnitude and dimensions

either are determined by the equation (if the magnitude and dimensions of the
unit of charge have been specified independently) or are chosen arbitrarily in
order to define the unit of charge. Within our present frameworkall that is de-
termined at the momentis that the product (k,qq') has the dimensions (m/°t~*).

The electric field E is a derived quantity, customarily defined to be the force
per unit charge. A more general definition would be that the electric field be
numerically proportionalto the force per unit charge, with a proportionality con-

stant that is a universal constant perhaps having dimensionssuch thatthe electric
field is dimensionally different from force per unit charge. There is, however,

nothing to be gained bythis extra freedom in the definition of E, since E is the
first derived field quantity to be defined. Only when wedefine other field quan-

tities may it be convenient to insert dimensional proportionality constants in the

definitions in order to adjust the dimensions and magnitudeofthesefields relative

to the electric field. Consequently, with no significant loss of generality the elec-

tric field of a point charge gq may be defined from (A.2) as the force per unit
charge,

E=k,4+ (A.3)
r

All systems of units knownto the author usethis definition of electric field.

For steady-state magnetic phenomena Ampére’s observations form a basis
for specifying the interaction and defining the magnetic induction. According to

Ampére, the force per unit length between two infinitely long, parallel wires
separated by a distance d and carrying currents / and I’ is

—2 = 2k, — (A.4)

*From the point of view of special relativity it would be more natural to give current the dimensions
of charge divided by length. Then current density J and charge density p would have the same di-
mensions and would form a “‘natural’’ 4-vector. This is the choice made in a modified Gaussian system

(see the footnote to Table 4, below).
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The constant k, is a proportionality constant akin to k, in (A.2). The dimension-
less number2 is inserted in (A.4) for later convenience in specifying k>. Because
of our choice of the dimensions of current and charge embodied in (A.1), the
dimensionsof k, relative to k, are determined. From (A.2) and (A.4)itis easily
found that the ratio k,/k, has the dimension of a velocity squared (J?1~?). Fur-
thermore, by comparison of the magnitude of the two mechanical forces (A.2)
and (A.4) for known charges and currents, the magnitude of the ratio k,/kin
free space can be found. The numerical valueis closely given by the Square of
the velocity of light in vacuum. Therefore in symbols we can write

ky,
k C (A.5)

where c standsfor the velocity of light in magnitude and dimension.
The magnetic induction

B

is derived from the force laws of Ampére as being
numerically proportional to the force per unit current with a proportionality
constant a that may have certain dimensions chosen for convenience. Thusfor a
long straight wire carrying a current J, the magnetic induction B at a distance d
has the magnitude (and dimensions)

The dimensionsof the ratio of electric field to magnetic induction can be found
from (A.1), (A.3), (A.5), and (A.6). The result is that (E/B) has the dimensions
(I/ta).

The third and final relation in the specification of electromagnetic units and
dimensions is Faraday’s law of induction, which connects electric and magnetic
phenomena. The observed law that the electromotive force induced around a
circuit is proportional to the rate of change of magnetic flux throughit takes on
the differential form

6B
Vx E+ k;—=0 (A.7)

where k; is a constant of proportionality. Since the dimensions of E relative to
B are established, the dimensions of k3 can be expressed in terms of previously
defined quantities merely by demanding that both terms in (A.7) have the same
dimensions. Then it is found that k; has the dimensions of a~?. Actually, k3 is
equal to a". This is established on the basis of Galilean invariance in Section
5.15. But the easiest way to prove the equality is to write all the Maxwell equa-
tions in termsofthe fields defined here:

V-E = 4zk.p )

0
Vx B=4akay + 22 0

k, ot
»B | (A.8)

 V-B=0 J
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Then for source-free regions the two curl equations can be combinedinto the
wave equation,

kno OB
VB-—k

3k, at
(A.9)

The velocity of propagation of the waves described by (A.9) is related to the
combination of constants appearingthere. Since this velocity is knownto be that
of light, we may write

 ky 5
= A.10

k3k,a ( )

Combining (A.5) with (A.10), we find

1
k3 = — (A.11)

a

an equality holding for both magnitude and dimensions.

3 Various Systems ofElectromagnetic Units

The various systems of electromagnetic units differ in their choices of the mag-

nitudes and dimensionsof the various constants above. Becauseofrelations (A.5)
and (A.11) there are only two constants (e.g., kz, k3) that can (and must) be
chosen arbitrarily. It is convenient, however, to tabulate all four constants

(k,, k, a, k3) for the commonersystemsof units. These are given in Table 1. We

note that, apart from dimensions, the em units and SI units are very similar,
differing only in various powers of 10 in their mechanical and electromagnetic
units. The Gaussian and Heaviside—Lorentz systems differ only by factors of 47.

Table 1 Magnitudes and Dimensions of the Electromagnetic Constants
for Various Systems of Units
 

The dimensionsare given after the numerical values. The symbol c stands for the
velocity of light in vacuum (c = 2.998 x 10'° cm/s ~ 2.998 X 10° m/s). The first four
systems of units use the centimeter, gram, and second as their fundamental units of
length, mass, and time(J, m, t). The SI system uses the meter, kilogram, and second,

plus current (/) as a fourth dimension, with the ampereas unit.
 

 

 

 

System ky, k, a kK;

Electrostatic (esu) 1 c7(t71-7) 1 1

Electromagnetic (emu) c?(Pt~7) 1 1 1

Gaussian 1 c*(t7I-*) c(it~*) c(t)

1
Heaviside—Lorentz tn tae (t71~*) c(It~*) c(t")

1 _ Lo _
SI = 107’c* —= 107’ 1 1

ATE “ 4a

(mPt~*T*) (mlt~*I~)
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Only in the Gaussian (and Heaviside—Lorentz) system does k3, have dimensions.
It is evident from (A.7) that, with k; having dimensionsof a reciprocal velocity,
E and B have the same dimensions. Furthermore, with k; = c™', (A.7) shows
that for electromagnetic waves in free space E and B are equal in magnitude as
well.

For SI units, (A.10) reads 1/(f9€9) = c*. With c now defined as a nine-digit
number and ky = po/4a = 107’ H/m,also by definition, 10’ times the constant
k, in Coulomb’s lawis

10’

ATE
 = c* = 89 875 517 873 681 764

an exact 17-digit number (approximately 8.9876 X 10'°). Use of the speed of light
without error to define the meter in terms of the second removes the anomaly
in SI units of having one of the fundamental proportionality constants €) with
experimental errors. Note that, although the right-hand side aboveis the square
of the speed oflight, the dimensionsof€ (as distinct from its magnitude) are not

seconds squared per meter squared because the numerical factor on theleft has

the dimensions of uo’. The dimensionsof 1/e) and py are given in Table1.It is
conventional to express the dimensionsof €) as farads per meter and those of py
as henrys per meter. With k; = 1 and dimensionless, E and cB have the same

dimensionsin SI units; for a plane wave in vacuum they are equal in magnitude.
Only electromagnetic fields in free space have been discussed so far. Con-

sequently only the two fundamentalfields E and B have appeared. There remains
the task of defining the macroscopic field variables D and H. If the averaged
electromagnetic properties of a material medium are described by a macroscopic
polarization P and a magnetization M,the general form of the definitions of D

and H are

D = 6&E + AP

1 (A.12)
H=-—B-A™M

Mo

where €, fo, A, A’ are proportionality constants. Nothing is gained by making D

and P or H and M havedifferent dimensions. Consequently A and A’ are chosen

as pure numbers (A = A’ = 1 in rationalized systems, A = A’ = 47 in unration-
alized systems). But there is the choice as to whether D and P will differ in

dimensions from E, and H and M differ from B. This choice is made for conve-

nience and simplicity, usually to make the macroscopic Maxwell equations have

a relatively simple, neat form. Before tabulating the choices made for different

systems, we note that for linear, isotropic media the constitutive relations are

always written

D = «€E
. (A.13)

B = pwpH

Thus in (A.12) the constants €, and wo are the vacuum values of € and p. The

relative permittivity of a substance (often called the dielectric constant) is defined
as the dimensionlessratio (€/€y), while the relative permeability (often called the
permeability) is defined as (1/19).

Table 2 displays the values of €) and jo, the defining equations for D and H,

the macroscopic forms of the Maxwell equations, and the Lorentz force equation



Table 2 Definitions of €, wo, D, H, Macroscopic Maxwell Equations, and Lorentz Force Equation in Various Systems of Units

Where necessary the dimensionsof quantities are given in parentheses. The symbolc standsforthe velocity of light in vacuum with dimensions(/t7').
 

 

 

Lorentz
Force per

System Eo Mo D, H Macroscopic Maxwell Equations Unit Charge

. 5 aD éB
Electrostatic 1 Cc D=E+ 47P -D = 47p Vx H= 403 + — VxEt7 =0 E+vxB

(esu) ((7l-*) |H=c’B -— 47M

. _» 1 oD OB
Electromagnetic C 1 D=-—E+ 4mP -D = 479 VX H = 405 + —- VxEt 7 =0 E+vxB

_ C
(emu) (CT *) H = B - 47M

4 1 oD 1 oB
Gaussian 1 1 D=E+ 4aP -D = 4x VxH=—JS+—— VxE+o— =0 E+-xB

H = B- 47M . © . c

1 oD 1 oB
Heaviside— 1 1 D=E+P -D =p vxH=1(s+2) VxEt7 =0 E+~xB

Lorentz H=B-M c c c

0’ aD oB
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in the five common systems of units of Table 1. For each system of units the

continuity equation for charge and currentis given by (A.1), as can be verified
from thefirst pair of the Maxwell equationsin the table in each case.* Similarly,

in all systems the statement of Ohm’s law is J = cE, where a is the conductivity.

4 Conversion ofEquations and Amounts Between SI Units
and Gaussian Units

The two systems of electromagnetic units in most common use todayare the SI

and Gaussian systems. The SI system has the virtue of overall convenience in

Table 3. Conversion Table for Symbols and Formulas
 

The symbols for mass, length, time, force, and other not specifically electromagnetic
quantities are unchanged. To convert any equation in SI variables to the corresponding
equation in Gaussian quantities, on both sides of the equation replace the relevant
symbols listed below under “‘SI”’ by the corresponding ‘“‘Gaussian” symbols listed on
the left. The reverse transformationis also allowed. Residual powers of €) should be

eliminated in favor of the speed oflight (c*uo€) = 1). Since the length and time symbols
are unchanged, quantities that differ dimensionally from one another only by powers of
length and/or time are grouped together wherepossible.
 

 

Quantity Gaussian SI

Velocity of light C (Mo€)

Electric field (potential, voltage) E(®, V)/V47 E(®, V)

Displacement V€,/47 D D

Charge density (charge, current density, V47€ p(q, J, I, P) p(q, J, I, P)
current, polarization)

Magnetic induction 19/477 B B

Magneticfield H/V47 H

Magnetization V471/ M M

Conductivity ATé\o o

Dielectric constant Eo€ E

Magnetic permeability [ole bh

Resistance (impedance) R(Z)/47€5 R(Z)

Inductance L/4775 L

Capacitance ATEyC C

 

c = 2.997 924 58 x 10° m/s

€ = 8.854 1878... X 10°Fim

fo = 1.256 6370... X 10°° H/m

2 — 376.7303...0
€o

*Some workers employ a modified Gaussian system of units in which current is defined by J =

(1/c)(dq/dt). Then the current density J in Table 2 must be replaced by cJ, and the continuity equation

is V-J + (1/c)(dp/dt) = 0. See also the footnote to Table 4.
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Table 4 Conversion Table for Given Amounts of a Physical Quantity
 

The table is arranged so that a given amount of some physical quantity, expressed as so
many SI or Gaussian units of that quantity, can be expressed as an equivalent number
of units in the other system. Thus the entries in each row stand for the same amount,
expressed in different units. All factors of 3 (apart from exponents) should, for accurate
work, be replaced by (2.997 924 58), arising from the numerical value of the velocity of
light. For example, in the row for displacement (D), the entry (127 X 10°) is actually
(2.997 924 58 X 4a X 10°) and “9”is actually 107'° c* = 8.98755 .... Where a name
for a unit has been agreed on or is in commonusage, that nameis given. Otherwise,

one merely reads so many Gaussian units, or SI units.
 

 

Physical Quantity Symbol SI Gaussian

Length l 1 meter (m) 107 centimeters (cm)
Mass m 1 kilogram (kg) 10° grams (g)
Time t 1 second(s) 1 second (s)
Frequency v 1 hertz (Hz) 1 hertz (Hz)
Force F 1 newton (N) 10° dynes

aeoorey | 1 joule (J) 10’ ergs

Power P 1 watt (W) 10’ ergss|
Charge q 1 coulomb (C) 3 x 10° statcoulombs
Charge density p 1Cm~* 3 x 10° statcoul cm~°
Current I 1 ampere (A) 3 x 10° statamperes
Current density J 1Am~” 3 x 10° statamp cm*
Electric field E 1 voltm=}(Vm7) 4X10 statvolt cm™!
Potential ®,V 1 volt (V) x00 statvolt
Polarization P 1Cm”’ 3 x 10° dipole moment cm~™
Displacement D 1Cm”’ 12m X 10° statvolt cm™!

(statcoul cm*)
Conductivity o 1 siemens m~' 9 xX 10° s-!
Resistance R 1 ohm (Q) 5X10" scm!
Capacitance C 1 farad (F) 9x10 cm
Magneticflux o, F 1 weber (Wb) 10° gauss cm* or maxwells
Magnetic induction B 1 tesla (T) 10° gauss (G)
Magnetic field H 1Am™ 4a X 107° oersted (Oe)
Magnetization M 1Am! 10°° magnetic moment cm~°
Inductance* L 1 henry (H) 3x 10%

 

*There is some confusion about the unit of inductance in Gaussian units. This stems from the use

by some authors of a modified system of Gaussian units in which current is measured in
electromagnetic units, so that the connection between charge and currentis I,,, = (1/c)(dq/dt).

Since inductanceis defined through the induced voltage V = L(dI/dt) or the energy U = $LI’, the
choice of current defined in Section 2 means that our Gaussian unit of inductance is equal in

magnitude and dimensions(t7/~') to the electrostatic unit of inductance. The electromagnetic
current J,, is related to our Gaussian current J by the relation /,,, = (1/c)J. From the energy
definition of inductance, wesee that the electromagnetic inductance L,,, is related to our Gaussian
inductance L through L,, = c?L. Thus L,, has the dimensions of length. The modified Gaussian

system generally uses the electromagnetic unit of inductance, as well as current. Then the voltage
relation reads V = (L,,/c)(dI,,/dt). The numerical connection between units of inductanceis

1 henry = § X 1071’ Gaussian (es) unit = 10? emu
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practical, large-scale phenomena, especially in engineering applications. The

Gaussian system is more suitable for microscopic problems involving the elec-
trodynamics of individual charged particles, etc. Previous editions have used
Gaussian units throughout, apart from Chapter 8, where factors in square brack-

ets could be omitted for the reader wishing SI units. In this edition, SI units are
employed exclusively in the first 10 chapters. For the relativistic electrodynamics
of the latter part of the book, we retain Gaussian units as a matter of convenience.

A reminder of the units being used appearsat the top of every left-hand page,
with the designation, Chapter Heading—SI or Chapter Heading—G. Some may
feel it awkward to have two systemsofunits in use, butthe reality is that scientists
must be conversant in many languages—S]units are rarely used for electromag-

netic interactions in quantum mechanics, but atomic or Hartree units are, and

similarly in otherfields.

Tables 3 and 4 are designed for general use in conversion from one system

to the other. Table 3 is a conversion schemefor symbols and equations that allows

the reader to convert any equation from the Gaussian system to the SI system

and vice versa. Simpler schemes are available for conversion only from the SI

system to the Gaussian system, and other general schemesare possible. But by
keeping all mechanical quantities unchanged, the recipe in Table 3 allows the
straightforward conversion of quantities that arise from an interplay of electro-

magnetic and mechanical forces (e.g., the fine structure constant e*/Ac and the

plasma frequency w;, = 47ne’/m) without additional considerations. Table 4 is a

conversion table for units to allow the reader to express a given amount of any
physical entity as a certain numberof SI units or cgs-Gaussian units.
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Index

Abraham-Lorentz equation of motion, 748
Dirac’s relativistic generalization of, 771
workable approximation to, 749, 772

Abraham-Lorentz model of electron, 750f

difficulties with, 754—5
form factor in, 754

see also Classical charged particle
Absorption, resonant, 310

of radiation, by earth’s atmosphere, 467
by oscillator, 655, 768

Absorption coefficient, definition, 310
of ideal gas, 466
of liquid water as a function of frequency,

315
of sea water at low frequencies, 315

Acceleration, relativistic transformation of,

569
Acceleration fields of charge in arbitrary mo-

tion, 664
Action, Lorentz invariance of, 580
Addition of velocities, relativistic, 530f

Addition theorem for spherical harmonics,
110-1

Adiabatic invariance,of flux through particle’s
orbit, 592f

of magnetic momentofparticle, 593
Admittance,field definition of, 288
Advanced Green function for wave equation,

245
invariant expression for, 613-4

Airy integrals, in terms of Bessel functions,
678

Alfvén velocity, 321
Alfvén waves, 319f

Ampére’s law, 179
Angles of incidence, reflection andrefraction,

303
Angular distribution of radiation, from oscillat-

ing dipole, 411, 438
from oscillating quadrupole, 415-6, 438
from relativistic accelerated charge, 668f, 678
see also Bremsstrahlung; Multipole radiation;

and Radiation
Angular momentum,electromagnetic, in circu-

larly polarized plane wave, 350
electromagnetic, expansion of, in plane waves,

350

electromagnetic, of electric charge and mag-
netic monopole, 277

of bound particle, slow change caused by radi-
ation damping, 750

of multipole fields, 432f
rate of radiation of, by oscillating electric di-

pole, 451-2
Angular momentum density of the electromag-

netic field, covariant form of the conser-

vation law for, 608, 610
Angular momentum operator, L, 428
commutation relations for, 429
and other vector differential operators, identi-

ties involving, 428, 432, 441, 472
and vector spherical harmonics, 431

Anomalousdispersion, 310
Anomaly, of magnetic momentof electron and

muon, 565
Antenna, as a boundary-value problem, 418

center-fed, linear, 416f
linear, radiation from in terms of multipoles,

444f
radiation resistance of, 412

short, linear, 412
in wave guide, 392f, 404, 405

Aperture in wave guide or cavity, effective di-
pole moments of, 421f

Arrival of a signal in a dispersive medium, 335f
Associated Legendre functions, 108
Attenuation,in optical fibers, 470-1

Rayleigh scattering limit for, 470
in resonant cavities, 371f
treatment by perturbation of boundary condi-

tions, 366f, 374, 401-2

in wave guides, 363f
Attenuation coefficient, see Absorption

coefficient
Attenuation length, for visible light in the atmo-

sphere, 467
Averaging procedure, to define macroscopic

fields, 249, 253
Axial vector, definition of, 270

Azimuthal symmetry, potential problems with,
101f

Babinet’s principle, 488f
Bessel equation, 112

791
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Bessel functions, 112f
connection with Airy integrals, 678
dual integral equations involving, 132, 205
expansionsinvolving, 115, 118, 119, 126, 138,

140, 141, 702, 705
of first kind, J/,, 113
Fourier-Bessel series, 115, 138
Fourier-spherical Bessel series, 119
Fourier transforms of Ky and K,, 656
integral relations involving, 118, 126, 132, 140,

142, 205, 493
integral representation of, 140
Kapteyn series of, 116, 702, 705
leading behavior for large and small argu-

ments, 114, 116, 427

modified, J,, K,, 116
Neumannseries of, 116
orthogonality, on finite interval, 114-5, 138
on infinite interval, 118, 140

recursion formulas, 113, 427
Schlomilch series of, 116

of second kind, N,, 113
series for J,, 113

spherical, 426-7
limiting forms, 427
Wronskians, 427

of third kind, HS, H°, 113
zeros of J,,(x), 114
zeros of J;,(x), 370

Beta decay, emission of radiation during, 730f
Bethe-Heitler formula for bremsstrahlung, 717,

719
Bibliography, 785f
Biot and Savart law, 175f

Jefimenko generalization of, 247
Birefringence of the ionosphere, 317
Bistatic cross section, definition of, 457
Blue sky, Rayleigh’s explanation of, 465f
BMTequation for spin, 561f
Boost parameter,relativistic, 526

Born approximation, in scattering, 464-5
Born-Infeld nonlinear electrodynamics, 10
Boundstates in wave guides, 405-6
Boundary conditions, at interface between me-

dia, 18, 154, 194
Cauchy, Dirichlet, and Neumann, 37-8

for dielectric wave guide, 388-9
inconsistency in Kirchhoff’s approximation for

diffraction, 480
mixed, example of, 129f, 205
perturbation of, 366f, 374, 401-2
at surface of, good conductor, 353
scatterer, in terms of surface impedance, 475
for TE and TM waves in wave guide, 359

Boundary-value problems, Green function
methodof solution, 38f

in cylindrical coordinates, 117f
in dielectrics, 154f
image method of solution, 57f

in magnetostatics, methods of solving, 194f
in rectangular coordinates, 70f
in spherical coordinates, 95f
in two dimensions, 72f
see also Diffraction; Resonant cavity; and

Wave guide
Breit interaction, 598
Bremsstrahlung, 714f

angular distribution of, 712
as scattering of virtual quanta, 729-30
Bethe-Heitler formula for, 717, 719

classical, 716
frequency spectrum, 716, 717, 719

at low frequencies, 711
in Coulombcollisions, 714f

inner, 732
maximum effective momentum transferin,

713, 715, 718
nonrelativistic, 717-8

polarization of, 712
relativistic, 718f
screening effects in, 721f

Brewster’s angle, 306-7
Brillouin precursor, 338

Canonical stress tensor, 605-6
for electromagnetic fields, 606

Capacitance, definition of, 43
of a circular disc, Cavendish’s value for, 19

variational principles for, 53
Cauchy boundary conditions, 38
Causal connection between D and E,332

Causal Green function, 614
Causality, 330f

consequencesin dispersion, 334
in Coulomb gauge, 242, 291
lack of, with radiation reaction, 748, 772

in special relativity, 528
Cavendish’s apparatus for inverse square law,

Cavity, resonant, see Resonantcavity
Center of mass, of electromagnetic energy, 622

relativistic kinematics of, 575
Characteristic time, in radiation damping, 746

Charge, discreteness of, 4-5

electric, 25
electronic and protonic, equality of magni-

tudes, 554
invariance of, 554

quantization of, according to Dirac, 275f
radiation emitted by sudden creation or disap-

pearance of, in beta processes, 730f, 732f
in uniform motion in vacuum,fields of, 559-

60
Charge conservation, 175, 238, 777
Charge density, and current density as 4-vector,

554
and current density of charged particle, covar-

iant expression for, 615



effective magnetic, 196-7
induced by point charge near conducting

sphere, 59
at sharp corners, edges, and points, 78, 106—7
at surface of conductor, quantum-mechanical,

21
Charged particle, dynamics, 579f

Lorentz force on, 3, 260, 579
motion, in nonuniform magnetic fields, 588f
in uniform static magnetic field, 585
classical model of, 759f

Poincaré stresses in, 755-7, 760f

stability and covariance of energy and mo-
mentum, 762-3

different contributions to mass, 761-2
See also Abraham-Lorentz modelof

electron
Cherenkov angle, 638
Cherenkovradiation, 637f
Circular current loop,fields of, 181f

Classical electron radius, 604, 695, 755

Classical limit, of angular momentum in multi-
pole fields, 435

of electromagnetic fields, 3-4
Clausius-Mossotti relation, 162
Closure, see Completeness
Coherence, of scattering by collection of scatter-

ing centers, 461-2
Coherence volume in transition radiation, 649
Collisions, Coulomb, energyloss in, 625f

radiation emitted during, 709f
Collision time, for fields of relativistic particle,

560
Commutation relations, for infinitesimal Lorentz

transformation generators, 548
of angular momentum operator, L, 429

Complementary screen,definition of, 488
Completeness, of set of orthogonal functions,

68
Completenessrelation, 68

for Bessel functions on infinite interval, 119,
140

for complex exponentials, 70, 125
for spherical harmonics, 108

Compton effect, modification of Thomsonscat-
tering by, 696-7

Conduction in a moving medium,320, 572

Conductivity, effect of, on quasistatic fields,
218f

relation to complex dielectric constant, 312
Conductor, attenuation in, 313
boundary conditionsat, 352f
definition of, 50

diffusion of fields in, 221f
fields at surface of, 352f
fields inside, 220, 354
penetration or skin depth in, 220, 354
surface impedanceof, 356

Conical hole or point, fields near, 104f

793Index

Conservation, of angular momentum ofparticles
and fields, 288

of charge and current, 3, 175, 238, 777

of electromagnetic angular momentum,in co-
variant form, 608

of energy of particles andfields, 258f, 611
of field energy and momentum,in covariant

form, 607, 609
of momentum ofparticles and fields, 260, 611

Constitutive relations, 14

Continuity, at interface, of tangential E and nor-
mal B, 18

Continuity equation, for charge and current,3,
175, 238, 777

in covariant form, 555, 610
for electromagnetic energy flow, 259

in dissipative media, 264
Contraction of length, see FitzGerald-Lorentz

contraction
Contravariant vector, definition of, 540
Convective derivative, in Faraday’s law, 210

in fluid flow, 320
Conversion table, for equations in Gaussian and

SI units, 782
for given amounts in Gaussian and SI units, 783

Correspondence principle of Bohr, 704
Coulomb gauge,definition of, 241
and causality, 242, 291

Coulomb’s law, 24
Jefimenko’s generalization of, 246f

Coupling constant, running, 12
Covariance, of electrodynamics under Lorentz

transformations, 553f

of physical laws under Lorcntz transforma-
tions, 517, 540

Covariant expressions, for electromagnetic en-
ergy and momentum, 757f

for equation of motion for spin, 561f
for Lorentz force equation, 557, 580

for Maxwell equations, 557
for radiative reaction force, 771

Covariant vector, definition of, 541
Critical frequency, as upperlimit of frequency

spectrum of radiation emitted by relativ-
istic particle, 673, 679

Critical opalescence, 469-70
Cross section, Bethe-Heitler, for bremsstrah-

lung, 717

classical, for bremsstrahlung, 716

classical particle scattering, relation to impact
parameter, 655

definition of, for scattering of electromagnetic
waves, 457, 694

Rutherford, 625, 714

for scattering, and absorption of radiation by
harmonically bound charge, 766f

by large conducting sphere, 499-500
by small conducting sphere, 460, 477
by small dielectric sphere, 458-9
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Cross section (Continued)
for small-angle particle scattering, in screened

Coulombfield, 641, 721

Thomson, 695
total, for scattering of fast particles by atoms,

643
see also Bremsstrahlung; Scattering

Current, absolute and international units of,
775-6

Current density, continuity equation for, 3, 175,
238, 777

force on, in a magnetic field, 178
magnetization caused by, 186

Current flow, near surface in good conductor,
221, 356

Current loop, circular, vector potential and
fields of, 181f

force between two, 177-8

Curvature of magnetic field lines, and associated
particle drift velocity, 589-91

Cutoff frequency, in wave guide, definition of,
360

Cutoff modes in wave guide, 360, 390
Cylinder functions, see Bessel functions

Cylindrical coordinates, boundary-value prob-
lems in, 111f

delta function in, 125

Green function in, 126-7, 140
Laplace equation in, 111
separation of variables in, 112
wavesin, 356f

Damping,of oscillations in cavity, 371
radiative, of oscillator, 763f

see also Radiative reaction
Darwin Lagrangian, 596f
Decay, of particle, relativistic kinematics of, ex-

amples, 573-4
of pi mesons, time dilatation in, 529

Delta function, 26-7
in arbitrary coordinates, 551, 120

charge densities in termsof, 27, 123
current densities in terms of, 181, 187, 416,

445
integral representation for, 70, 118, 119, 125,

128, 140

relation to Laplacian ofI/r, 35

three-dimensional, in cylindrical coordinates,
125

in spherical coordinates, 120
Density effect in energy loss, 631f
Density fluctuations, as cause of scattering,

A468f

Diamagnetism,definition of, 15
Dielectric constant, analytic properties of, 332f

of conductor, 311-2
definition of, 154
dispersion relations for, 333-4
high-frequencylimit of, 313

of ionosphere, 316f
modelfor, 309f

of plasma, 313
of plasma in magnetic field, 347
relation to forward scattering amplitude, 504
and signal propagation, 335f

Dielectrics, 151f

anisotropic, wavesin, 346
boundary conditions, 18, 154f
boundary-value problems with, 147f
electrostatic energy in, 165f
method of images in, 154-7

Dielectric wave guide, see Opticalfibers
Diffraction, Babinet’s principle in, 488f

by circular aperture, 490f
comparison of scalar and vector approxima-

tions, 494
Fresnel and Fraunhofer, 491
by half plane, 510-1
Kirchhoff approximation, 479
obliquity factor in, 482
Rayleigh-Sommerfeld approximation, 481
scalar Huygens-Kirchhoff theory of, 478f
by small apertures, 495, 510, 512
Smythe’s vector theorem for, 487-8

Smythe-Kirchhoff approximation, for circular
aperture, 490f

by sphere, in short wavelength limit, 495f
vectorial theory of, 485f

Diffusion, equation of, 219
magnetic, 221f

Dilatation of time, 528

Dimensions, and magnitudes, of electromagnetic
quantities, 779

of physical quantities, arbitrariness of, 775-6
Dipole approximation, in energy loss calcula-

tion, 634, 655
Dipole fields, of conducting sphere in uniform

field, 63-4
of dielectric sphere in uniform field, 158
electrostatic, 147, 149

of electrostatic dipole layer, 32-4
of magnetized body, 197-8
magnetostatic, 186, 188
oscillating electric, 411, 450-1
oscillating magnetic, 413
scattered, by small scatterer, 457

Dipole moment, approximation for coupling of
source to modes in guide, 420-1

effective, of aperture, 422f
electrostatic, 146

energy of, in external field, 150, 190
induced, 152, 309
interaction energy of two, 151
magnetostatic, 186, force on, 189
of current loop, 183, 186

relation of, to particle’s angular momentum,
187

torque on, 189-90



oscillating electric, 410
oscillating magnetic, 413
use of inducedstatic, in scattering at long

wavelengths, 456f
Dipole sum rule, for total radiative cross sec-

tion, 773
Dirac delta function, see Delta function
Dirac magnetic monopole, 273f
Dirac quantization condition for electric charge,

275
Dirac relativistic equation of motion with radia-

tive reaction, 771
Dirichlet boundary conditions, definition of, 37
Discontinuity, at interface, of normal D and tan-

gential H, 18, 31
of potential, across dipole layer, 34

Discreteness, of charge, 4—5

of number of photons, 4
Dispersion, and causality, 330f

anomalous, 310

in dielectrics, 309f
in ionosphere, 317-8
in plasmas, 313
and propagation of pulse, 322f, 335f
in water, 314-5

Dispersion relations, Kramers-Kronig, 333
Displacement, electric, D, 13, 153
Displacementcurrent, 238
Dissipative effects, see Absorption; Attenuation;

and Damping
Divergence, in four dimensions, 543
Divergence theorem, 29
Doppler shift, Galilean, 519

relativistic, 529—30

transverse, 530
Drift, E x B, of particle in crossed electric and

magnetic fields, 586—7
of guiding center, for particle in nonuniform

magnetic fields, 588f
Drift velocity, gradient, 589

curvature, 590-1
Dualfield strength tensor, 556
Dual integral equations, involving Bessel func-

tions, 132, 205
Duality transformation of fields and sources, 274
Dyadic notation, 288
Dynamicsof relativistic charged particles in ex-

ternal fields, 579f
of spin of relativistic particle in externalfields,

S6if

Earth-ionosphere system as resonantcavity, 374f

Eddy currents, 218f
Eigenfrequency, of resonant cavity, 369
Eigenfunctions, 127-8

in cylindrical cavity, 368f
expansion of Green function in termsof, 128
for fields in wave guides, 360, 390
in rectangular guide, 361, 391
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for wave equation in a rectangular box, 128-9
in wave guide, orthonormal expansion of, 390

Einstein’s postulates of relativity, 517-8
Einstein-Smoluchowski formula, 469
Elastic scattering, of fast particles by atoms, 640f
Electric charge, discreteness of, 4—5

invariance of, 553-4
Electric dipole, see Dipole fields, Dipole

moment
Electric displacement, definition of, 13, 153, 780

Electric field, E, of charge, in uniform relativis-
tic motion, 559

limiting form as v — c, 573
definition of, 24—5, 777
derivable from potentials, 30, 239
near corners and edges, 78
relativistic transformation of, 558

Electric multipole fields, see Multipole fields
Electric permittivity tensor, 14, 154
Electric polarization, 13-4, 152
Electric susceptibility, definition of, 154
‘Electric’? waves, 359, 430-1
Electromagnetic energy and momentum,covari-

ant expression for, 757f
Electromagnetic energy density, 259, 287

effective, in media with dispersion and losses,
263

Electromagnetic fields, explicit Lorentz transfor-
mation of, 558

of localized oscillating source, general proper-
ties of, 407f

multipole expansion of, 429f
in wave guide, orthonormal expansion of, 389f

Electromagnetic field-strength tensor, 556
Electromagnetic momentum, 261
Electromagnetic momentum density, 262
Electromotive force, 209
Electron, charge of, 4

classical model of, 750f, 759f
difficulties with, 754—5

radius of, classical, 604, 695, 755
Electron capture by nuclei, radiation emitted

during, 732f
Electrostatic potential, definition of, 30
Electrostatic potential energy, 40f
ELF communications, 316
Elliptic integrals, use of, 139, 182, 231, 232
Energy, electromagnetic, covariant expression

for, 758
of bound particle, slow change of, caused by

radiation damping, 749
of charge distribution in external electric field,

150
conservation, see Poynting’s theorem
of current distribution in external magnetic

field, 190
of dipoles in external fields, 150, 190
electromagneticfield, 260

in dispersive media with losses, 262f
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Energy (Continued)
electrostatic, in dielectric media, 165f
electrostatic potential, 40f
hyperfine interaction, 190-1
magnetic, 212f
of magnetically permeable body, 214
relativistic, of a particle, 537-8
self-, 42, 754

Energy conservation between particles and
fields, 258f, 610-1

Energy density, electromagnetic, 259
electromagnetic, as (0,0) element of symmet-

ric stress tensor, 609
effective, in dissipative media, 263
electrostatic, 40f

Energyflow, 259
velocity of, 323, 325
in wave guide, 363f

Energy-level shift due to radiative reaction,
763f

Energy loss, Bethe’s quantum-mechanicalfor-
mula for, 627

Bohr’s classical formula for, 627
density effect in, 631f
in electronic plasma, 656-7
fluctuations in, 631
by magnetic monopole, 658
radiative, in collisions, nonrelativistic, 718

in collisions, relativistic, 723-4

per revolution in circular orbit, 667
Energy-momentum 4-vector, 538
Energyradiated, by accelerated charge, angular

and frequencydistribution of, 673f
by accelerated magnetic moment, angular and

frequency distribution of, 704
Energy transfer, in Coulomb collision, 625f

to harmonically bound charge, 655
reconciliation of classical and quantum, 630

Equations of motion with radiative reaction,
748-50, 771-2

Ether, 515

Ether drift experiments, 519-22
Evanescent modesin wave guide, 360
Excitation of waves in wave guide, by localized

source, 392f, 419f

Expansion,of arbitrary fields in wave guide in
normal modes, 392

of circularly polarized vector plane wave in
multipole fields, 471f

of Green function, e“*/R, in spherical waves,
428

of |x — x’|~', in cylindrical coordinates, 126,
140

in plane waves, 128
in spherical coordinates, 102, 111

of scalar plane wave, in spherical harmonics,
471

Expansions, see Orthonormal expansions
Extinction coefficient, see Absorption coefficient

Faltung theorem of Fourier integrals, 330
Faraday effect, astrophysical, 346
Faraday’s law of induction, 208f

in differential form, 211
for moving circuit, 209-10

Ferromagnetism,definition of, 15-6
Feynman-Heaviside expressionsforfields, see

Heaviside-Feynman expressionsforfields
Field, electric, see Electric field

magnetic, see Magnetic field
Fields, of charge in arbitrary motion, 664

of charge moving uniformly, in dielectric,
Fourier transforms of, 633-4

in vacuum, 559

in vacuum, Fourier transforms of, 650, 656
of relativistic charge, equivalenceof, to pulse

of radiation, 560, 724f
Field-strength tensors, 556
Finite difference method, 47f
Finite element analysis (FEA), 79f
FitzGerald-Lorentz contraction hypothesis, 517
Fizeau’s experiment, 517, 570

Fluctuations, in density of fluid, and scattering,
468-9

in energy loss, 631
Force, between charge and image charge, 60, 61,

62
on charged surface of conductor, 42-3
Coulomb’s law of, 24

between current-carrying circuits, 178, 777
on current distribution in magnetic field, 188f
on dielectric body, 167, 169
Lorentz, 3, 260, 579

in covariant form, 557, 580
on magnetically permeable body, 214
on magnetic dipole in nonuniform field, 189
on permanent magnets, 230
between point charge and sphere, 60, 61, 62
radiative reaction, 748-9, 771-2
between two parallel wires, 178, 777

Force density, and divergence of stress tensor,
611

on surface of good conductor, 396

Force equation, Abraham-Lorentz, 748
approximation to, 749

with radiative reaction, Dirac’s relativistic, 711
approximation to, 772

integrodifferential, 772
Forward scattering amplitude, relation of, to the

total cross section, 502
relation to dielectric constant, 504

4-current, 554
4-divergence, 543
4-Laplacian, 543
4-tensors of rank k, 540-1

4-vector, contravariant and covariant, definitions
of, 540-1

4-vector potential, 555
4-velocity, of particle, 532



Fourier integrals, 69, 243, 253, 330
Fourier series, 68
summation of, example, 74-5

Fourier-Bessel series, 115, 138

Fourier transform, of exponentially damped
wave, 372, 765

of fields of charge in uniform motion,in di-
electric, 633-4

in vacuum, 650, 656

of wave packet, 323, 327, 336
Fraunhoferdiffraction, definition of, 491. See

also Diffraction

Frequency distribution of radiation, emitted by
electron in classical equivalent of hydro-
gen atom, 704-5

emitted by extremely relativistic charge, quali-
tative aspects of, 671-3

emitted by relativistic charge in instanta-
neously circular motion, 681-2

explicit formulas for, 675-6
from the sun, 467

of transition radiation, 653

from undulators and wigglers, 691, 693
Frequency shift, Aw, in resonant cavity, 374

of resonantline of oscillator with radiation
damping, 763f

Frequency spectrum, see Frequency distribution
of radiation

Fresnel diffraction, definition of, 491. See also
Diffraction

Fresnel formula for speed of light in moving
media, 570

Fresnel formulas for reflection and refraction,
305-6

Fresnel’s rhombus, 308

Galerkin’s method, in FEA, 79f
Galilean invariance, 515
and Faraday’s law, 209-10
of phase of wave, 519

Galilean relativity, 515-6
Galilean transformation of time and space coor-

dinates, 515
Gauge, Coulomb, 241

Coulomb and causality, 242, 291
Lorentz, 241
radiation or transverse, 241

Gauge invariance, 240
Gauge transformation, 181, 240

and Diracstring, 279-80
and particle Lagrangian, 583
and Schrodinger equation, 280

Gaussian pillbox, 17
Gaussian units, basic electrodynamic equations

in, 781. See also Units

Gauss’s law, 27-9
differential form of, 29

g-factor, of electron, 548
and muon, numerical values of, 565
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Goos-Hanchen effect, 308, 342
Gradient, contravariant and covariant in special

relativity, 543
of electric field, and force on electric dipole,

171
and quadrupole interaction, 150-1

of magnetic induction, and associated particle
drift velocity, 588-9

and force on magnetic dipole, 189
in rectangular, cylindrical, and spherical coor-

dinates, end papers
in spherical form with L, 472
Green function, definition of, in electrostatics,

38
e*®/R, spherical wave expansion of, 428
for Helmholtz wave equation, 244
invariant, for wave equation, 612f
retarded and advanced, 244, 614
for scalar diffraction by plane screen, 480
symmetryof electrostatic, 40
for time-dependent wave equation, 245

Green function in electrostatics, 38—40
for concentric spheres, 122
for cylindrical box, 143
examples of use of, 64-5, 122f, 141, 142

expansion of, in cylindrical coordinates, 125f
in Legendre polynomials, 102
in eigenfunctions, 127f
in spherical coordinates, 111, 119f

for Neumann boundary conditions, example
of, 144

symmetryof, 40, 52
for rectangular box, 128-9
for sphere, 64, 119f

for two-dimensional problems, 89-93, 127,
142

for two parallel groundedplanes, 140-1
Green’sfirst identity, 36, end papers
Green’s reciprocation theorem, 52
Green’s theorem, 36, end papers

use of, in diffraction, 479
vector equivalentof, 482f

Ground, conceptof, 19-20

Group velocity, 325
and phase velocity, 325

in wave guide, 364
Guides, see Wave guide
Gyration frequency, of particle in magnetic

field, 317, 585
Gyration radius, 586
Gyrotropic media, phenomenological expression

for polarization in, 273

Half-width, of resonant line shape, 765

relation to Q value of resonant cavity, 372
Hall effect, phenomenological expression for,

289
Hamiltonian, of charged particle in external

fields, 582, 585
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Hamiltonian density for fields, as (0,0) compo-
nent of symmetric stress tensor, 609

Hankel function of order v, 113. See also Bessel
function

Hankel transform, 118

Heaviside-Feynman expressionsfor fields, 248,
284

Helical path of particle in magnetic field, 586
synchrotron radiation associated with, 703

Helicity, connection to circular polarization, 300
Hemispheres, at different potentials, 65f, 101
Hertz vectors, 280f
Hidden momentum, 189, 618

High-frequency behavior of dielectric constant,
313, 333

Hole, circular, in conducting plane, electric
fields near, 134

effective dipole momentsof, 133, 205, 422-4
magnetic fields near, 206

Huygens’s principle, 478
Hydrodynamic equations for conducting fluid,

319-20
Hyperfine interaction energy, 190-1
Hysteresis, magnetic, 193

Idealizations in electromagnetism, 19f
Image charges, see Images

Images, method of, 57f
for conducting sphere in uniform field, 62f
for dielectrics, 155—7

for magnetically permeable media, 229
for point charge near conducting sphere, 58f
for two charged spheres, 86-7

Impact parameter, and scattering angle, 655
maximum effective, in Coulombcollisions,

626, 627
minimum effective, in Coulombcollisions,

626, 629
in methodof virtual quanta, 725, 729
quantum-mechanical, 629

Impedance,of free space, 297
surface, 355, 475

of two-terminal device, general definition of,
264f

wave, in wave guide, 359

Incoherent scattering from collection of
scatterers, 462

Index of refraction, 296, 303
analytic properties of, 337
and phase and groupvelocities, 325
relation to forward scattering amplitude, 504
of water, as function of frequency, 314-6
see also Dielectric constant

Inductance, 215f

accurate result for circular loop, 234
coefficients of mutual and self, 215-6
estimation ofself, 216

high-frequency compared to low-frequency,
218

and magnetic energy, 215
mutual, of two current loops, 234
self, of transmission lines, 232
units of, 783

Induction, Faraday’s law of, 208f

Infinitesimal generators of the Lorentz group,
546, 548

Inhomogeneous plane wave, 298
Inner bremsstrahlung, 732

Integral equationsof the first kind, dual, 132
Interaction energy, see Energy
Interface between two media, boundary condi-

tions at, 16f

Internalfield, at position of molecule in dielec-
tric, 160

Invariance, see Adiabatic invariance, Relativistic
invariance

Inverse distance between two points, expansion
in Bessel functions, 126, 140

expansion, in Legendre polynomials, 102
in spherical harmonics, 111
Fourier integral representation of, 128

Inverse square law, precise verification of, 5f
Inversion, see Spatial inversion
Ionosphere, propagation of wavesin, 316f, 346-7
Irrotational vector, definition of, 242

Jacobian, in Lorentz transformation of 4-dimen-
sional volume element, 555

in transformation of coordinates for delta
function, 120

Jefimenko’s expressions for fields, 246f

Kinematics, relativistic, examples of, 573f
notation for, 565-6

Kirchhoff diffraction, see Diffraction
Kirchhoff’s integral, in diffraction, 479

vector equivalents of, 482f
Klein-Nishina formula, 697

effects of, in method of virtual quanta, 730
Kramers-Kronig relations, 333f, 348-9

Lagrangian, Darwin, for chargedparticle inter-
actions, 597

for electromagnetic fields, 598f
Proca, for massive photons, 600f
for relativistic charged particle in external

fields, 579f
Lagrangian density, for continuousfields, 598-9
Lambshift, 766
Laplace equation, 34
boundary conditions for, 37
in cylindrical coordinates, 111f
general solution of, in cylindrical coordinates,

117-9
in rectangular coordinates, 71-2
in spherical coordinates, 110
in two-dimensional coordinates, 77, 89

in rectangular coordinates, 7Of



in spherical coordinates, 95
in two-dimensions, Cartesian coordinates, 72f
in two-dimensions, polar coordinates, 76

uniqueness of solution of, 37-8
Laplace transform, use of, 222
Laplacian operator, and angular momentum op-

erator, 429
in four dimensions, 543

Larmor formula for radiated power, 665
relativistic generalization of, 666

Legendre differential equation, 96
Legendre functions, associated, 108

asymptotic form for large v, in terms of Bessel
function, 106

of order v, 105
Legendre polynomials, 97

expansion of inverse distance in, 102
explicit formsof, 97
integrals of products of, with powersof cos 86,

100-1
orthogonality of, 99
recurrence relations for, 100
Rodrigues’s formula for, 98
see also Spherical harmonics

Lenz’s law, 209
Levelshift, of oscillator frequency, from radia-

tion damping, 763f
Liénard’s generalization of Larmor powerfor-

mula, 666
Liénard-Wiechert potentials, 661f
Lifetime, of pi mesonsin relativistic motion,

529
see Transition probability

Light, speed of, 3, 776
Light cone, 527
Limiting speed, 518
Linear superposition, of electric fields, 26

of plane waves, 296, 322f

of potentials, example of, 61
validity of, 9f

Line breadth, of oscillator with radiation damp-
ing, 763f

Localized source, in wave guide, 392-3
see also Dipole; Multipole; and Multipole

moment
London penetration depth, 604
Longitudinal vector, definition of, 242
Lorenz condition, 240, 294, 555

Lorentz condition. See Lorenz condition.
Lorentz force, 3, 260, 553, 579

in covariant form, 557, 563, 580

density, 611
Lorenz gauge, 241
Lorentz group, 540

infinitesimal generators of, 546, 548
Lorentz invariance, of electric charge, experi-

mental evidence for, 554

of radiated power, 666
see also Relativistic invariance
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Lorentz invariant differential photon spectrum,
710, 720

Lorentz-Lorenz relation, 162
Lorentz transformation, 524f

of electric and magnetic fields, 558
explicit matrix form of, 546-7
of 4-vector, 526
generators of, S and K, 546
matrix representation of, 543f
noncommutativity of, 548
proper and improper,definitions of, 544
of time and space coordinates, 525
see also Relativistic transformation

Loss, see Attenuation, Power loss

Macroscopic averages, 249-50
Macroscopic electromagnetic quantities, 250f
Macroscopic equations, elementary derivation

of, for electrostatics, 151f

for magnetostatics, 191f
Macroscopicfields, 13, 250, 255-6

Macroscopic Maxwell equations, 13, 238
derivation of, 248f

Magnet, permanent, 16, 200
energy of, in external field, 190
method of treating magnetostatic boundary

value problems involving, 196
Magnetic dipole, see Dipole fields; Dipole

moment
Magnetic charge and currentdensities, 273-4

transformation properties of, 274
Magnetic diffusion, 221-3
Magnetic field, H, boundary conditions on, 18,

194
definition of, 14, 192, 257
see also Magnetic induction

Magnetic flux density, see Magnetic induction
Magnetic induction, B, boundary conditions on,

18, 194
of charge in uniform relativistic motion, 559
of charge, limiting form as v > c, 573
of circular loop, 182f
of current element, 175

definition of, 174, 178
of long straight wire, 176
of magnetized sphere, 198
of nonrelativistic moving charge, 176, 560
relativistic transformation of, 558

Magnetic moment, adiabatic invariance of,
592f

anomalous, of the electron and muon, 565

density, 186, 256
effective, of hole in conductor, 205
of electron, 548
force on, in nonuniform magneticfield, 189
intrinsic, caused by circulating currents, 191
radiation emitted, in disappearance of, 735-6

whenin motion, 704
radiation from time-varying, 413f, 442
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Magnetic moment (Continued)
scattering by induced, 457, 460
torque on, 174, 189-90
see also Dipole moment

Magnetic monopole, 273f
and quantization of electric charge, 275f
vector potential of, 278, 290-1

Magnetic multipole fields, see Multipoles, Multi-
pole fields

Magnetic permeability, 14-5, 193
Magnetic polarization, 13-4
Magnetic pressure, 320
Magnetic scalar potential, 180, 195
Magnetic shielding, 201f, 228-9
Magnetic tension, 320
“Magnetic” waves, 359, 430

Magnetization, definition of macroscopic, 192, 256
of current density distribution, 186
divergenceof, as effective magnetic charge

density, 196
effective current density of, 192
radiation by time-varying, 439f

Magnetized sphere, 198f
in external field, 200-1

Magnetohydrodynamics, equations of, 320
Magnetostatics, basic equationsof, 180, 194
methods of solving boundary-value problems

in, 194f

Massof photon, consideration of, using Proca
Lagrangian, 600f

impossibility of measuring, using lumped cir-
cuits, 601-2

limits on, 7—9

modification of the earth’s dipole field by, 621
Maximum and minimum impact parameters, see

Impact parameters

Maximum and minimumscattering angles, in
elastic scattering by atoms, 641-2

Maxwell equations, 2, 238
in covariant form, 557

derived from a Lagrangian, 599-600
in different systems of units, 781
macroscopic, 13f, 238, 248f

plane wavesolutions of, 295f
spherical wavesolutionsof, 429f

Maxwell stress tensor, 261

Mean-squareangle of scattering, 643-4
Mean-value theorem,for electric field, 149

for electrostatic potential, 52
for magnetic field, 188

Meissner effect, 603

Metals, actual distribution of charge at surface
of, 21

ultraviolet transparency of, 314
Method of Images, see Images
Metric tensorof special relativity, 542
Michelson-Morley experiment, 517
modern successors to, for detection of ether

drift, 519f

Microwaves, see Diffraction; Resonantcavity;
and Wave guide

Mirror, magnetic, 595-6

Mixed boundary conditions, 38, 129f, 205
MKSAunits, see Units

Modes,in cylindrical cavity, 368f
in cylindrical dielectric wave guide, 388-9,

404
normal, in wave guide, 389f
propagating and cutoff or evanescent, 360
TE and TM,in wave guide, 359
in slab dielectric guide, 385f
in spherical geometry, definition of, 375
in wave guide, 360

Molecular multipole moments, 252, 256
Molecular polarizability, 151
models for, 162f

Momentum, canonical, for particle in external
fields, 582

conservation of, between particles andfields,
261, 611

electromagnetic, covariant expression for, 758
hidden mechanical, 189, 618
relativistic, of particle, 536

Momentum density, electromagnetic, 262
and co-moving mechanical momentum in di-

electric, 262, 294

as part of covariant symmetric stress tensor,
609

in macroscopic media, 262
Momentumtransfer, in Coulombcollision, 625
maximum effective, in bremsstrahlung, 713,

715, 718
minimum effective, in bremsstrahlung, 716,

717, 718, 721-2
Monopole radiation fields, absence of, 410

Mossbauereffect, use in ether drift experiments,
521-2

use to detect transverse Doppler shift, 530
Motion, of charged particle in uniform static

magnetic field, 585-6
see also Particle motion

Moving charge,fields of, 549, 573, 664

Movingcircuits and law of induction, 209-10
Multiple scattering of particles by atoms, 643f
Multipole, electrostatic, 146

electrostatic, Cartesian, 146-7
spherical, 146

magnetostatic, 184f
radiating, general aspects of, 407f
time-varying, 407f, 439f
see also Dipole moment; Magnetic moment;

and Multipole moment
Multipole expansion, of electromagneticfields,

429f
of electrostatic potential, 145f
of Green function for wave equation, 428
of interaction energy, 150
of localized source in wave guide, 419f



of radiation by linear antenna, 444f
of scalar plane wave, 471
of vector plane wave, 471f

Multipole fields, 429f
angular momentum of, 433-5
connection to sources, 439f
electric and magnetic, 430-1
energyof, 433
expansion of arbitrary source-freefields in, 431
near-zone properties of, 432
parity properties of, 436
radiation-zone properties, 433
use of, in description of scattering, 473f

Multipole moment, electrostatic, 146-7
estimates of, for radiating atoms and nuclei,

442f
of linear center-fed antenna, 446
magnetostatic, 184f
of oscillating source, exact expressionsfor,

440
long-wavelength approximationsfor, 441-2

see also Dipole moment; Magnetic moment;
and Quadrupole moment

Multipole radiation, angular distributionsof,
437f

by atoms and nuclei, 442f
by linear center-fed antenna, 444f
lowest order, elementary discussion of, 410f
quantum-mechanical selection rules for, 436
sources of, 439f
total power radiated in, 439

Neumann boundary conditions, definition of, 37
use of, in generalized Kirchhoff diffraction

theory, 480-1
Neumann function, 113. See also Bessel

functions

Nonlinear electrodynamiceffects, 10f
Nonlinearoptics, 16
Nonlocality, in time, in connection between D

and E, 330
in time and space, 14-5, 331-2

Normalization of fields in wave guide, 391
Normal mode expansionoffields in wave guide,

389f
Nuclear quadrupole moment, 151

interaction energyof, 150, 171
Nuclei, estimates of multipole transition ratesin,

44?f
Numerical methods, in electrostatics, 47f, 79f

in magnetostatics, 206f

Obliquity factor in diffraction, 482
Obstacles in wave guides, 394
Ohm’s law, 14, 219, 312, 356

covariant generalization of, 572
in Moving medium, 320
nonlocality of, in conductors at high frequen-

cies, 332
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Operator relations, see Gradient; Laplacian
Optical fibers, attenuation in, 383, 470-1

circular, 387f
eikonal approximation for, 380f
eraded index for, 380, 384, 402
meridional and skewrays in, 381
modal dispersion in, 383, 403
modesin, 385f
propagationin, 378f, 385f
Slab, 385f

Optical theorem, proof of, 500f
Orthogonal functions and expansions, 67f
Orthogonality, of Bessel functions on finite in-

terval, 115, 138

of Bessel functions on infinite interval, 118,
119

of complex exponentials on infinite interval,

of Legendre polynomials, 99
of sines and cosines, 68
of spherical harmonics, 108
of vector spherical harmonics, 431

Orthogonal transformations, 268
Orthonormal, definition of, 67
Orthonormal expansions, 67f

Fourier, on finite interval, 68
on infinite interval, 69

Fourier-Bessel, 115, 118, 138-9

on infinite interval, 118-9
Legendre, 99
spherical Bessel function, 119
spherical harmonic, 110
vector, for fields in wave guide, 390-1

Oscillations, see Radiation; Waves
Oscillator, absorption of energy by, 655

in model for dielectric constant, 162, 309
with radiation damping, 763f
scattering and absorption of radiation by,

766f
Oscillator strength, 310, 627, 634, 765

Paramagnetism,definition of, 15
Parity, of multipole fields, 436. See also Spatial

Inversion
Parseval’s theorem, example of, 674
Particle motion, in crossed E and B,586f

in dipole field of earth, 619
in external fields, 579f
in inhomogeneousB, 588f, 592f

with radiation reaction, 748-50, 769, 771-2
in uniform static B, 585-6

Penetration depth, see Skin depth
in superconductivity, 604

Perfect conductor, definition of, for magnetic
fields, 204

Permanent magnetization, 16
Permeability, incremental, 193

magnetic, 14, 193
Permittivity, electric, 14
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Perturbation of boundary conditions, methodof,
366f, 374, 401

for degenerate modes, 402
Phase difference, andelliptic polarization, 299
between E and B in conductor, 221, 354

Phase of plane wave,relativistic invariance of,
519, 529

Phase shift for scattering by sphere, 476
Phase velocity, and group velocity, 325-6

of Alfvén waves, 321

and group velocity, in wave guide, 364
of whistlers, 319

of plane waves, 296
in wave guide, 361

Photon, angular momentum of multipole, 435-6
Photon mass, effective, in superconductors, 604

limits on, 7—9

treatment of, using Proca Lagrangian, 600f

Photon spectrum, emitted during collisions, 709-
10

Lorentz-invariant expression for, 710
see also Bremsstrahlung; Radiation

Plane wave, electromagnetic, 295f
inhomogeneous, 298
magnetohydrodynamic,321
reflection and refraction of, 302f

scalar, propagation in dispersive medium,
322f, 326f

expansionof, in spherical harmonics, 471
vector, expansion of, in spherical harmonics,

473
Plasma, confinement of, by magnetic mirrors,

595-6
energy loss in, 656-7
transverse wavesin, 313

in external magnetic field, 316f, 347
Plasma frequency,andfirst precursor, 338

of dielectric medium, 313

sum rule for, 335
Poincaré stresses, 755f, 760f
Poisson equation, 34

equivalent integral equation, 36—7
examples of solution of, 123, 124, 137-8
formal solution with Green function, 38f
uniquenessof solution of, 37-8
see also Green function in electrostatics

Polarizability, electronic, 163, 309-10

effective, of aperture in conducting plane,
423-4

models of, 162f
molecular, 162f
orientation, 164

Polarization, charge density, 153, 156

macroscopic, electric, 14, 152, 255

magnetic, 14, 192, 256
magnetic, see Magnetization
surface-charge density, 156, 159
transition radiation from, 647, 649f
of vacuum, 11-13
see also Magnetization

Polarization effects in energy loss, 631f
Polarization of radiation, by reflection, 307
from accelerated charges, 665, 676, 678, 706
in bremsstrahlung, 712

Cherenkov, 639

circular, elliptical, linear, 299f
left- and right-handed,definition of, 300
from multipoles, 411, 414, 437
scattered by atmosphere, 468
scattered by small conducting sphere, 460-1
scattered by small dielectric sphere, 459
Stokes parameters for description of state of,

301-2
from synchrotron, 678-9, 706
in Thomsonscattering, 695
x-ray, 712

Polarization potentials, 280f
Polarization vectors, 297, 299f
Polar substances, 164

Polar vector, definition of, 270
Potential, electrostatic, 30

of dipole layer, 33
expansion, in Bessel functions, 118

in Legendre polynomials, 101f
in spherical harmonics, 110

of line charge in cylindrical coordinates, 127
near small hole in conducting plane, 133
of point charge, between groundedplanes,

141-2
in cylindrical box, 143
expansion in cylindrical coordinates, 126
expansion in spherical coordinates, 102,

111, 122
Fourier integral representation of, 128
in rectangular box, 128-9

polarization (Hertz vectors), 280f
in rectangular box, 71-2
scalar and vector, for time-varying fields, 239
in two dimensions, 72f

vector, see Vector potential
Potential energy, see Energy
Power, instantaneous radiated, by accelerated

charge, 665-6, 701

radiated by, charge in arbitrary periodic mo-
tion, 702

chargedparticles in linear and circular ac-
celerators, 667

electrons in undulators, 689-91

linear antenna, angular distributionsof,
417, 447

(J, m) multipole, 437
oscillating dipole, 411-2, 437

oscillating quadrupole, 414-5, 437
Powerflow, see Energy flow

Powerloss, because of finite conductivity, 221,
355-6

in resonant cavity, 371f
in wave guide, 363f
per unit area, at surface of conductor, 356
see also Attentuation



Poynting’s theorem, 258f
covariant generalization of, 607, 610
for dispersive and dissipative media, 262f
for harmonic fields, 264f

Poynting vector, 259
for plane wave, 298
uniqueness, 259
in wave guide, 363

Precession, of spin, Thomas, 548f, 564

Precession frequency, of particle in magnetic
field, 317, 585

Precursor, Brillouin (second), 338

Sommerfeld (first), 338
Pressure, radiation, 288
Proca Lagrangian, 600
Propagation, in anisotropic dielectric, 346

in dispersive medium, 322f, 326f

in ionosphere, 316f, 345
of signal incident on dispersive medium, 335f
see also Signal propagation

Proper time, 528
Pseudoscalar, -tensor, -vector, definitions of, 270

Q, of resonantcavity, definition of,

371
physical interpretation of, 373
of right circular cylindrical cavity, 373
of Schumann resonances, 377, 399

of spherical cavity, 455
Quadrupole moment,electrostatic, 146

interaction of, with field gradient, 150, 171

nuclear, 151
of oscillating source, 414
see also Multipole moment

Quantization of charge, Dirac’s argumentfor,
275f

Quantum-mechanical modifications, in brems-

strahlung, 717
in elastic scattering, 641
in energy loss, 629-30

Quasi-static approximation, 218

Radiated electromagnetic energy, Lorentz trans-
formation properties of, 617

Radiation, by accelerated charge, angular distri-
bution of, 668f

Larmor formula for power, 665-6
angular distribution of, for relativistic parti-

cles, 668f
angular and frequency distribution of, for

charge in periodic motion, 702
for charge in arbitrary motion, 675-6
for moving magnetic moment, 704
for relativistic charge, qualitative aspects of,

671-3
in undulators. 689-91

emitted in, beta decay, 730f
collisions, 709f. See also Bremsstrahlung
orbital electron capture, 732f

from electric dipole, 411
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from electric quadrupole, 414-5
from linear antenna, 416f, 444f
from localized source, 407f, 439f

from magnetic dipole, 413-4
multipole, see Multipole radiation
by relativistic charge in instantaneously circu-

lar orbit, 676f
invariant and coordinate-free form, 702

from short antenna, 412

synchrotron, 681-3
transition, see Transition radiation

from undulators and wigglers, 683f
Radiation condition for asymptotic fields, 479
Radiation cross section, definition of, 715

for classical bremsstrahlung, 716
in complete screening limit, 722
for nonrelativistic bremsstrahlung, 717
for relativistic bremsstrahlung, 718-9

Radiation damping, see Radiative reaction
Radiation fields, 408-9

of charge in arbitrary motion, 664
of (J, m) multipole, 433

Radiation length, 724
Radiation pressure, 288
Radiation resistance, 267

of short linear antenna, 412-3

Radiation zone, 408
in diffraction, 491

Radiative energy loss, in accelerators, 667-8
in collisions, nonrelativistic, 718

relativistic, 723
Radiative reaction, 745f

characteristic time 7 of, 746
effective force of, 748, 749
equation of motion including, Dirac’s, 771
integrodifferential equation of motion includ-

ing, 772
and line breadth, 763f
and shift of oscillator frequency, 763f
simple equation of motion including, 748,

749
slow changes of energy and angular momen-

tum from, 749-50, 769-70

Radius,classical, of electron, 604, 695, 755
gyration, of particle in magnetic field, 586

Rapidity, definition of, 526
use of, in relativistic kinematics, 539

Ray,in optical fibers, 378f
meridional and skew, 381

Rayleigh’s, approximation in diffraction, 481
approximation in scattering, 464
explanation of blue sky, 462f
law of scattering, 457

Rayleigh scattering, 466
Reactance,definition of, in termsof fields, 267
Reciprocation theorem of Green, 52
Reflection, from sphere, in diffraction, 497-9

of charged particle from region of high mag-
netic field, 595

of plane wave atinterface, 302f
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Reflection (Continued)
polarization by, 306-7
of radio waves by ionosphere, 317-8
total internal, 307

Refraction, of plane wave at interface, 302f. See
also Index of refraction

Relativistic addition of velocities, 530f

Relativistic effects in angular and frequency dis-
tributions of radiation, 669-70, 672-3,
678f, 686f, 701f, 712

Relativistic covariance, of electrodynamics,
553f

of physical laws under Lorentz transforma-
tions, 517, 540

Relativistic invariance, of action integral,
580

of electric charge, 554
of 4-dimensional Laplacian, 543
of 4-dimensional volume element, 555
of 4-vector scalar products, 526, 541
use of, in kinematics, 573-4

of phase of plane wave, 529
of photon differential spectrum, 710
of radiated power, 666
of radiation cross section, 720

of speed of light, experiment on, 522-3
Relativistic kinematics, notation and units for,

565-6
Relativistic transformation, of acceleration,

569
of charge and current densities, 554
from cm system to laboratory, 575
of coordinates, 525

of electromagnetic fields, 558, 586-7
of charge in uniform motion, 559, 572
of 4-vectors and tensors, 526, 540f
of 4-velocity, 532
of momentum and energy, 533f
of potentials, 555
of spin vector, 562
and Thomasprecession, 548f
of velocities, 530f

of wave vector and frequency, 530

see also Lorentz transformation
Relativity, special theory of, 514f

experiments testing, 518f
mathematical structure of, 539f
postulates of, 517-8

Relaxation method,in electrostatics, 47f
in magnetostatics, 206f

Resistance, definition of, in terms of fields, 266-

7. See also Conductivity; Ohm’s law; Ra-
diation resistance; Surface resistance

Resonance fluorescence, 767
Resonance,in cavity, 372
Schumann, 376
width I of, definition of, 372

Resonant absorption, 310, 768
and anomalousdispersion, 310, 334

Resonantcavity, 368f
earth and ionosphereas, 374f
energy stored in, 373
modesof oscillation in circular cylinder, 369-

71
powerlossesin walls of, 373
Q of, 371f, 455
resonant frequenciesof, 369
spherical, 455
spherical concentric shell, 399

Resonant frequency, in cavity, shift of, because
of powerloss, 374

of atomic oscillator, 162, 309, 627, 655, 764
shift of, by radiative reaction, 764-6

Resonantline shape, 372, 765
Retarded Green function, 245, 614
Retarded time, 245, 662-3

Rodrigues’s formula for Legendre polynomials,
98

Rotations, 267f

as Lorentz transformations, 546—7

transformation properties of physical quanti-
ties under, 271

Rutherford scattering, connection between an-
gle and impact parameterin, 655

cross section, 625

in terms of momentum transfer, 625, 714

Scalar, under Lorentz transformations, 540
under ordinary rotations, 268

Scalar potential, 30
connection to work done, 30
in magnetostatics, 196
for time-varyingfields, 239
see also Potential, electrostatic

Scalar product of two 4-vectors, 527, 541
Scattering amplitude, forward, relation to dielec-

tric constant, 504

relation to total cross section, 502
integral expression for, 485
multipole expansion of, 509

Scattering cross section, for particles, classical,
definition of, in terms of impact parame-
ter, 655

for radiation, definition of, 457, 694

see also Scattering of particles; Scattering of
radiation

Scattering of particles, by atoms, 640f
effects of, electronic screening on, 641

finite nuclear size on, 641-2
mean square angle of, 643
multiple, 643f
Rutherford, 625

single, tail on multiple scattering distribution,
645

total atomic cross section for, 643

Scattering of radiation, at long wavelengths, 456f
coherent and incoherent, 462

Compton, and Klein-Nishina formula, 696-7



Delbriick, 10
by density fluctuationsof fluid, 468f
of light by light, 10
multipole description of, 473f
by oscillator with radiative reaction, 766f
perturbation treatment of, 462f
by point charge, 694f

quantum-mechanical modificationsof,

696-7
Rayleigh, and the blue sky, 466-7
resonant, 767-8
shadow, 496-7
at short wavelengths, by sphere, 495f
by small conducting sphere, 459f, 477
by small dielectric sphere, 457f
Thomson, 694f

Scattering phase shift, 476
Schumann resonances, 374f
Screening by atomic electrons, effect of, on

bremsstrahlung, 721f
effect of, on small angle elastic scattering, 641

Sea water, attenuation constant of, 316
Selection rules for multipole transitions, 436
Self-energy, classical electrostatic, 754
Self-energy and momentum, 755f

covariant definition of, 757f
Self-force, Abraham-Lorentz evaluation of, 750f

Self-stresses and Poincaré stresses, 755—7
Separation of variables, 70

in cylindrical coordinates, 112
in rectangular coordinates, 70
in spherical coordinates, 95-6

Shielding, magnetic, with permeable shell, 201f
of two-wire cable, with iron pipe, 228-9

Signal propagation in a dispersive media, 335f
Brillouin percursor in, 338
Sommerfeld precursor in, 338
steady-state signal in, 338

Signal velocity, upper limit on, 337
Skin depth, 220, 354

and Q of cavity, 373
and surface resistance, 356
in plasma, 313

Smythe-Kirchhoff integral for diffraction of vec-
tor fields, 487

approximation for diffraction by circular
opening, 490f

Snell’s law, 303
Soft photon emission, 709-10

equality of classical and quantum-mechanical
expressionsfor, 710-1

Solenoid, 225-6
Solenoidal vector, definition of, 242

Source, localized, in wave guide, 392f

of multipole radiation, 439f
Space-like separation of two points in space-

time, 528
Space-time, in special relativity, mathematical

description of, 539f
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Spatial inversion, 269-70
opposite behavior of electric and magnetic

charge densities under, 274
transformation properties of physical quanti-

ties under, 271

Special theory of relativity, see Relativity
Speedof light, experimental constancy, indepen-

dent of frequency, 523-4
experimental constancy, independent of mo-

tion of source, 522-3

numerical value of, 3, 776
Sphere, conducting, and point charge, 58, 60, 61

electrostatic Green function for, 64-5
general solution for potential in, 65, 122f
with hemispheresat different potentials, 65f
scattering of radiation by, 457-8, 459-61, 473f,

495f
in uniform electric field, 62f, 157f

uniformly magnetized, 198f
in external field, 200f

Spherical Bessel functions, see Bessel functions
Spherical coordinates, 95

delta function in, 120
Laplace equation in, 95

Spherical harmonics, Y;,,, 107f
addition theorem for, 110-1
and angular momentum, 428-9
completeness relation for, 108
explicit forms of, 109
orthogonality of, 108
raising and lowering operatorsfor, 428
sum rule for, 111
vector, see Vector spherical harmonic

Spherical wave, scalar, 425f
vector, 429f

Spherical wave expansion,of, electromagnetic
fields, 431

of Green function, e“*/R, 428
of scalar plane wave, 471
of vector plane wave, 473

Spin, -orbit interaction, 552
relativistic equation of motion for, 561f
Thomasprecession of, 548f, 563-4

Thomas’s relativistic equation of motion for,
564

Stability, of classical charged particle, and Poin-
caré stresses, 755f, 759f

Standards, units and, 775-6
Standing waves in resonant cavity, 368
Stationary phase, methodof, 338
Step function, ©(f), definition of, 222, 331
Stokes parameters, 301
Stokes’s theorem, 31, end papers
Stress tensor, and conservation laws, 261, 606,

609, 611
canonical, in 4 dimensions, 606
Maxwell, 261
self, of classical electron, 756, 760f
symmetric, in 4 dimensions, 608-9
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Structure factor, for scattering by collection of
scatterers, 461

Sturm-Liouville equation, 126
Sum rule, dipole, for oscillator strengths, 310

for plasma frequency, 335
Summation convention, for repeated indices,

540-1
Superconvergencerelation for dielectric con-

stant, 335

Superposition principle, see Linear
superposition

Surface-charge density, and discontinuity of nor-
mal E and D,18, 31, 154

on conducting sphere, 59, 64
effective magnetic, 197
and force on surface of conductor, 43

nearcircular hole in conducting plane, 143
near conical hole or point, 106
near edge or corner in 2 dimensions, 78
polarization, 157, 159
potential of, 32
on sphere with line charge inside, 124

Surface current, and discontinuity of H, 18, 194,
353

effective, 221, 356

effective magnetic, 197
Surface distribution, of charge, 31-2

of electric dipole moment, 32—4
Surface impedance,definition of, 356

use of as boundary conditionin scattering,
475

Surface of conductor, charge density at, 21
Surface resistance, of good conductor, 356
Susceptibility, electric, 154, 158f

Synchrotron light source, 661, 683f
examplesof, 692-3
typical photon energy spectra from, 693
undulators and wigglers in, 683f

Synchrotron radiation, 676f
angular and frequency distribution of, 678,

680, 682
astrophysical examples of, 681-2
by charge in helical path, 703
polarization of, 678-9, 706

Systeme International (SI), standards of mass,
length and time, 776

electromagnetic units, 776, 779

Tensor, electromagnetic angular momentum,
288, 608, 610

electromagnetic field-strength, 556
dual, 556

Lorentz transformation properties of, 541
Maxwell stress, 261

rotational definition of, 268

stress, in 4 dimensions, see Stress tensor
Test function,in finite element analysis, 79
Theoremsfrom vector calculus, end papers

Thomasfactor, 552

Thomasprecession, 548f, 563-4
Thomas’srelativistic equation for motion of

spin, 564
Thomsoncross section, 695
Thomsonscattering, 694f
Thomson’s theorem, 53
Time dilatation, 527f

experimental verification of, 529
Time-like and space-like separation, 527-8
Time reversal, 270

transformation of physical quantities under,
271

Torque, on current distribution, 178
on magnetic dipole, 174, 190
on spin, 549
on spin, relativistic equation for, 561f

‘Total cross section and optical theorem, 502
Transformation, see Galilean transformation,

Lorentz transformation, Relativistic
transformation

Transformation properties of physical quantities
underrotations, spatial reflections, and
time reversal, 267f

table of, 271

Transition probability, 442
estimates of, in atoms and nuclei, 442f
in hydrogen-like atoms, 704, 769-70

Transition radiation, 646f

angular and frequencydistribution of, 652
effects of foil thickness and multiple foils on,

658-9
formation length for, 649
qualitative considerations of, 646-9

Transmission coefficient, for diffraction by circu-
lar aperture, 493

Transmission line, dominant modein, 358
examplesof, 397-8
relation between L and Cfor, 232

Transparency, of water in the visible region, 315
ultraviolet, of metals, 314

Transverse Doppler shift, 530
‘Transverse electric (TE) waves, attenuation of,

in wave guide, 365-6
connection of, with multipole moments, 441
cylindrical, in wave guide, 359
in dielectric wave guide, 388
in rectangular wave guide, 361-2, 391
spherical, 430

in concentric sphere cavity, 375
Transverse electromagnetic (TEM) waves, 358

absence of in hollow wave guides, 358
‘Transverse magnetic (TM) waves, attenuation

of, in wave guide, 365-6
connection of, with multipole moments, 441
cylindrical, in wave guide, 359
in cylindrical cavity, 369
in dielectric wave guide, 388



in rectangular wave guide, 391
spherical, 430-1

in earth-ionosphere cavity, 375
Transverse vector field, definition of, 242

Transverse waves, in magnetohydrodynamics,
321

plane, 295f
inhomogeneous, 298

Traveling wave solutions, 296, 324, 327, 348

for signal propagation in dispersive medium,
335f

in wave guide, 357
Two-dimensional corners and edges, fields and

surface charge densities near, 78
Two-dimensional potentials, 75f

Uncertainty principle, 324, 329
use of, in collision problems to obtain quan-

tum-mechanical modifications of, 629,
641, 642, 725

Undulators and wigglers, K parameterof, 685
angular and frequency spectra from, 689-93
average rest frame, dynamicsand radiated

power in, 687-9
see also Synchtrotron light sources

Uniqueness theorem, for solutions of Poisson or
Laplace equation, 37-8

use of, with Legendre polynomial expansion,
102, 103-4, 234

Units, and relative dimensions of electromag-
netic quantities, 777f

appendix on, 775f
basic versus derived, 775-6
conversion between Gaussian and SI, 782-3
Maxwell and other equations, in different sys-

tems of, 781
table for conversion of, 782-3

variant of electromagnetic system of, 782-3

Vacuum polarization, 11-2
contribution to atomic potential, 12

Van Allen belts, of Jupiter, synchrotron radia-
tion from, 682-3

problemsillustrating principles of, 619
Variational principle, for capacitance, 53

in electrostatics, 43f

for wave guides andcavities, 400
Vector, underrotations, definition of, 268

Vector field, decomposition of, into longitudinal
and transverse parts, 242

Vector Green’s theorem, 482-3
Vector plane wave, spherical wave expansion of,

473
Vector potential, for time-varying fields, 239

of localized oscillating source, 408f
of magnetic dipole, 186
of magnetic monopole, 278, 290-1
in magnetostatics, 180, 195
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of oscillating electric dipole, 410
of oscillating electric quadrupole, 414
of oscillating magnetic dipole, 413
on surface of linear antenna, boundary condi-

tion for, 418
Vector spherical harmonics, absolute square of,

table, 437
definition of, 431
orthogonality properties of, 431, 472
sum rule for, 438

Vector theorem, divergence, 29
Green’s, 482-3
Stokes’s, 31
involving surface and volume integrals, 482-3
involving vector spherical harmonics, 472
see end papers

Velocity, addition of, in special relativity, 530f
E x B drift, 586
4-vector, 532
of light, see Speed of light
relativistic transformation law of, 531

Velocity fields, of charge in arbitrary motion,
663

Velocity selector, 587-8, 617
Virtual quanta, method of, 724f

spectrum of, for point charge, 727-8
quantum-mechanical form of, 729

treatment of relativistic bremsstrahlung, 729f
use of, examples in atomic and nuclearcolli-

sions, 742-3
Visible region, of frequency spectrum, reason

for, 314-5

Water, index of refraction and absorption coeffi-
cient of, 315

Wave equation, 240, 243
covariant form of, 555, 612
Green functions for, 243f

Helmholtz, 243
for photons with mass, 601
solutions of, in covariant form, 614-5
spherical wave solutionsof, 425f
transverse two-dimensional, in wave guide,

357, 360
Wave guide, 356f

attenuation in, 363f, 367-8
‘“‘bound”’ state in, 405-6
boundary conditionsin, 359
cutoff frequency in, 360, 362
dielectric, 385f. See Optical fibers
modes, propagating and evanescent, 360

in rectangular, 361f, 391
obstacles in, 394
orthonormalfields in rectangular, 391
sources in, 392f
TE and TM modesin, 359
variational methodsin, 400

Wavelength in wave guide, 361
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Wave number, and frequency, as 4-vector, 530
connection of, with frequency, as 4-vector,

296, 304, 313, 319, 327
imaginary part of, because of losses, 310, 363,

367

spread of, in wave packets, 324
in wave guide, 360, 364, 367

Wave packets in one dimension, 322f, 348

propagation in dispersive medium, 322f
spreadingof, in time, 326f

Waves, Alfvén, 321

in ionosphere, 316f
magnetohydrodynamic, 319f
magnetosonic, 322
see also Plane waves; Spherical waves; Trans-

verse waves

Weizsdcker-Williams method, see Virtual
quanta, method of

Whistler, 319, 349
Wiggler, see Undulators and wigglers
Work,relation to potential energy, 30
Work function of metal and imagecharges, 61
World line, 527

Wronskian, definition of, 126
of Bessel functions, 126

of spherical Bessel functions, 427
Width,finite, of frequency spectrum of cavity

with losses, 372
finite, of frequency spectrum ofoscillator with

damping, 764

x-rays, polarization of, in bremsstrahlung, 712
from synchrotronlight sources, 693

Yukawapotential, for scalar potential if photon
has mass, 601





Where to Find Key Material
on Special Functions

SPHERICAL

Legendre polynomials P,(x) 97-101
Associated Legendre functions P/"(x) 108
Spherical harmonicsY,,,(0, @) 108-9

CYLINDRICAL

Bessel functions J,(x), N,(x) 113-4
Modified Bessel functions /,(x), K,(x) 116
Spherical. Bessel functions j,(x), 2,(x), h(x) 426-7
Roots of J,,(x) = 0 114
Roots of J,,(x) = 0 370
Identities involving Bessel functions 126, 132, 140, 205

Airy integrals, connection to Bessel functions 678

ORTHOGONAL FUNCTION EXPANSIONS

Bessel function (finite interval in p) 114-5, 138-9
Bessel function (infinite interval in p) 118
Eigenfunction, of Green function 127-8
Fourier series 68
Fourier integral 69-70

Legendre polynomial 99

Spherical harmonic 109

Spherical Bessel function 119
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Explicit Forms of
Vector Operations

Let e,, e2, e; be orthogonal unit vectors associated with the coordinate directions

specified in the headings on theleft, and A,, Az, A3 be the corresponding com-

ponents of A. Then
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